71 research outputs found

    Linear and Affine Typing of Continuation-Passing Style

    Get PDF
    Submitted for the degree of Doctor of Philosophy, Queen Mary, University of Londo

    Proceedings of the 4th DIKU-IST Joint Workshop on the Foundations of Software

    Get PDF

    Modular verification of assembly code with stack-based control abstractions

    Full text link

    High-level effect handlers in C++

    Get PDF

    Wasm/k: Delimited Continuations for WebAssembly

    Full text link
    WebAssembly is designed to be an alternative to JavaScript that is a safe, portable, and efficient compilation target for a variety of languages. The performance of high-level languages depends not only on the underlying performance of WebAssembly, but also on the quality of the generated WebAssembly code. In this paper, we identify several features of high-level languages that current approaches can only compile to WebAssembly by generating complex and inefficient code. We argue that these problems could be addressed if WebAssembly natively supported first-class continuations. We then present Wasm/k, which extends WebAssembly with delimited continuations. Wasm/k introduces no new value types, and thus does not require significant changes to the WebAssembly type system (validation). Wasm/k is safe, even in the presence of foreign function calls (e.g., to and from JavaScript). Finally, Wasm/k is amenable to efficient implementation: we implement Wasm/k as a local change to Wasmtime, an existing WebAssembly JIT. We evaluate Wasm/k by implementing C/k, which adds delimited continuations to C/C++. C/k uses Emscripten and its implementation serves as a case study on how to use Wasm/k in a compiler that targets WebAssembly. We present several case studies using C/k, and show that on implementing green threads, it can outperform the state-of-the-art approach Asyncify with an 18% improvement in performance and a 30% improvement in code size

    Categorical structure of continuation passing style

    Get PDF
    Laboratory for Foundations of Computer ScienceThis thesis attempts to make precise the structure inherent in Continuation Passing Style (CPS). We emphasize that CPS translates lambda-calculus into a very basic calculus that does not have functions as primitive. We give an abstract categorical presentation of continuation semantics by taking the continuation type constructor (cont in Standard ML of New Jersey) as primitive. This constructor on types extends to a contravariant functor on terms which is adjoint to itself on the left; restricted to the subcategory of those programs that do not manipulate the current continuation, it is adjoint to itself on the right. The motivating example of such a category is built from (equivalence classes of typing judgements for) continuation passing style (CPS) terms. The categorical approach suggests a notion of effect-free term as well as some operators for manipulating continuations. We use these for writing programs that illustrate our categorical approach and refute some conjectures about control effects. A call-by-value lambda-calculus with the control operator callcc can be interpreted. Arrow types are broken down into continuation types for argument/result-continuations pairs, reflecting the fact that CPS compiles functions into a special case of continuations. Variant translations are possible, among them lazy call-by-name, which can be derived by way of argument thunking, and a genuinely call-by-name transform. Specialising the semantics to the CPS term model allows a rational reconstruction of various CPS transforms

    Continuing WebAssembly with Effect Handlers

    Get PDF
    WebAssembly (Wasm) is a low-level portable code format offering near native performance. It is intended as a compilation target for a wide variety of source languages. However, Wasm provides no direct support for non-local control flow features such as async/await, generators/iterators, lightweight threads, first-class continuations, etc. This means that compilers for source languages with such features must ceremoniously transform whole source programs in order to target Wasm. We present WasmFX an extension to Wasm which provides a universal target for non-local control features via effect handlers, enabling compilers to translate such features directly into Wasm. Our extension is minimal and only adds three main instructions for creating, suspending, and resuming continuations. Moreover, our primitive instructions are type-safe providing typed continuations which are well-aligned with the design principles of Wasm whose stacks are typed. We present a formal specification of WasmFX and show that the extension is sound. We have implemented WasmFX as an extension to the Wasm reference interpreter and also built a prototype WasmFX extension for Wasmtime, a production-grade Wasm engine, piggybacking on Wasmtime's existing fibers API. The preliminary performance results for our prototype are encouraging, and we outline future plans to realise a native implementation

    Lifting Sequential Effects to Control Operators

    Get PDF

    Exception Handling in C∀

    Get PDF
    The C∀ (Cforall) programming language is an evolutionary refinement of the C programming language, adding modern programming features without changing the programming paradigms of C. One of these modern programming features is more powerful error handling through the addition of an exception handling mechanism (EHM). This thesis covers the design and implementation of the C∀ EHM, along with a review of the other required C∀ features. The EHM includes common features of termination exception handling, which abandons and recovers from an operation, and similar support for resumption exception handling, which repairs and continues with an operation. The design of both has been adapted to utilize other tools C∀ provides, as well as fit with the assertion based interfaces of the language. The EHM has been implemented into the C∀ compiler and run-time environment. Although it has not yet been optimized, performance testing has shown it has comparable performance to other EHMs, which is sufficient for use in current C∀ programs
    corecore