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Abstract 

This thesis attempts to make precise the structure inherent in Continuation Pass-

ing Style (CPS). 

We emphasize that CPS translates )-calculus into a very basic calculus that 

does not have functions as primitive. 

We give an abstract categorical presentation of continuation semantics by 

taking the continuation type constructor -i (or cont in Standard ML of New 

Jersey) as primitive. This constructor on types extends to a contravariant functor 

on terms which is adjoint to itself on the left; restricted to the subcategory of 

those programs that do not manipulate the current continuation, it is adjoint to 

itself on the right. 

The motivating example of such a category is built from (equivalence classes 

of typing judgements for) continuation passing style (CPS) terms. The categor -

ical approach suggests a notion of effect-free term as well as some operators for 

manipulating continuations. We use these for writing programs that illustrate 

our categorical approach and refute some conjectures about control effects. 

A call-by-value )-calculus with the control operator callcc can be inter-

preted. Arrow types are broken down into continuation types for argument/result-

continuations pairs, reflecting the fact that CPS compiles functions into a special 

case of continuations. Variant translation are possible, among them "lazy" call-

by-name, which can be derived by way of argument thunking, and a genuinely 

call-by-name transform. Specialising the semantics to the CPS term model allows 

a rational reconstruction of various CPS transforms. 
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Chapter 1 

Introduction 

The aim of this thesis is to make explicit the structure underlying continuation 

passing style, reifying it, so to speak, by making it less of a style and more of a 

structure. 

There are (as yet) few programming languages that "have" continuations in 

the sense of possessing a language construct for giving unrestricted access to 

continuations. In a wider sense, however, most programming languages "have" 

continuations in some sense or another. In contemporary Computer Science, 

continuations may appear in various settings 1  and under different guises, among 

them at least the following: 

o as a style of semantic definition in denotational semantics, giving meaning 

to generalised jumps; 

as a programming technique in mostly, or even purely, functional languages 

as a programming construct in (mostly/impurely) functional languages 

as a compiling technique 

Many textbooks on denotational semantics, such as [Ten9l] and [5ch86], contain 

some material on continuations in the context of imperative languages. 

As a first-class continuation primitive is part of the official definition of Scheme 

[Re91], textbooks on Scheme, such as [FF96] typically give some examples of its 

use, the most advanced being perhaps [SF89]. 

The functional programming textbook [Hen87] gives a thorough introduction 

to the use of continuations in program transformation and code generation (inter-

estingly, using a purely functional language without control operators which 

'We have listed here only what can be considered mainstream in that it appeared in several 
textbooks and is tought in undergraduate or at least MSc courses. 



can be seen as evidence of the usefulness of continuations as a technique even 

without language support.) 

Continuations as an implementation technique are used in [FWH92] for a toy 

interpreter and in [App92] for the New Jersey ML compiler. 

1.1 An introduction to continuations in program-
ming languages 

This section is intended to provide some background: the reader familiar with 

continuations can safely skip it and jump to section 1.2 below. 

The goto familiar from typical imperative (or "heritage") languages like C 

corresponds to a conmand continuation [SW74]. The much more powerful 'jump 

with arguments", which we will be concerned with, corresponds to expression 

continuations. Here a value is passed, or "thrown" along with the transfer of 

control, much like the arguments in a function call. These were written with the 

special forms valof and resultis in [SW74]; this construct survives in typical 

imperative languages only in the case when the block is a function body: in this 

case the result of the function is thrown by the return statement. 

Incidentally, the reason, in our view, that goto may justly be considered 

"harmful" [Dij681 is that it is so weak. In particular, it cannot pass arguments and 

can be compared to GOSUB (without arguments) as a cruder and less structured 

counterpart of a genuine procedure call. 

See figures 1.1, 1.2 and 1.3 on page 8 for examples of jumps with and without 

arguments. 

We are particularly interested in two aspects of continuations: their use in 

giving semantics to control operators, and their use in compiling functions into 

more primitive jumps with arguments. 

We illustrate the use of the control operator callcc by discussing a simple 

example, using both Scheme and (the New Jersey version of) ML in the hope 

that the reader may be familiar with one of these. 

For Scheme, first-class continuations are part of the language definition [Re91]. 

In ML they are not, but the New Jersey implementation (see the manual [NJ93]) 

adds first-class continuations to ML by means of the following signature: 

type 'a cont 

val callcc : ('ía cont -> 'la) -> 'la 

val throw : 'a cont -> 'a -> 'b 
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char* f  

return "Threw past the loop.\n"; 
while(1); 

} 

main() 
{ 

goto skip; 
while (1); 
skip: printf("Jumped past the loop.\n"); 
printf(" °hs", fO); 

} 

Figure 1.1: Two jumps in C 

fun loop x = loop x; 

callcc(fn skip => 
loop(throw skip 0)); 

output(std_out, "Jumped past the loop.\n"); 

output (std_ out, 
callcc(fn skip => 

loop(throw skip "Threw past the loop.\n"))); 

Figure 1.2: Two jumps in ML 

(define (loop x) (loop x)) 

(begin 
(call/cc(lambda (skip) 

(loop (skip (list))))) 
(write "Jumped past the loop.")) 

(write 
(call/cc(lambda (skip) 

(loop (skip "Threw past the loop."))))) 

Figure 1.3: Two jumps in Scheme 



fun remberuptolast a lat = 
callcc(fn skip => 

let fun R [] = 
I 	R (b::l) = 

if b = a then throw skip (R 1) else b::(R 1) 
in 

R lat end); 

Figure 1.4: remberuptolast in ML 

1.1.1 An example program 

As an example of the use of expression continuations in programming, we con-

sider the function rember-upto-last form the recent programming textbook The 

Seasoned Schemer [FF96]: 

The function rember-upto-last takes an atom a and a lat [list of 
atoms] and removes all the atoms from the ]at up to and including the 
last occurrence of a. If there are no occurrences of a, rember-upto-last 
returns the list. 

First we transliterate 2  the function rember-up-to-last from the original 

Scheme to ML (see figure 1.4 on page 9). 

remberuptolast a lat removes everything up to the last occurrence of a 

from the list lat. For instance: 

- remberuptolast 42 []; 

val it = [] : mt list 

- remberuptolast 42 [1,2,3,4,5,6,7,8,9]; 

val it = [1,2,3,4,5,6,7,8,9] : mt list 

- remberuptolast 42 [1,2,3,4,42,5,6,7,8,9]; 

val it = [5,6,7,8,9] : mt list 

- remberuptolast 42 [1,2,3,4,42,5,6,7,42,8,9]; 

val it = [8,9] : mt list 

- remberuptolast 42 [1,2,3,4,42,5,6,7,42,8,9,42]; 

val it = [] : mt list 

'We pass between the different lexical conventions for identifiers in ML abd Scheme 
(e.g.callcc and call/cc) without emphasising it. Similarly, in a more idealised setting we 
write \ where one would have fn in ML and lambda in Scheme. 



fun remberuptolast a lat = 
callcc(fn skip => 

let fun R [] = 0 
I R (b::l) = 

(R 1; 
if b = a then throw skip 1 else 0) 

in 
(R lat; lat) end); 

Figure 1.5: remberuptolast without consing in ML 

(define (rember-upto-last a lat) ; Look Ma no cons 
(call/cc 
(lambda (skip) 

(letrec 
(CR 

(lambda (1) 
(if (null? 1) 

(list) 
(begin 

CR (cdr l)) 
(if (eq? a (car 1)) 

(skip (cdr 1)) 
(list))))))) 

(begin (R lat) lat))))) 

Figure 1.6: remberuptolast without consing in Scheme 
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The local helper function R in remberuptolast recurs over the list lat; every 

time the element a is encountered the remainder of the list is made the overall re-

sult by being passed to the result continuation skip. Note that this is essentially 

iteration and jumping, which becomes even clearer if we rewrite remberuptolast 

so that it does not copy the list (figures 1.5 and 1.6 for remberuptolast without 

consing). In this version, R does all its work by recurring and jumping, its re-

turn value being irrelevant. In that sense, it is highly non-functional, but rather 

"jumperative" 3 . In fact, we can push the analogy with imperative programming 

even further. The solution of traversing the list and throwing every time an a 

in found is similar to the imperative solution of dragging a pointer across the 

list, that is, updating a variable every time an a is found (figures 1.7 and 1.8). 

In some sense, there is a duality here: a throw preempts later throws, while an 

assignment undoes earlier assignments. Similarly, providing lat as a default (for 

the case when no jump occurs) result at the very end of the argument of callcc 

is analogous to initialising p to lat at the very beginning. 

In this example, the jump with arguments provided by continuation invocation 

could also be written using ML [Pau91], [MTH90] exceptions (which may be more 

familiar to some readers): see figure 1.9. callcc(fn skip => ...) is roughly 

analogous to declaring a local exception and and handling it by retaining the 

value it passed; while while throwing a value to a continuation is analogous to 

raising an exception with that value. 

Exceptions, and their semantic differences compared with first-class continu-

ations, are beyond the scope of this thesis. If pushed too far, the analogy with 

exceptions may actually be misleading. 

Hence we consider another way of explicating the role of continuations in 

the example: that is, by making them an explicit argument to a function. This 

foreshadows the formal (continuation) semantics of callcc. 

Figures 1.10 and 1.11 show how remberuptolast can be written by explicitly 

passing a continuation parameter during the recursion of R. This yields a purely 

functional program, as all occurrences of control operators have been expanded 

out or compiled away, as it were. 

Note how jumping (if an a is found in the list) in the programs with callcc 

in figures 1.5 and 1.6 amounts to ignoring the continuation parameter k in the 

programs with an explicit continuation parameter in figures 1.10 and 1.11. 

3 to use a term coined by M-x dissociated-press in emacs 
4 Experts would perhaps point out that the versions of rember-upto-last with explicit 

continuations in figures 1.10 and 1.11 are not strictly the continuations counterparts of the ones 
with callcc and that they correspond more closely to aborting whenever an a is found and 
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fun remberuptolast a lat = 
let val p = ref lat in 

let fun R [] = 0 
I R (x::l) = 

(if x = a then p := 1 else 0; 
R 1) 

in 
R lat; 

end 
end; 

Figure 1.7: remberuptolast with dragging a pointer across the list (In ML) 

(define (rember-upto-last a lat) 
(letrec 

((p lat) 
(R 
(lambda (1) 
(if (not (null? 1)) 

(begin 
(if (eq? a (car 1)) 

(set! p (cdr 1))) 
(R (cdr 1))))))) 

(begin 
(R lat) 
PM 

Figure 1.8: remberuptolast with dragging a pointer across the list (In Scheme) 
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fun remberuptolastexn a lat = 
let exception skipexn of mt list in 

let fun R [] = C) 
I R (b::l) = 

(R 1; 
if b = a then raise skipexn 1 else 0) 

in 
(R lat; lat) 

end 
handle skipexn x => x 
end; 

Figure 1.9: remberuptolast (without consing) with ML exceptions 

fun remberuptolast a lat = 
let fun B. [] k = k 0 

I R (b::l) k = 
R  
(fn 0 => 
if b = a then 1 else k 0) 

in 
R lat (fn C) => lat) end; 

Figure 1.10: remberuptolast with explicit passing of a continuation parameter 

(define (rember-upto-last a lat) ; Look Ma, no cons 
(letrec 

(CR 
(lambda (1 k) ; B. has a continuation parameter k 
(if (null? 1) 

(k) 
(B. (cdr 1) 

(lambda C) 
(if (eq? a (car 1)) 

(cdr 1) 
(k)))))))) 

(B. lat (lambda 0 lat)))) 

Figure 1.11: remberuptolast with explicit passing of a continuation parameter 
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While this formulation is very succinct, it is hard to understand in intuitive 

programming terms, in that what is intuitively a jump is expressed by modifying 

the current continuation before passing it to the recursive call. Here we have 

introduced continuations only in that small portion of the program that makes 

use of them. In general, we would have to introduce them everywhere, lead-

ing to a virtually unreadable program full of anonymous A terms representing 

continuations. 

1.1.2 Upward continuations 

The example of rember-upto-last in section 1.1.1 is perhaps not totally felici-

tous in that it only uses "downward" continuations (in the sense of [FWH92]: a 

continuation can be passed "down"into a function call as an argument, but not 

"up" from it as a result). Downward continuations do not really reveal the full 

power of first-class continuations, as the latter comprise also the "upward" case. 

The last two chapters of the textbook [SF89] are devoted to the use of continua-

tions; unfortunately heavy use is made of local state. While this combination of 

first-class continuations with local state gives rise to a very useful programming 

idiom (coroutines), it does not illustrate the power of continuations on their own, 

without state. It is not totally clear whether, in the absence of local state to 

encapsulate the current continuation [HFW86], [SF89], or at least a global queue 

of suspended threads [BCL+96],  one can obtain coroutines from continuations. 

See also [Shi96]. 

Nevertheless, the following, somewhat Mickey Mouse, example of two corou-

tines from [SF89] can be written without using state. Instead we use a function 

phi to manipulate the current continuation, about which we will say more in 

section 1.2 below. 

(define (phi f) 

(lambda (h) 

(call/cc (lambda (k) (h (f k)))))) 

(define (ping a) 

(phi (lambda Cx) (write a) x))) 

(((ping 'ping) (ping 'pong)) ((ping 'ping) (ping 'pong))) 

The two functions printing ping and pong, respectively, call each other inces- 

delimiting this within the definition of rember-upto-last. 
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santly, producing a string 

pingpongpingpongpingpong... 

In fact, an even more distilled construction of looping from a double self-

application with first-class continuations in the untyped setting of Scheme is wit-

nessed by the fact that 

((call/cc call/cc) (call/cc call/cc)) 

loops. 

The failure to consider upward continuations appears to be the cause of a 

misapprehension that one sometimes encounters, holding that "there are no closed 

terms of continuation type". It is easy to find examples refuting this, e.g. the 

following: 

- callcc(fn k => throw (callcc(fn h => throw k h)) 42); 

val it = cant : mt cont cant 

Below, we introduce a set of functions (1.12 on 19 and figure 1.13 on page 20 

for ML and Scheme) with which we can write terms of continuation type more 

succinctly, for instance 

- thunk 42; 

val it = cant : mt cant cont 

as well as the following: 

- funtocont (fn x : mt => x); 

val it = cant : (mt * mt cant) cant 

1.1.3 Continuation Passing Style 

In the last version of remberuptolast (figures 1.10 and 1.11) the function F. takes 

an explicit continuation argument instead of seizing the current continuation by 

means of a callcc. More generally, a program with callcc can be translated into 

one without, but such that everything takes an explicit continuation argument. 

(This continuation argument is an ordinary function, not an element of some 

special continuation type.) For a highly idealised programming language, namely 

simply-typed )-calculus augmented by the constant callcc, this translation is 

the CPS transform (adapted here from [DHM91], an extension of [P1o75]): 

15 



= Ak.kx 

Ax.M = )k.k(Axh.Mh) 

MN = Ak.M(Af.N(Ax.fxk)) 

callcc M = Ak.M (AN kk) 

throw MN = Ak.M(Ak.Nk) 

CPS transforms such as this may seem quite confusing if considered formalis-

tically as translations of )-calculi, in that there is no obvious sense in which they 

are homomorphic or otherwise structure-preserving; certainly A is not translated 

to A. 

This becomes somewhat clearer if we think of a CPS transform as an idealised 

compilation. For instance, the translation of a function Ax.M needs an explicit 

return address h for the function body M along with its argument x; that explains 

Axh.Mh. As we have a language with higher-order functions, the whole function 

needs to be computed in the first place. Now function definitions evaluate to 

themselves, or more accurately, the compiled Axh.Mh is immediately passed to 

the overall return address k, i.e. k(Axh.Mh). 

In a sense, no function in CPS ever returns; each will ultimately call some 

continuation. So in order to make CPS work, only some mechanism for passing 

arguments (without returning) is required - such as input prefixes in a process 

calculus. What is crucial, though, is that the recipient address of such an input 

can itself be passed as an argument. But that is the main feature of the ir-calculus 

(where this is often called "mobility"). 

We can thus transliterate the CPS transform above, yielding a transform with 

the ir-calculus as the target language, related to, though not quite identical with, 

Miler's translations [PS93]. (The main reason that Milner's translation differs 

from our is that it was originally designed for the monadic, not the polyadic, 

variant of the 7r-calculus.) In addition, this transform also has clauses for callcc 

and throw: 

jxflk) = 	(x) 

Ax.M(k) = (vl)(k(l) !1(xh).JM(h)) 

throw M N(k) = (vm)(JM(m) I !m(n).N(n)) 

ca11cc M(k) = (vm)(M(rn) I !m(1)J(kk)) 

MN(k) = (vm)(IVI(m) ! m(1).(vn)((JNj(n) ! n(a).l(ak))) 
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1.1.4 CPS as name-passing 

We briefly comment on CPS as an idealised compilation, using Milner's it-calculus 

as the target language. 

Exponentials and )¼-abstraction are often taken as foundational for the se-

mantics of programming languages. Naively, though, a "function" call consists 

of two jumps with arguments: first the caller jumps to the callee, passing it the 

actual parameters (if any) and the return address; the callee jumps to the return 

address, passing the result (if any). 

Less naively, one could argue that a concept of reference, address or pointer 

(here in particular: pointer to code) is more fundamental for actual computation 

than the notion of function; the it-calculus is perhaps the most successful embod-

iment of this view. But it is chiefly the mobility aspect of the it-calculus that 

matters here, concurrency being somewhat orthogonal. 

Both continuation-passing style [Plo75, DHM91] and the it-calculus decom-

pose or "compile" function abstraction into such jumps with arguments. Recall 

the clause for ): 

J)x.It/I(k) = (u1)((1) I ! 1(xh).lIVf(h)) 

Here the caller would have to jump to The address 1 with actual parameters for x 

and h, while the callee, for, say M = a, would jump to h with argument a. For 

simplicity, let us consider a function without arguments, i.e. a delayed term or 

thunk—the control flow becomes clearer if the jumping is not interspersed with 

arguments. 

delayM(k) = (zi1)(](1) I !l(h),IMD(h)h) 

Such delayed terms can be forced to evaluate themselves by sending them a re-

quest for data, that is, an address where these are to be sent. 

force (delay M))(k) = (urn) (delayMD(rn)  I rn(1)1(k)) 

So in particular, for M = a, 

force (de laya)(k) = (urn) (lcielaya(m)  I !rn(l).l(k)) 

= (urn) ((vl)(Th(1) ! 1(h)ii(a)) ! rn(l).l(k)) 

= (ul) (! 1(h).i(a) I 1(k)) 

= k(a) 

= a(k) 

Looking at the jumps i'ii(l), 1(k), k(a), we could observe that control first flows 

outward, as the delayed expression evaluates to the thunk located at 1, then 
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inwards, as the force sends the thunk a request to evaluate itself, and then 

outward again, if the forced thunk sends a. From the point of view of the delayed 

expression, though, one could equally say that its surrounding evaluation context 

is delayed—the thunk (!m(1).l(k)) located at m— and needs to be forced by the 

m(1). The complementary forcings 1) and 1(k) cancel each other out. Somehow 

the computation seems to be turned around, or even to be turned inside out 

(twice, even). This appears to have inspired the coinage "pivots"[PS96J. 

In our view, this is not an epiphenomenon, but something characteristic of 

control flow in a mostly functional setting. In fact, we will base our account on a 

categorical notion of turning inside out, that is duality in the sense of adjointness 

of a functor to its own dual. 

1.2 Introducing the continuation functor 

We give a first exposition of the crucial concepts from a programming perspective. 

All important examples, displayed in figures, are bilingual, in both ML and 

Scheme. In the main text there is usually a certain bias towards ML, largely 

because ML produces type information along with results. 

The ML implementation used in the experiments was Standard ML of New 

Jersey, Version 0.93. No ML implementation with both the new value polymor-

phism and first-class continuations was available at the time of writing; that is 

why we have weak type variables ('la, 1 2b, ...) in programs with continuations 

(see FHDM93I and 1NJ931). For Scheme, Bigloo (v1.6) and Gambit were used. 

A by-product of a categorical semantics is a set of so-called categorical corn-

binators. For A-calculus, its categorical semantics in Cartesian closed categories 

yields, for instance, the evaluation map and morphism pairing. These can be 

seen as constituting a combinatory logic, with the added benefit of being more 

semantically inspired than the Schönfinkel combinators S and K (see [FH88] for a 

discussion). It is in fact easier to define the negation functor if we know that what 

we are aiming for is an adjunction. Both the isomorphism of adjunction q  and the 

unit forceare easy to define, and in terms of these, we have -'f = q(f o force),as 

in figures 1.12 and 1.13. Defined in one step, the negation functor is somewhat 

harder to read, not least because of the nested callcc: 

fun negate f = 

fn h => callcc(fn k => 

throw h Cf (callcc(fn p => 

throw k p)))); 
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fun force h = callcc(throw h); 
force : 'la cont cont -> 'la; 

fun phi f h = callcc((throw h) o f); 
phi : ( 1 2a cont -> 'b) -> ('b cont -> 1 2a); 

fun negate f = phi(f o force); 
negate : ('la -> 'b) -> ('b cont -> 'la cont); 

fun thunk a = callcc(fn k => throw (force k) a); 
thunk : 'la -> 'la cont cont; 

fun conttofun c a = 
callcc(fn k => throw c (a,k)); 
conttofun : ('a * 1 2b cont) cont -> ('a -> 1 2b); 

fun funtocont f = 
callcc((fn (a,k) => throw k (f a)) o force); 
funtocont : ('la -> 'lb) -> ('la * 'lb cont) cont; 

fun delay f x = ((negate(negate f)) o thunk) x; 
delay : ( 1 2a -> 1 2b) -> ( 1 2a -> 1 2b cont cont); 

Figure 1.12: Categorical combinators for continuations in NJ-SML 

negate : ( 1 2a -> 'b) -> ('b cont -> 1 2a cont); 

The typing, such as it is, of continuations in Scheme consist of the single axiom 

(call-with-current-continuation procedure?) 	#t 

stating that what call-with-current-continuation passes to its argument is 

a procedure. 

It is essential here that continuations do not have to be unary, that is they 

can take more than one argument - this makes it possible to identify functions 

with a special case of continuations. In ML, this can be accommodated easily, as 

a multi-argument function or continuation is one that takes a tuple of arguments. 

Moreover, this is symmetric in that multiple return values amount to a single 

return value that is a tuple. 

Writing the same programs in Scheme is slightly awkward, because standard 

"R4RS" (as specified by the Revised  Report on the Algorithmic Language Scheme 
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(define compose 
(letrec ((compose-list 

(lambda (1) 
(lambda (x) 

(if (null? 1) 
x 
((car 1) ((compose-list (cdr 1)) x))))))) 

(lambda 1 
(compose-list 1)))) 

force (in our sense) = call/cc when applied to a continuation 

(define (phi f) 
(lambda (h) 

(call/cc (compose h f)))) 

(define (negate f) 
(phi (compose f call/cc))) 

(define (cont-to-fun c) 
(lambda (a) 

(call/cc (lambda (k) 
Cc (list a k)))))) 

(define (fun-to-cont f) 
(call/cc 
(compose 
(lambda (ak) 

((cadr ak) (f (car ak)))) 
call/cc))) 

(define (thunk a) 
(call/cc (lambda (k) 

((call/cc k) a)))) 

Figure 1.13: Categorical combinators for continuations in Scheme 
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[Re91]), does not have multiple return values. In order to return multiple values, 

one needs to return a single list. 

Hence, unlike in ML, we cannot use even use the rudimentary pattern match-

ing available for lambda expressions in Scheme 

(lambda (x . . . x) M) 

Instead, we write only single-argument procedures whose argument is a list. The 

individual arguments are extracted from this list using projections car, cadr, 

caddr..... 

In more modern implementations of Scheme incorporating multiple return 

values as proposed in [Ree92], one could rewrite most of the Scheme programs 

presented here more elegantly. 

In Scheme, there is some possibility of confusion between the force as we 

define it and the built-in procedure force in Scheme. In fact, both have nearly 

the same functionality of forcing a thunk. The difference between them is that 

thunk forced by the Scheme force is call-by-need, in that a second forcing will 

not evaluate it again, whereas our force in terms of continuations only (without 

any updating) conforms to the original call-by-name meaning of thunks [Ing61. 

1.2.1 The self-adjointness of higher-order jumping 

We give a detailed, but not formalised, argument in terms of what happens during 

evaluation. (One could formalise this, either using a CPS transform, or the 

operational semantics from [HDM93].) 

We would like to show that the structure that we wish to analyse is due to 

the intended meaning, independent of any particular formalisation. 

Let callcc and throw be abbreviated as C and T, respectively. 

From a programming perspective, the self- adj ointness is closely related to a 

style of using continuations that Sabry calls Continuation Grabbing Style [Sab96]. 

Its characteristic idiom is the following pattern of use of callcc: 

\x.N) (C(Ak.M)) 

where both N and M jump out of their context by ultimately throwing. We say 

that the callcc binds k to the continuation .Ax.N. 

force allows the argument of a continuation to turn the tables on its contin-

uation. 

Th(force k) = T k h 
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force = Ak.C(Ap.Tkp) 

Th(forcek) 

= Th(C(.Ap.Tkp)) 

T h makes h the continuation of its argument. T k h 

= Ah.C(Ak.T h((Ax.x)force k)) 

= \h.C(Ak.Th((Ax.x)(C(Ap.Tkp)))) 

= Ah.C(Ak.Th(C(Ap.Tkp))) 

= )h.C(.Ak.Tkh) 

-if o -ig 

= (Ah 1 .C(.\k 1  .T h 1  f (C\p i .T k 1  pi ))))( Ah 2 .C(Ak 2 .T h 2  g (C(Ap 2 .T k 2  P2)))) 

= )h2 .(Ah 1 .C(.Ak 1 .T h1  f (C()p i .T k 1  pi ))))(C(Ak 2 .T h 2  g (C(Ap 2 .T k2 P2)))) 

(.Ah 1  .... ) is a A-expression, so its argument is evaluated next. The callcc binds 

the k 2  to Ah 1 .... and T g makes the argument position of g the continuation of 

the following term; this seizes its current continuation and binds it to P2,  which is 

then thrown to k 2 . Because k 2  was bound to )h 1 .... it follows that h 1  becomes 

P2• The C(Ak 1  .... ) seizes the overall continuation and binds k 1  to it. Th 1  makes 

h 1  the continuation for f. Hence if f returns a result, this will be fed to h 2  and 

thus to g. The argument position of f is seized by the C(Ap i  .... ), and bound to 

P' and then thrown to k 1 . 

What is important here is that the throwing in the middle amounts just to a 

function composition of f and g, so the whole term is equivalent to 

Ah.C(Ak.Th(g o f)(C(Ap.Tkp))) 

which is -'(g o f). 

For example 

force -i-iA 	A 

force 
---B ---->- B 

-.force 
- 

' "N 1 f0.ce  
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- 1+callcc(fn k => 10 + throw ((force o (negate force)) k) 2); 

val it = 3 : mt 

force = .Ah.C(Ak.Thk) 

-if = .Ah.C(Ak.Th(f(forcek))) 

= Ah.C(Ak.T h (1 (C(Ap.T kp)))) 

force o -'force 

= (Ah 1 .c(Ak 1 .Th 1  k 1 )) 

o(Th 2 .C(Ak2 .T h2  (force (C(Ap.T k 2  p))))) 

= (Ah 1 .c(Ak 1 .Th i  k 1 )) 

o(.Ah 2 .C(Ak 2 .T h 2  ((Ah 3 .C(Ak 3 .T h3  k3 )) (C(Ap.T k 2  p))))) 

= Ah 2 .(Ah 1 .C(Ak 1  .T h 1  k 1 ))(c(Ak2 .T h2  ((Ah3 .c(Ak3 .T h3  k 3 )) (C(Ap.T k 2  p))))) 

If we try to formulate the triangular identity in prose, we would arrive at the 

following narrative about jumping: 

Let us assume that force o -'force gets evaluated. h2  becomes the current 

argument; let us call the overall continuation of the whole expression k. We would 

like to show that all that happens is that, in some circuitous manner, the current 

argument h2  is passed to the current continuation k. 

First of all, the term in the operator position is evaluated; as it is a A-

expression )h 1 . . . .), its argument is evaluated next. This is has C in the op-

erator expression: evaluating C(Ak 2  .... ) it binds k 1  to Ah 1 .....Then the throw 

to h2  is executed, making h2  the continuation of the subsequent term. This is an 

application, with a A-expression (A.k 3  .... ) in the operator position, so its argu-

ment is evaluated next. Again, executing the C(Ap .... ) binds p to Ah 3 ...., before 

throwing it to k 2 . Now k 2  was bound to Ah 1 , so h 1  becomes p. The body of the 

A-expression then executes the callcc in C(Ak 1  . ... ), which binds k 1  to the cur-

rent continuation, which at this point is the overall continuation k. This is then 

thrown to h 1 . This having been bound to p, which in turn points to A.h 3 ..., h3  

becomes k. The body of the A-expression following Ah 3  is then evaluated; this is 

the fourth and last callcc. This C(Ak 3  .... ) binds k 3  to the current continuation, 

which, due to the surrounding T h2 , is just h2 . Finally, this is thrown to k3 , which 

is to say to the overall continuation k. 
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Now we turn to the naturality. 

f of orce 

= Th.f(c(Ak.Thk)) 

The thunk h is forced and the result supplied to f as its argument. 

force 0 -'-if 

= (Ah 1 .c(\k 1 .Th 1  k 1 )) 

(Ah 2 .C(\k 2 .T h 2  (7h3 .C(\k 3 .T h3  (f (force k 3 ))) (force k2 ))) 

= (Ah1 .c(Ak 1 .Th 1  k 1 )) 

(Ah 2 .c(Ak 2 .T h 2  ft.\h 3 .c(Ak 3 .T h 3  (f (C(Ap 3 .T k 3  O3))))) (Cp2 .T k2 P2))))) 

= )h2 .(.\h 1 .C(Ak 1 .Th 1  k 1 )) 

(c(Ak 2 .T h 2  ((Ah 3 .c(Ak 3 .T h 3  (f (C(Ap 3 .T k 3  D3))))) (C)ip2 .T k2 P2))))) 

h2  is the overall argument. The operator position is \h2. 
.. .); hence the argument 

is evaluated. This is a callcc, which binds k2  to )h1 . .... The T h2  is executed, 

making h2  the continuation of the following term. The operator is (\k 3
. . . .), 

so 

the argument is evaluated. This is C(Ap 2  .... ), which binds P2  to )k 3 ..... The 

Tk 2  is executed; because k 2  was bound to Ah 1 ...., it follows that h 1  becomes P2 - 

The body of )h 1 .... is evaluated; C(Ak 1  .... ) binds k 1  to the overall continuation 

k. This is then passed to h1 . Because h 1  was bound to p and p to )h3 ...., this 

means that h3  becomes k. The C(Ak 3  .... ) binds k3  to the current continuation 

at this point. Because of the surrounding T h2  this is h2 . 

Hence the whole term is equivalent to 

Ah 2 .f(,\p 3 .T h 2  P3) 

Not only do first-class continuations give rise to an adjunction; this is also a 

particularly simple kind of adjunction. Whereas one would normally have two 

functors, two naturality squares (one each for unit and counit) and two triangular 

identities comprising an adjunction (as in a Cartesian closed category, say), we 

have one of each. (This is fair enough somehow, in that a continuation is half a 

function.) 

1.2.2 Alternative control operators 

We explain that our categorical combinators give a complete set of control oper-

ators, and hence an alternative to callcc and throw. 
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In the previous section, we focussed on the functor and the unit. But an 

adjunction can equally well be expressed by the isomorphisms of adjunction; we 

now explain how this can be seen as a new control operator. 

phi together with a coercion function from functions to continuations is a 

complete set of control operators, like callcc together with its coercion function 

throw (coercing -'-r to T -+ a). 

callcc does two conceptually quite separate things with the current continu-

ation: first it copies it, then it makes one of the copies available to its argument 

as an ordinary function argument. The other copy is given as the current contin-

uation to the argument of callcc. 

One could separate these; in particular Felleisen's control operator C does not 

copy the continuation. The continuation is given as an argument to the argument 

of C, but the current continuation is not supplied to it. 

Like C, phi considered as a control operator does not copy the continuation, 

without the need to consider terms that can do without the current continuation. 

For comparison, we list the CPS semantics of 

. callcc with ML-style typing; 

. a variant call/cc closer to that of Scheme, in that the continuation is 

wrapped into a procedure; 

the C-operator, which is like call/cc, but does not copy the continuation 

it seizes; 

• 0, or phi in ASCII, which does not copy the continuation either, but re-

quires a second argument to supply the continuation for its first. 

callcc M = )k.M(Af.fkk) 

call/cc M = Ak.M(Af.f(Axk'.kx)k) 

CM = )tk.M(Af.f(.Axk'.kx)(Ax.x)) 

çbMN = Ak.M(Af.N(An.fkn)) 

For comparison: callcc(Ak.M) binds the current continuation, which nonetheless 

is also the continuation for M, to k; C(Ak.M) binds the current continuation to 

k, the price for which is that M does not get a current continuation; q5(\k.M) h 

binds the current continuation to k and supplies h as the continuation for M. 
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None of these is any more generic than the others, as they are all interdefin-

able 1 , but 0 is perhaps special in that it emphasises a certain symmetry: both 

callcc and throw are special instances of it. 

In the typing of continuations in ML, callcc needs its companion throw, 

which is just a coercion from continuations to functions. 

If one is willing to identify continuations with certain procedures those that 

ignore their result continuation), as in Scheme, then callcc on its own is enough. 

If we are willing to make another identification, reducing functions to continu-

ations, rather than embedding continuations into functions, then phi on its own, 

without coercions, is enough. In continuation semantics, a function call consists 

of passing both an argument and a return continuation to a function. A function, 

then, is just something that expects these two: in other words, a continuation for 

an argument/result continuation pair. 

Hence, if o -+ r were an abbreviation for -'(o * -ir), phi by itself would be 

sufficient. We can recover callcc and force from phi as follows. 

fun throw2 a = phi(fn h => a); 

throw2 : 'a -> 'a cont -> 1 2b; 

fun callcc2 f = (phi(fn k => (k,k))) (funtocont f); 

callcc2 : ('la cont -> 'ía) -> 'ía; 

The unit force and the negation functor can be defined similarly in terms of phi. 

val force2 = phi(fn x => x); 

force2 : 'la cont cont -> 'la; 

fun negate2 f = phi(f o force2); 

negate2 : ('ía -> 'b) -> 'b cont -> 'la cont; 

Axiomatising, and calculating with, phi, force and negate would then be 

guided by the standard equational laws for adjunctions. 

1.3 Related Work 

Variants of the continuation functor, though not qua functor, have made appear-

ances in the literature, e.g. in [Hof94]. The following from [Shi96] also appears to 

be related. 

We gloss over the issue of the aborting implicit in C. 
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(compose-cont k f) 	(lambda (v) (f v k)) 

By the standards of Computer Science, and particularly among advanced pro-

gramming language concepts, continuations are of great antiquity: the term "con-

tinuation" was coined in [5W74]; Continuation Passing Style appears implicitly 

in [Fis72] (final version in [Fis931) and explicitly in [Ste781. (For a history see 

[Rey93].) 

They are also (explicitly or implictly) an almost ubiquitous concept. Thus the 

potential background to the present thesis is vast. In addition to the literature on 

continuations proper e.g. [P1o75, FFKD86, SF90, HDM93], work on the ir-calculus 

([Mi191] and [PS93]; explicitly in [Bou971) and Scheme [Ste77, Ste78, Ste76] also 

has some relevance. 

A" deep" connection between continuations and classical logic in sometimes 

claimed, e.g. [Gri90], [RS941. This seems orthogonal to our approach. Or we 

could argue that first-class continuations have plenty of interesting structure in 

their own right, so that there is no pressing need to establish connections to logic 

in order to elucidate them. 

There is, however, a much smaller area of work that is of direct relevance here. 

The first attempt at a categorical continuation semantics was Filinski's pioneering 

[Fil89]. With the benefit of hindsight, [Fi1921 is in its emphasis on linearity an 

aberration. Filinski later chose to regard continuations not as primitive but as a 

special instance of monads [Fil96]. Similar in its use of the monadic metalanguage 

to provide a systematic presentation and classification is Danvy and Hatcliff's 

[DH94]. Much can be done in that setting, but decomposing the monad into 

two instances of the continuation functor affords a more fine-grained analysis - 

including, crucially, the control operators and an abstract account of thunking 

[HD95]. 

Finally, one of the most important influences was the typing of first-class con-

tinuations in Standard ML of New Jersey, with the continuation type as primitive 

[HDM93]. (See also the conference version [DHM91], where a CPS semantics is 

given.) This type discipline is a natural starting point for a (categorical) seman-

tics: looking for universal properties of the continuation type constructor, one is 

led to self-adjointness. 

Incidentally, it was primarily for reasons of polymorphic typing that the con-

tinuation type was made primitive in Standard ML of New Jersey [HDM93] 

(whereas the more minimalist, and untyped, Scheme simply conflates continu-

ations and procedures). We should like to regard this as a fortunate preadaption 

(in the Darwinian sense) on the part of ML. 
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To summarise, what is perhaps amazing about Continuation Passing Style is 

how far one can get with three little equations 

= Ak.kx 

Ax.M = )k.k(Axk.Mk) 

MN = )k.M(Am.N(\ri.mnk)) 

These from [P1075], together with two more if we include callcc and throw 

[DHM91], encapsulate much of the backdrop to this thesis. To distill things 

further, we could say that the essence of the transformation is really in the clause 

for Ax.M, that is, what happens to a function. Much of the effort herein is 

devoted to trying to understand what 

= )k.k(Azk.Mk) 

really means, without taking the )'s on the right too literally, but rather adopting 

the view point of "..\ the ultimate got o" [Ste77]. 

1.4 Outline 

The aspect of CPS that is particularly emphasized in this thesis is that it breaks 

down function types into continuations. 

This view of function calls as "jump with arguments" [Ste78, SS761 is not low-

level and implementation specific, but should be taken seriously in semantics. 

We also develop a calculus in support of this view. The categorical account 

should be seen as complementary, not as an alternative, to it. The bureaucracy 

inherent in names and their scope is particularly virulent in a name-passing cal-

culus, and although the CPS calculus is in some sense like an internal language, 

even conceptually primitive operations can have quite complicated representa-

tions (for instance thunk and pair). This makes the more high-level, variable free, 

perspective of a categorical description a valuable addition. 

Focussing on the category of computations also facilitates experimentation, 

in that we can write programs in real world languages, without some monadic 

interpreter, as a bag on the side of Haskell, say. 

In such experiments, or validations of concepts, the categorical semantics sug-

gests building blocks (for instance o for functions, map for lists [Bac781), which 

could be regarded as "categorical combinators", like eval for the )¼-calculus. 

In our case, the use of these categorical combinators lets us avoid spaghetti 

code, like nested occurrences callcc. 



Just as we try to be faithful to those features of CPS that are in evidence, 

such as breaking down of functions types, we avoid introducing anything that is 

not naturally part of it. A case in point are coproducts, in particular, the empty 

coproduct 0 and the identification of continuations with functions A -+ 0. 

Parts of this thesis have appeared in IThi96al IThi97I; some of it is joint work 

[PT97], comprising chapter 8 here. 

Chapter 2 The target language of the CPS transforms is presented as a calculus 

in its own right, which we call the CPS calculus. This calculus is very simple 

and quite low-level: only variables may be passed as arguments, moreover an 

application is more like a jump with arguments than a A-calculus application 

in that it forgets its calling context. Compared to A-calculus, the CPS 

calculus could be said to be somewhere in between the A-calculus itself 

and explicit substitutions. Some variants are also considered, mostly for 

theoretical reasons. 

Chapter 3 is a review and discussion of various CPS transforms that have ap-

peared in the literature. Call-by-value is the basic case, various other calling 

mechanisms being derivable by argument thunking. 

Chapter 4 The categorical account of the structure underlying continuation 

semantics is developed. Its fundamental structure is what we call self-

adjointness, i.e. a functor adjoint to its own dual in the two possible senses, 

i.e. on the left and on the right. Environments are modelled by means 

of premonoidal structure. This comes equipped with a notion of central 

morphism. 

Chapter 5 A term model is constructed as an instance of the categorical frame-

work in chapter 4. This is a CPS analogue of the construction of a Cartesian 

closed category from simply-typed A-calculus. In the setting of the term 

model, the syntactic form of CPS terms can be related to the semantic 

properties of the morphisms they represent. 

Chapter 6 is an excursion, inasmuch as it illustrates some issues concerning 

(semantic) notions of effect-freeness by means of concrete examples and 

counter-examples. Specifically, we demonstrate that a term being can-

cellable (which has also been called total) is not sufficient for it to be free of 

effects, whereas it being central is. At the same time, it is a first attempt 

at showing how the categorical structure of continuations can help to write 
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programs, as we build on the functions defined in section 1.2. Thus it com-

plements chapter 5, using the structure from chapter 4 at the level of the 

source language of CPS transforms. 

Chapter 7 The categorical counterpart of the CPS transforms is given by cate-

gorical semantics. Parts of this chapter parallel chapter 3, giving a rational 

reconstruction of CPS transforms. Among the categorical structures intro-

duced in Chapter 4, the self-adjointness on the left is shown to underlie 

both the semantics of control operators and the thunk/force-mechanism 

for variant calling strategies. 

Chapter 8 A different categorical perspective on the self- adj ointness is provided 

by studying it in the framework of indexed categories; this shows the fun-

damental structure for continuations to be independent of the way envi-

ronments are modelled. Initially, in early drafts, there were two separate 

formulations of the categorical continuation semantics presented in this the-

sis; these were then shown to be essentially equivalent in joint work with 

John Power. 

Chapter 9 We present some (preliminary) material on graphical representations 

capturing some aspects of CPS. The formal link is again established by 

self-adjointness - which can be visualised in this setting as turning upside 

down. Some issues concerning the relation of CPS to duality are raised. 

Chapter 10 concludes and points towards directions for further work, among 

them some loose ends from the previous chapters as well as some more 

ambitious proposals giving continuations a fundamental rOle. 

The reader interested chiefly in the programming perspective may find it useful 

to concentrate on section 1.2 and Chapter 6. The latter can be understood 

independently of most of the preceeding chapters. It is quite long, because many 

programs are included, but also because the counterexamples presented there, 

while initially intended to show only that a certain subcategory does not admit 

a (canonical) product, proved quite fruitful in refuting many naive assumption 

about continuations. 

Some knowledge of category theory would probably be helpful, but only very 

little is really required. The various equivalent characterisations of adjunctions 

(found in any category theory textbook, e.g. EMac7lJ) would perhaps be the most 

useful thing to keep in mind. 
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Chapter 2 

The CPS calculus 

We consider the target language of CPS transforms as a calculus in its own right 

(similar to the intermediate language of the compiler in [App92]), which we call 

the CPS calculus. 

The CPS calculus was first used as a common idiom for the A- and the ir-

calculus in [Thi96b]. It was then turned into a calculus in its own right in the 

course of initial discussions with Phil Wadler and David N. Turner. 

Notational preliminaries 

We let lowercase letters x, y, n, m, k, 1,... range over variables (names) and up-

percase letters M, N,... range over terms (in various calculi). Y, :V ... range over 

sequences x 1  . . . x2  of names. Commas in sequences are often omitted. When used 

as indices, lowercase letters range over natural numbers, e.g. x 1  . . . x. 

We write M[x N] for the capture-avoiding substitution of N for x in 

M. Similarly, if ± =x, . . . x 3  and il = Yi . . . y3 , we write M[ i-p yJ for the 

simultaneous substitution of yi  for x (i = 1, . . . , j) in M. 

We use the traditional semantics brackets E[-]] for (categorical) semantics and 

the slightly different parentheses for transformations that can be seen as 

somewhat intermediate between a proper semantics and a mere translation (a 

matter of degree, not principle). 

2.1 CPS calculus 

The raw terms of the CPS calculus are given by the following BNF: 

M::= x() I M{x()=M} 

We call a term of the form k() a jump and a term of the form M{n(i)=N} a 

binding. As a first hint at the intended meaning, k(±) is a jump to the continua- 
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tion k with actual parameters Y, while M{n(x)=N} binds the continuation with 

body N and formal parameters Y to n in M. 

2.1.1 Remark While succinct, the presentation of the syntax is strictly speaking 

an abuse of notation, common for A-calculi, in that the same symbol is used 

for a syntactic category and the typical metavariable ranging over it. A more 

technically orthodox BNF could be given as follows. 

Term ::= Var "(" Var* pp)fl 

Term "{" Var "(" Var* )= Term 
 IT, 

Every CPS term can be written as a jump followed by a sequence of bindings, 

that is, a term of the following form 

k(){p 1 (çi )=M1 }. .. 

Hence the BNF could be written in a somewhat cluttered form, like this: 

M::= x(){x()=M}... {x()=M} 

The set of free variables FV(M) of a CPS term M is defined as follows. 

FV(x(yl ... yk)) = {x,yl,...,yk} 

FV(M{n(y i  . . . y,)=N}) = (FV(M) \ {n}) U (FV(N) \ {y,. . . , yk}) 

In M{n(x)=N} the scope of n extends to the left, while that of the x 2  extends 

to the right. Therefore we have left and right a-conversions. 

M{n()=N} = M{n(y?)=N[ —* l} (aR) 
M{n()=N} = M[n '—p n']{n'(f)=N} (aL) 

We usually gloss over the a-conversion by identifying terms up to renaming of 

bound variables. 

The axioms of CPS cal 

L{m()=M}{n(y)=N} 

k(yT){n(z)=N} 
n(){n(z)=N} 

M{n()=n' () } 

zulus are as follows. 

= L{n()=N}{m()=M{n()=N}} (DIsTR) 
mn m,FV(N) 

= k(), nFV(k()) 	 (GC) 
= N[- 	 (imp) 
= M[nF-+n'] 	 (ETA) 

The (JMP) law is in some sense what drives the computation. By contrast, 

(GC) and (DIsTR) can be seen as "structural" laws like those of the ir-calculus. 

Most of these laws appear in Appel's [App92]. See also [Ste78]. 
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We will be concerned primarily with simply-typed CPS terms. The only type 

constructor is the negation type -i(_).  The BNF for (simple) types for the CPS 

calculus is as follows. 

T::= - (Ti  ...Y)Ib 

where b ranges over base types. 

Terms are then typed according to these two rules: 

F,ri:-'rF-M F,:F-N 

	

F, k : -'i, i7: F F- k(y) 	F F- M{n(y)=N} 

Typing judgements in CPS are one-sided. Whereas in ,\-calculus a judgement 

F F- A M : r (where we have decorated the Urteilsstrich I- with a ) to emphasise 

that this is a )-calculus judgement) states that, in the type environment F, the 

term M has the type r, a CPS typing judgement F F- M states that, in the type 

environment F the CPS term is consistent. Similar type systems exist for process 

calculi, e.g. [Tur95]. For example, x : r F- A  x : r states that under the assumption 

that x has type r, x has type T. By contrast x : r, k : -,T F- k(x), states that, 

under the assumption that x has type r and k has type -IT, passing x to T "does 

not go wrong". 

Alternatively, one could compare a CPS term to a command in languages 

like Idealized Algol, in that it is run for effect, not value.' In that sense, a CPS 

judgement x1,.. . , x, F- M is analogous to M being a command, as in 

var[ri],. . . ,x : var[r] F- M : comm 

We could call this "consistency" in that it implies that all internal communi-

cations channels, so to speak, are used in a consistent manner. Logically it would 

appear closer to inconsistency, inasmuch as F F- M could be read as "M witnesses 

that F entails a contradiction", such as in the example above where F contained 

both the assumptions that T and not r. The typing rule for the binding construct 

could then be read as stating that if both "F and 1 "  and "F and not " entail a 

contradiction, then the contradiction must be due to F alone. 

In addition to these rules, we assume permutation, contraction and weakening 

of typing environments unless explicitly stated otherwise. 

X(i) : T(i), . . . , X(,) : 	F- M 
	r is a permutation of {1,.. . , n} 

F F-  M 
	

F,x: ,y : F- M 

	

F,x : T F- M 
	

F,x : 'f F- M[y i-+ x] 

'This was pointed out to me by Peter O'Hearn. 
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One could visualize a CPS term as representing the state of a (stackless, 

heap-allocating) abstract machine. 

qpi{ fli 	 = 	
... In. ( m )=Nm } 

IF 	actuals 	address formals 	code 

2.2 Recursive CPS calculus 

All that is needed in order to make the calculus recursive is to change the visibility 

of names, making the address of a binding visible within its body, so that in 

M{n()=N}, N may refer to itself under n. 

We use a slightly different notation for the binding construct, "" instead of 

"=", to indicate the possibility of recursion. 

M::= x() M{x(±)=M} 

Again, the BNF could be rendered in a more orthodox fashion: 

Term ::= Var II(U Var* II),, 

Term h1{fl  Var II(H Var* 
)=I Term "}" 

For the recursive CPS calculus, we modify the typing as follows. 

F,n:-'F-M F,f:,n:-viF-N 
F I- M{n(f)'=N} 
	 Iyc11u 1ubu1e 

As we have broadened the scope of it, we need to modify the left a-conversion 

correspondingly. 

M{n(y=N} 	M[n '- n'J{n'(=N[n '- n']} 

The definition of free variables needs to be modified similarly. 

FV(x(yl ... yk)) = {x,yl,...,yk} 

FV(M{n(y i  . . . y=N}) = (FV(M) \ {n}) U (FV(N) \ {n, jj,.. . , Yk}) 

The set of bound variables is defined as follows. 

BV(x(y i  . . . Ilk)) = 0 

BV(M{n(y i  . . . y jj=N}) = BV(M) U BV(N) U {n, yr,. . . , yk}) 

The axioms of the recursive CPS-calculus are as follows. 

L{m(=M}{n(=N} = L{n( 	N}{m()4=M{n()N}} (DIsTR) 
mn m,FV(N) 

= k(), n V FV(k()) 	 (GC) 
= N[2- yJ{n(z=N} 	 (REcJMP) 

M{n(=n'()} = M[ni-n'] 	 (REcETA) 
n =A n' 
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Notice that the modification of the closure typing law makes the unrestricted 

ETA law unsound. Consider 

n(a){x(x)=n(x)} = n(a)[n '-+ n] = n(a). 

But we know that n(a){x(x)=n(x)} loops, which should not be identified with 

the terminating n(a). Hence the side condition on variables precluding the loop-

ing. 

2.3 Operational semantics for CPS 

We consider jumping as the only behaviour of CPS terms. The jumping axiom is 

accompanied by the distributive law, which can be seen as a structural congruence 

(in the sense of Milner) or "heating" (in the chemical metaphors of Boudol), in 

that its purpose is to bring together the component parts of a (jumping) redex. 

2.3.1 Definition We define oriented versions of the axioms DISTR and JUMP as 

follows (avoiding name capture): 

L{rn()=M}{n(y)=N} - L{n(y)=N}{m()=M{n(yi)=N}} ,n54m 
n(y){n(z)=N} - N[- 

2.3.1 Observational congruence 

While derivability from the CPS axiom is the least equality we would wish to im-

pose on CPS terms, a notion of observational equivalence is arguably the greatest 

such notion we could consider. (Here least and greatest are to be understood in 

the sense of set-theoretic inclusion of relations, i.e. the least equality equates the 

fewest terms.) 

We define observational equivalence for CPS. We choose at our notion of 

observation the "external" jump that a term may perform after it has performed 

some internal jumps. For instance, in a jump of the form k(), we can observe 

(the occurrence of a a jump to) k. More generally, a free variable in the leftmost 

position can be observed. 

2.3.2 Definition Let M .4. k if M ----* k(x){p i (yii )=Mi } . . . {p(ç)=M} 

and 

Let M N if for all contexts C and names k, C[M] .4. k.iff C[NJ 4. k 

The axioms of the equational theory of the CPS calculus become laws in the 

operational congruence. 
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2.3.3 Proposition 

L{m(f)=M}{n(y7)=N} 

k(1{n(z)=N} 
n(y)fn(2)=N} 

M{n()=n'()} 

L{n(y)=N}{m()=M{n(y)=N} } ( Dis'rit) 
mn m,fFV(N) 
k(), n V FV(k(y)) 	 (GC) 
N[ii-+ yj 	 (imp) 
M[ni-+n'] 	 (ETA) 

This follows from preliminary work by Massimo Merro on a restricted version of 

the ir-calculus [Davide Sangiorgi and Massimo Merro, personal communication]; 

the details may appear elsewhere. 

2.4 Linear CPS calculus 

We consider a linear version of the calculus, as linearity will sometimes allow a 

less complicated account. 

In the linear CPS calculus the Garbage Collection and the Distributivity 

axioms do not make sense. For a term M{n(y)=N}, GC is applicable if n 
does not occur in M, while DISTR allows one to distribute the binding for ii to 

multiple occurrences. Neither of these cases is well-typed in the linear calculus. 

So instead we have two separate axioms allowing us to "float" a binding into a 

term L{M(x)_—M}, depending upon whether n occurs in the left subterm (L) 
or the right one (M). The linear calculus is still a fragment of the general CPS 

calculus, as each application of the floating laws can be simulated by distributing 

and garbage collection. 

2.4.1 Definition The axioms of the linear CPS calculus are as follows. 

n(){n(2)=N} = 
M{n()=n'()} = 

L{m()=M}{n()=N} = 

L{m()=M}{n()=N} = 

N[ 	 (JMP) 

(ETA) 

L{n()=N}{m()=M} (FLOAT-L) 
ifm/zn,n V FV(M) 
L{m()=M{n(j)=N}} (FLOAT-R) 

if mn,n V FV(L) 

The main point of restrictions like linearity is that they allow translations 

from CPS to less powerful calculi: the linear CPS calculus can be translated into 

Miler's action structure for the or-calculus IMi1931. Let k( i)t = ()[()]Ø. If 
Mt = (n)S() and Nt = ()TØ, then let 

(M{n()=N})t = ()[vn]S"[n()]T() 
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2.4.1 Linear unary CPS calculus 

But we are more interested in restricting the linear CPS calculus even further. 

The subset of CPS calculus in which only a single argument is allowed in jumps 

k(x) and bindings M{n(x)=N} is called unary, as opposed to polyadic. The 

BNF for the unary subset of the CPS calculus is this: 

M::= x(x) I M{x(x)=M} 

For the fragment of CPS calculus that is both linear and unary, we can give 

a simplified presentation of the typing rules: 

	

K(X) 
	xk F- x(k) 

	

xnl- M ykF- N 
	

mkF-M yxl-N 

	

xk I- M{n(y)=N} 
	

xk I- M{n(y)N} 

2.4.2 Definition The axioms of the linear unary CPS calculus are as follows. 

n(y){n(z)=N} 

L{m()=M}{n(y)=N} 

L{m()=M}{n(y)=N} 

= N[z i-+ y] 	 (JMP) 

= M[n-+ri'] 	 (ETA) 

= L{n(y)=N}{m(x)=M} (FLOAT-L) 
if mn,n V FV(M) 

= L{m()=M{n(y)=N}} (FLOAT-R) 
ifm On, n V FV(L) 

2.4.3 Remark In a binding expression M{n()=N}, the bindings of N and 

are conceptually quite distinct: one could try to reflect this in the calculus by 

letting them bind variables from different zones of the type environment. 

	

F;,L F- M 	F,;LF- M 

	

F,;LF- M 	F;,tF- M 

F;,F-N 
F; f, k F- k() 	F; A F- M{m()=N} 

2.5 Constants 

Although they play no role in the sequel, we sketch how PCF-style constants for 

arithmetic and conditionals could be added to the CPS calculus. Constants, like 

everything in CPS, take a continuation parameter. 

F,n: int,f : -i--if,g: -,--r,k : - F- if zero( 'n+lTfgk) 	F,k: -'mt F- O(/c 

	

F, n: int, k: -'mt F- succ(mn  k) 	F, n: int, k : -'it F- pred('n k) 
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O(k) 	 = 
succ (rn k) 	= k(rn+1) 
pred('nk) 	= k(rn_1) 
if zero (ro7gk) 	= f(k) 
if zero(  mn+l7gk) = g(k) 
diverge (k) 	= pØ{pØ=pØ} 

2.6 Translation from CPS calculus 

If we think in terms of cr-equivalence classes of terms, then the non-recursive CPS 

calculus is evidently a subset of the recursive one, as we can embed terms of the 

former in the latter 

M{n(±)=N} '- M{n(=N} 

provided we cr-convert in case ii is free in N to avoid its name-capturing in 

M{n(=N}. 

The recursive CPS calculus is in turn a fragment of Appel's intermediate 

language, the main difference being that Appel's FIX constructor allows mutual 

recursion. 

CPS-calculus Appel's datatype cexp 
X(y1...y 3 ) 

}VI{n(x 1  . . . x3 )--N} 
APP(VAR x, [VAR y 1 ,...,VAR y3 ]) 
FIX( [(n, [x 1  ,. . .,x 3 ] ,N)] ,M) 

The binding of continuations in CPS can be implemented not only by "passing" 

(using the )-calculus), but equally by "sending" (7-calculus) or even "grabbing" 

(using callcc to seize the current continuation [Sab96]). 

First, the (recursive) CPS calculus can be translated into simply-typed )-

calculus with a fixpoint combinator. 

k(x i  ... x)° = kx 1  . . . 

(M{n()4=N})° = (An.M°)(jrn.A.N°) 

Here ji is a fixpoint-finder in the simply-typed )-calculus satisfying px.M = 

M[x '-+ 4ux.MJ and subject to the following typing 

F,f :rI- M: 

F H ,uf.M : r 

2.6.1 Proposition The translation (_)° is sound. 



PROOF 

(n() {n(y) =N})° 

= 	\n.n )(rn.Ag7.N°) 

= (\n.n ((AN ° )[n '—* ,un.T.N°) 

= (.N°[n }-+ 

= N°[n i-* rn..N°][- Y J 
= N'[W  ~-4 YJ[n '-+ /in. AV. 

= (An.N°[?7'-+ ])(pn.Aj.N°) 

= (\n.N[ffi-+ ]°)(n.i.N°) 

= (N[77i-+ ]{n(y=N})° 

Let n n'. 

= (.An.M°)(tn.A.n' ) 

= (An.M°)(().n')[ri '-

= (\n.M°)(A.n'±) 

= (\n.M°)n' 

= 	i-+ n'] 

= (M[ni-+n'])° 

= (\1.(An.M°)(jn..N°))(t1.Aff.L°) 

= (An.M°)(anit±.N°))[l i-* a1ii.L0 ] 

= ((An.M°)[1 -+ p1..L 0])((nit.N0 )[1 i-+ bi1..L°]) 

= (((A1. °)(p.1.A.L°)) (((A1.N°)(,1.ç.L°)) 

For the non-recursive fragment of CPS calculus, one can simplify the trans-

lation to )-calculus, not requiring the fixpoint combinator. 

2.6.2 Definition 

I\ 
7/ 

Xl...Xn / 	
— jf 

M{n(x i  . ..x)=N}° = 	\n.M°)(,\(x 1 ,.. .,x).N°) 
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2.6.3 Remark Alternatively, we could use simply-typed )-calculus by undurry-

ing the translation. 

k(x i  . . . 	= kx1  ... 

M{ri(x i  . . . 	= (An.M°)(..\x i  . . . x,.N°) 

2.6.4 Definition CPS calculus can be translated into the it-calculus as follows. 

(Note that continuation binding is essentially Sangiorgi's "local environment" id-

iom for the it-calculus [PS961.) 

k(x i  . . . 	= 	(x 1  . . . x 2 ) 

M{n(x j  ... 	= (vn)(M I !n(x i  . . . x).N) 

2.6.5 Remark In the most general it-calculus, the CPS laws are not sound. 

CPS gives rise to it-calculus terms of a very restricted from: there are constraints 

both one the occurrence of names and on the shape of terms. 

On the one hand, all names are used as continuations. A precise formulation 

of what constitutes a continuation type discipline in the it-calculus seems to be an 

open problem, although a necessary (but not sufficient) constraint could be given 

in terms of the input/output type discipline developed in [PS96]. All names are 

"write-only" in that a name that has been received may be used by the receiver 

only for output, but not for input (it may also be passed as an argument). 

Furthermore, all names are w-receptive in the sense of [San97]. 

The terms in the image of the translation from the CPS calculus to the it-

calculus are of a the following form, in which restriction, parallel composition, 

replication and input prefix occur only in an idiom and never by themselves. All 

outputs are asynchronous. 

P,Q::=(x1  ... x) I (vq)(P!q(y i  ... y).Q) 

This restricted form automatically rules out usages of names like n(k).k(x). 

A variant of the it-calculus that is more permissive than CPS, but still restri-

tive enough to be "well-behaved" with regard to it is the calculus fl;. 

2.6.6 Definition The fragment fJ of the it-calculus is given by the following 

BNF. 	
::= PP I a().P I !a().P I (va)PJä() 

where in a(x i  . . . x).P none of the x 2  appears in input position (as in x 2 (g).Q) 

within P. 
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We consider terms of H equivalent up to barbed congruence IACS96I, written 

bc• 

Hence received names can be only passed around or used for output. This 

together with the fact that output is asynchronous, appears to be enough to 

ensure a sufficiently continuation-like behaviour. More formally, we report the 

following result, due to Massimo Merro: 

2.6.7 Proposition The translation given in definition 2.6.4 above from CPS 

calculus to fJ/ bc  is sound. For CPS terms M and N, M = N implies M bc 

N. 

Another translation of CPS calculus is given by a "continuation-grabbing style" 

transformation similar to that in [Sab961, which transforms CPS terms back into 

idealised NJ-SML. 

2.6.8 Definition The Continuation Grabbing Transform (_) is defined as fol-

lows. 

M{n(x i  . . .x3 )=N} 	(A(x i , . .. ,x3 ).N)(ca11cc \n .Mt)) 

throw k(x i ,...,x) 

On types, this translation is given by the identity. 

2.6.9 Remark If F F- M, then F F- M : 3, where 0 is a fresh type variable. 

PROOF For terms of the form k(x i  . . . x3 ), this is trivial. Consider F F- M{n(x)=N}. 

Then 

F,n:-'F-M and F,:F-N 

By the induction hypothesis, 

F,n:-F-M:/3 and  

Instantiating 3 to F we have F, n: -' F- M : and therefore F F- Ay. Mt : -' —> 

F. Because F- callcc : (-a —~ a) -4 a, we have F I- ca11cc(A..M) : T . Now 

F F- AY. Nt : F -4 3, so 

F I- (AY. N I ) (c al 1 c c (AY. M l ))  : 0. 

70 
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2.7 Idioms and jargon for the CPS calculus 

We sometimes use jargon, mainly from programming language theory, together 

with some loan words from the u --calculus literature, for talking about CPS. This 

is not done for obfuscation, but to make the presentation more intuitive for the 

reader, who we assume is likely to be familiar with most of these terms. As a 

preparation for chapter 3, we give a brief discussion. The purpose is not to give 

terminology for different parts of a CPS term (hardly necessary, since the calculus 

is so simple), but to certain idioms and points of view on terms. 

Like the ur-calculus, the CPS calculus is a "name-passing" calculus: the only 

entities that may be substituted for variables are other variables (also called 

"names"): 

n(y){n(z)=N} = N[- 

Because of this name-paaing, a notational shortcut we shall perpetrate is the 

simulation of substitution by o-conversion. We rename the bound parameters 

before contracting a redex. 

a(b) {a(z)=x(c) } 

= a(b){a(b)=b(c)} 

= b(c) 

This saves us from having to write substitutions. 

a(b){a(x)=x(c)} 

= x(c)[xF-+b] 

= b(c) 

A characteristic feature of (reductions in) the CPS calculus is a kind of 

leapfrogging of bindings like this: 

k(f) {f(xk)=M} {k(f)=N{n(x)=f (xk) }} 

= N{ri(x)=f(xk)}{f(xk=M} 

= N{ri(x)=M} 

The same term may mean quite different things, depending on what we regard 

as the current continuation. (One of the themes of the the categorical framework 

is a development of this fact: one of the most basic operations is precisely this 

switch of current continuation.) In the CPS calculus, there is no notion of a 
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current continuation as such; all continuations are equal. Nevertheless, when 

reading a term in a structured fashion, it is often essential to single out one of 

possibly many names as the current continuation. We consider two ways of doing 

this. One is always to look at judgements rather than raw terms; the other, 

more informal and ad hoc, is to use the same name, typically k, for the current 

continuation everywhere. 

The translation of )-terms gives the spirit of (nearly all) CPS transforms. 

Ax.M = k(f){f(xk)=M} 

Here we call f a pivot. This concept seems absent from the usual CPS terminol-

ogy, probably because CPS is not normally presented as name-passing. So we 

borrowed it from Pierce and Sangiorgi FPS931; they write about the translation 

of a )-calculus term MN into the ir-calculus: 

The core of the protocol [..] is the action on an internal channel v, 
by which the abstraction M comes to know its arguments. We call v 
a pivot. (In the lazy )-calculus encoding, the role of the pivot names 
was played by the argument port names.) 

Warning: Milner's call-by-value u-calculus transformations have an additional 

level of indirection not present in CPS. So our usage of pivot is not completely 

the same as that of Sangiorgi and Pierce. 

[Ing6l] defines 

A thunk is a piece of coding that provides an address. When executed, 
it leaves in some standard location (memory, accumulator, or index 
register, for example) the address of the variable with which it is 
associated. 

In the present setting, a thunk is a term of the form k(q){q(p)=M}. k(q){q(p)=M} 

returns to its current continuation a "private" name q along which it is ready to 

receive a continuation p for M; M may then evaluate and return a result to p. 

Complementary to thunking, a forcing is a jump with the current continuation 

as the actual parameter. 



Chapter 3 

CPS transforms 

The main purpose of this chapter is to review, and present in a unified notation, 

the various CPS transforms that have appeared in the literature (the seminal 

papers are [P1o75] and [DHM91I for callcc; a unified account is in [DH94]. See 

also [Fi1961.) 

There is a large literature on the typing of CPS transforms, beginning with 

[MW85], later with [Gri90] and in particular Murthy, e.g.. [Mur91] 

The paradigmatic language that we consider as the source language for CPS 

transforms is a simply-typed A-calculus, usually (but not in all cases) augmented 

by the control operators callcc and throw. The BNF for raw terms is this: 

M ::=x I Ax.M 1MM I callccM I throw  

We call this language A+callcc; it is essentially the same as that in [DHM91]. 

To prevent misunderstanding, one should perhaps emphasise that this calculus 

is a (standard) idealisation of call-by-value programming languages like Scheme 

or ML and semantically very different from the simply-typed A-calculus whose 

models are Cartesian closed categories, see [LS86]. 

We do not give an operational semantics here, as we regard the CPS trans-

forms as its proper semantics, but the intended meaning of the calculus is that 

it should be a call-by-value calculus in the sense of fPlo751, where 0 and ij laws 

appy only in a restricted sense. 

(Ax.M)V = M[xH+V] 	 (/30 
Ay.Vy = V 	 (m') 

where y is not free in M 

Here V ranges over values, i.e. terms of the form V ::= x I Ax.M. 

The typing for first-class continuations in Standard ML of New Jersey in 

[DHM911 is given by that of simply-typed A-calculus and the two rules for the 

continuation primitives callcc and throw. 
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F, x: a F M: 

F,x:rFx:r 	FF)x.M:a-+ 
FFM:a— r FI- N:a 

F F MN: y 
F F- M: -'r -* r 	F I- M -IT FFN:r 

FFcallccM:r 	FE- throwMN:o 

3.1 A survey of CPS transforms 

From our point of view, the canonical CPS transform is the one from [DHM91]. 

3.1.1 Definition The call-by-value transform qj for )+ca11cc is defined as 

follows. 

cxL(k) 

\x.M (k) 

MN(k) 

Jthrow M ND(k) 

ca11cc M(k) 

k(x) 

= k(f){f(xh)=M(h)} 

= 

= 
= JM(m){m(f)=f(kk)} 

= 

= 	(la - r) 

= 	. ., l'i-n  

This is almost the same as the transform used by Appel in his ML compiler [App92]. 

We recall here what he calls the naive version, which does not deal with exception 

handlers. 

3.1.2 Definition We write x i-+ ... for meta-level abstraction, i.e. ordinary 

function abstraction, not construction of a )-term, and c(x) for the corresponding 

meta-level application. The following is Appel's CPS transform (with the naive 

version of callcc) [App92, ch. 51. 

44 (c) 

Al ,\x.M(c) 

AjMN(c) 

Aca11cc M(e) 

Athrow M(c) 

Lambda - (Name - CPS) -* CPS 

C(X) 

c(f){f(xk)=AM(z '-* k(z))} 

AlM(m -* .4N(n '-+ m(nk))){k(x)=c(x)} 

AM(m - m(kk)){k(x)=c(x)} 

AaM(m '- c(f){f(xh)=m(x)}) 
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Appel's transform performs a certain amount of administrative reductions. Up 

to provable equality of the CPS calculus, the transform A ~ _D is the same as 

3.1.3 Proposition 

AM(c)) = lM(k){k(x)=c(x)} 

Hence AM(z '-+ k(z)) = lM(k) 

The call-by-value transform satisfies only the 3v  law, not the full 0 law. 

Plotkin's call-by-name transform satisfies the full 3-law. However, despite 

being traditionally called "call-by-name", the transform does not satisfy the full 

71-law. 

This is because it is "lazy" in the sense that A-abstraction delays the evaluation 

of the body (sometimes called "protecting by a A [P1075])". We could qualify "call-

by-name" with "lazy" to distinguish this transform from alternatives, not afflicted 

by laziness, that satisfy the full 71 law. Unfortunately, the term "lazy" is sometimes 

used to mean call-by-need in the sense of memoisation of arguments. 

3.1.4 Definition The Plotkin call-by-name CPS transform [Plo75] is defined as 

follows. 

72'JxD(k) = x(k) 

1Ax.MD(k) = k(f){f(xh)=PaM(h)} 

PIMN (k) = PMl (m){m(f)f (nk) {n(h)=PN (h)}} 

= 

Px1  :ri ,...,x 	= 

3.1.5 Remark Note that the argument N in an application MN is not forced, 

but only located at n. While this may look simpler than the corresponding clause 

for call-by-value, we can nonetheless regard it as a special case of it. 

PJMN (k) = PJM (m){m(f)=f(nk){n(h)=PJN(h)}} 

= PJM (rn){m(f).=q(n){n(h)< =1PJN (h)}{q(n)=f(nk)}} 

Written this way, the application follows the same pattern as for call-by-value, 

PJM(m){m(f). . . {q(n)=f(nk)}} 

except that the term in the argument position, represented by ..., is not just 

PNl(h), but PaNl(h)  wrapped into a thunk: 

q(n){n(h)=ThJN (h)} 

we 



Note that the whole computation is wrapped into the thunk, so that PND(h) is 

not evaluated at this point. Alternatively, one could evaluate it, and wrap the 

result (if any) into a thunk: 

9ND (h){h(x)=q(n){n(h)4=h(x)}} 

This would give a variant CPS transform 	agreeing with flj except the 

clause for application, in which the result, not the computation, is thunked: 

PMN(k) 

= P'M (rn){m(f)=P'N (h){h(x)q(n){n(h)=h(x)}}{q(n)=f(nk)}} 

= P'M (m){m(f)=P' N(h){h(x)=f (nk) {n(h)=h(x)}}} 

Hence, to reiterate a point made in [DH941, the typing of call-by-name does not 

imply call-by-name behaviour. 

The Plotkin call-by-name transform can be seen as a modification of the call-

by-value transform, given by delaying the argument in an application and forcing 

variables. According to this view, it is merely one of a number of possible varia-

tions arising from different choices about the point in the computation at which 

arguments are to be evaluated. Two other such variations, called the Reynolds 

and modified Reynolds CPS transform, are presented in [DH94]. 

3.1.6 Definition The Reynolds call-by-value CPS transform [DH941 is defined 

as follows. 

R,4(k) = x(k) 

RJ.\x.M (k) = k(f){f(nh)=n(h'){h'(a)=1ZM (h){x(h")=h"(a)}}} 

7ZIMN (k) = 7?MD (in) {m(f)=f (nk) {n(h)=7Z(JN) (h) }} 

3.1.7 Definition The modified Reynolds call-by-value CPS transform [DH94] is 

defined as follows. 

7'x(k) = k(x) 

7Z'lAx.M(k) = k(f){f(nh)=n(h'){h'(x)= 7?,'1MD (h)}} 

1?,' MN (k) = R'M (m) {m(f)=f (nk) {n(h)=WN (h) j} 

The reason why the call-by-name CPS transform does not satisfy the i-law 

is, roughly speaking, that ) "protects" an application from being evaluated in the 

evaluation strategy codified by it. Hence in )x.MNx, the application is protected, 

whereas in MN, M is evaluated. 
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There are two possible ways one could try to address this discrepancy: either 

one could try to reduce under the .A in the case of )x.MNx; or one could avoid 

evaluating the M in MN. 

Murthy defines what he calls a "truly" call-by-name CPS transform, which 

can be seen as reducing under A. 

3.1.8 Definition The Murthy call-by-name CPS transform [Mur92] is defined 

as follows. 

MJx(k) = x(k) 

M\x.Mflk) = MM(m){rn(b)=k(f){f(ak)=k(b)}}{x(h)=k(f){f(ak)=a(h)}} 

M lMN(k) = M 	(m) {m(f)=f (mk) {n(h)=M 1ND (h) }} 

Unfortunately, to be as well-behaved as claimed, this transform requires a 

different notion of equality than provability by the CPS axioms. So in the present 

setting, we can not really make much use of it. What seems fascinating about 

this transform, though, is that returning the result and accessing the argument 

are in some sense two separate processes. Only when the argument is needed is a 

request sent to the calling context. This could mean that Murthy's transform is 

especially suitable for a concurrent scenario. The appropriate notion of equality 

for this transform may be the observational congruence from definition 2.3.2. 

The other, in some sense dual, possibility to make Ax.MNx indistinguishable 

from MN, we have indicated, is to not to force the evaluation of M in an appli-

cation MN. This is essentially what the uncurrying call-by-name CPS transform 

does. 

3.1.9 Definition The uncurrying call-by-name CPS transform is defined as fol-

lows. 

\/Jx(k) = k(x) 

= k(f) {f(xh) =\fM (m) {m(g)=g(7h) }} 
M ~MNO = AuIM (rn){m(f)=.AfJNj (n) {n(a) =k(g){g(çk) =f (a17k) }}} 

T -~ b 

Afx 1  : r1 ,. . . ,x : rj) 

= 

= Efr11,. ..,.A/frj 

This transform is related to Filinski's call-by-name transform in [Fi196] in 

that it doubly negates base types. In its name-passing presentation it appears 

to be new. There may be a connection to graph reduction here, inasmuch as an 



4 

application with the result not being of base type does essentially nothing, other 

than consing the given argument onto the argument list. A comparison with the 

G-machine constructing an application graph [FH88] seems possible here. 

3.2 A simplified notation for non-recursive CPS 

For the non-recursive CPS calculus, we can present the CPS transforms in a 

shorthand style in which the CPS transform (M, M and M) of a term contains 

a free variable k for the current continuation. (This notational trick appears to 

be due to Phil Wadler; see [SW961.) 

This may seem utterly confusing at first, to the extent that just about every -

thing appears to be called k. But as the CPS calculus is a low-level name-passing 

calculus, it is virtually intractable without some technique for simplifying nota-

tion. Given that CPS terms admit a very "imperative" reading, one could add 

a more computational justification for always calling the current continuation k, 

in that we could think of k as always being the same register (current continua-

tion pointer), but at different times during the computation. In that sense, the 

fact that the variable k can be recycled endlessly reflects the fact that the non-

recursive CPS calculus can only express forward jumps. One can destructively 

update the current continuation pointer, as one can never jump back to it. 

3.2.1 Definition The call-by-value with callcc CPS transform in the short-

hand notation () is defined as follows. 

= k(x) 

Ax.M = k(f){f(xk)=M} 

MN = M{k(f)=N{k(a)=f(ak)}} 

callcc M = M{k(f)=f(kk)} 

throw M N = M{k(k)=N} 

(M, N) = M{k(m)=N{k(n)=k(mm)}} 

= 

For the Plotkin call-by-name semantics, the semantics of the control operators 

is somewhat tentative, as their intended meaning is not as clear as for call-by-

value. The absence of implementations of call-by-name languages with control 

operators makes it hard to give pragmatic evidence as to what the definition of 

callcc should look like. Nonetheless, if we view the Plotkin call-by-name CPS 

transform as esssentially the same as call-by-name modulo thunking of function 



arguments, we can argue that call-by-name callcc should be as in call-by-value, 

with the only modification that the current continuation, once it has been seized, 

is wrapped into a thunk. This allows us to keep the same typing rule for callcc. 

3.2.2 Definition The Plotkin call-by-name CPS transform in the shorthand 

notation () is defined as follows. 

X 

.Ax.M 

MN 

callcc M 

throw M N 

a -* 7- 

x(k) 

k(f) {f(xk)=M} 

M{k (f) =1 (nk) {n(k)=N} } 

M{k(f)=f(gk){g(p)=p(k)}} 

M{k(k)=N} 

—i(-1--1cr—r) 

3.2.3 Definition The uncurrying call-by-name CPS transform in the shorthand 

notation () is defined as follows. 

x = k(x) 

Ax-.M = k(f){f(x7k)=M{k(g)=g(k)}} 

MN = M{k(f)=N{k(a)=k(g){g(7k)=f(a77k)}}} 

callcc M = k(f){f(yTh)=M{k(f)=f(gyth){g(q)=q(yh)}}} 

throw M N = k(f){f(çh)=M{k(k)=N}} 

7-i —*... —* r —+ b = 	(ri... r, -'b) 

One difference to CPS transforms using the )-calculus as the target language 

is that there is no way to define the abort operator by using the )x.x as an 

aborting continuation (as in [FFKD86]). But we can define Danvy and Filinski's 

meta-continuation passing style [DF92]. 

3.2.4 Definition For A-calculus together with callcc, throw, the abort opera-

tor A and the control delimiter #, i.e. the following language 

M ::=xl ) x.MIMMIca 11ccMIthrowMIAMl#M 

the Danvy/Filinski metacontinuation transform () is given as follows. 

= k(xc) 

.Ax.M = k(fc){f(xkc)=M} 
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MN = M{k(fc)=N{k(ac)=f(akc)}} 

callcc M = M{k(fc)=f(kkc)} 

throw M N = M{k(kc)=N} 

#M = M{k(xc)—c(x)}{c(x)=k(xc)} 

AM = M{k(xc)=c(x)} 

The semantics of the composable continuation construct S is given as follows. 

S M - M{k(fc)=f (gkc) {k(xc)=c(x) }{g(yk'c')=k(yc) {c(w)=k'(yc') }}} 

3.3 Soundness of the uncurrying call-by-name CPS 
transform 

The transform () is genuinely call-by-name in that it satisfies both the unre-

stricted 8- and i'-laws. We show this for the non-recursive CPS calculus. Using 

the shorthand with the current continuation always being called k, we can keep 

track of what is happening without being swamped by too many distinct variables. 

The crucial property of the uncurrying call-by-name CPS transform is that 

the transform of all )¼-terms is thunkable. For the call-by-value CPS transform, 

by contrast, this would hold only for the transform of values. 

3.3.1 Lemma Let L be a ,\-term. Then its uncurrying call-by-name transform 

L satisfies: 

L = k(q){q(z')=L{k(p)=p(2)}} 

PROOF By induction on L. Let L = x. 

k(q){q(2)=x{k(p)=p(z')}} 

= k(q){q(2)=k(x){k(p)=p(z)}} 

= k(q){q(z)=x(z)} 

= k(x) 

= x 

Suppose L = )x.M and let the induction hypothesis hold for M. 

k(q) {q(2')=)tx.M{k(p)=p(z) }} 

= k(q){q(z)=k(f){f(x7k)=M{k(g)=g(7k)}}{k(p)=p(E)}} 

= k(q){q(z)=f(z){f(x7k)=M{k(g)=g(y7k)}}} 

= k(q){q(x ysk)=f(xk){f(xgk)=M{k(g)=g(ffk)}}} 
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= k(q){q(xçk)=M{k(g)=g(7k)}} 

= Ax.M 

Suppose L = MN with M and N satisfying the induction hypothesis. 

k(q) {q(2)=MN{k(p)=p(z) }} 

= 	k(q){q(z)=M{k(f)=N{k(x)=k(g){g(7k)=f(xy7k)}}}{k(y)=p(z)}} 

= 	k(q){q(E)=M{k(f)=N{k(x)=g(E){g(k)=f(xgk)}}}} 

= 	k(q){q(7k)=M{k(f)=N{k(x)=f(x77k)}}} 

= 	k(q){q(7k)=M{k(f)=k(x){x(z)=N{k(j=p(2)}}{k(x)=f(x7k)}}} 

= 	k(q){q(k)=M{k(f)=f(x7k){x(z)=N{k(j)=p(2)}}}} 

k(q){q(y7k)=M{k(f)=f(x7k)}}{x(z)=N{k(p)=p(z)}} 

= 	k(x){x(i)=N{k(p)=p(z)}}{k(x)=k(q){q(17k)=M{k(f)=f(xy7k)}}} 

= 	LL{k(x)=k(q){q(7k)=M{k(f)=f(xk)}}} 

= 	N{k(x)=k(q){q(gk)=f(x17k)}{f(xçk)=M{k(f)=f(xçk)}}} 

= 	k(f){f(x7k)=M{k(f)=f(xfjk)}}{k(f)=N{k(x)=k(q){q(k)=f(x7k)}}} 

= 	M{k(f)=N{k(x)=k(q){q(çk)=f(zk)}}} 

=MN 

EJ 

As a preparation for the soundness of 0-reduction, we need to establish how, 

under the transform (), substitution in the source language, A-calculus, relates 

to a binding in the target, CPS calculus. Because of lemma 3.3.1, we have two 

equivalent views on what a substitution M[x i-+ N] means: we can see it as M, 

expecting the argument x, becoming the current continuation for N; or we can 

see it as M having access, via the pointer x, to the resource N, expecting its 

current continuation as its argument. In that sense, the undurrying call-by-name 

transform provides a "pure" semantics for simply-typed )-calculus: the denotation 

(transform) of everything is as good as a value. 

3.3.2 Lemma 

M[x i-  N] = N{k(x)=M} 

PROOF By lemma 3.3.1, this is equivalent to 

M[x '-* N] = k(x){x(p)=N{k(p)=p(z)}}{k(x)=M} 

= jyj{x(z)=N{k(p)=p(z)}} 
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If M = x, then 

M{x(z)=N{k(p)=p(z)}} = k(x){x(z)=N{k(p)=p(2)}} = N 

If M = y x, then 

M{z(z)=N{k(p)=p(z)}} = k(y){x(z')=N{k(p)=p(z)}} = y 

The remaining cases follow by induction using the fact that the binding for x 

distributes - except for the case when the scope of x has a hole because x is 

)¼-bound: 

(Ax.M)[x i-+ N] 

= k(f){f(xk)=M{k(g)=g(k)}}{x(z)=N{k(p)=p(z)}} 

= k(f){f(xk)=M{k(g)=g(k)}} 

because x is not free in k(f){f(xyTk)_—M{k(g)=g(yik)}}. 	 D 

The 7-1aw is sound for ()just as 77v  is sound for 	. 

3.3.3 Proposition (77 for 	) 

Ax.Mx = 

where x V FV(M). 

PROOF 

)tx.Mx 

= k(f){f(x7k) =Mx {k(g)=g(7k)}} 

= k(f){f(x7k)=M{k(f)=k(g){g(7k)=f(xçk)}{k(g)=g(k)}}} 

= k(f){f(xçk)=M{k(f)=f(xgk)}} 

= M 	by lemma 3.3.1 

I' 

3.3.4 Proposition (0 for 	) 

(\x.M)N = M[x '-* N] 

(vrJflN 

= k(f){f(xy7k)=M{k(g)=g(k)}}{k(f)=N{k(x)=k(g){g(çk)=f(xçk)}}} 
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= N{k(x)=k(g) {g(yik) -f (xytk) }} {f (x7k)=M{k(g)=g(7k) }} 

= N{k(x)=k(g){g(yTk)=M{k(g)=k(g)}} } 	by lemma 3.3.1 

= N{k(x)=M} 	by lemma 3.3.2 

= MIx — N] 

D 

The above generalises to the recursive CPS calculus, so we have the following. 

3.3.5 Lemma 

JfM (in) = k(q) {q(z=i\f (]ML) (m) {m(p)=p(z) }} 

3.3.6 Lemma 

i'.TIM[x '-+ N](m) = 

3.3.7 Proposition 

Af1Ax.Mx(k) = flML(k) 

where x V FV(M). 

3.3.8 Proposition 

A1 (Ax.M)Ni(k) = J./lM[x— N}j(k) 

3.4 CPS transforms to the A- and 7-calculi 

The CPS transforms with the CPS calculus as the target language can be spe-

cialised if we compose them with one of the translations of CPS calculus into 

other calculi. 

For the A-calculus, we recover the usual presentation of CPS transforms with 

the A-calculus as the target language. 

It has been noted by several people, such as [Bou97] and also [Thi96b], that 

translations from the A- to the w-calculus (see [Tur95] for a survey of them, 

together with a CPS-like typing) can be seen as CPS transforms. 

3.4.1 Remark With the the A-calculus as the target language, the call-by-value 

CPS transform is the following: 

= Ak.kx 

jAx.M = Ak.k(A(x, h).JMh) 

Jthrow M Nf = Ak.MND 

ca11cc M = Ak.lM(Am.m(k, k)) 

IMND = Ak.(M (Am.N (An.m(n, k)))) 
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3.4.2 Remark With the the A-calculus as the target language, the Plotkin call-

by-name CPS transform is the following: 

Lqxo = ,\k.xk 

£Ax.M = Ak.k(A(x,h).LJMh) 

£(JMNj = Ak.(LaM(Am.m(iN, k))) 

3.4.3 Remark With the the it-calculus as the target language, the call-by-value 

CPS transform is the following: 

tx(k) = 	(x) 

lAx.Ik1(k) = 	(vl)(k(1) I ! 1(xh).aIV[(h)) 

It'IN(k) = 	(vm)(IVI(rn) 	! m(1).(vn)((jN(n) 	! n(a).1(ak))) 

throw M N(k) = 	(zim)(M(m) I !m(n).JNj(ri) 

lcallcc M(k) = 	(vm)(M(m) 	!m(1).l(kk)) 

where k, 1, m, n are fresh. 

3.4.4 Remark With the the it-calculus as the target language, the (lazy) call-

by-name CPS transform is the following: 

£Jx(k) = 	(k) 

£lAx.M(k) = (u1)(](1) !1(xh).LJM(h) 

£IttN(k) = (vm)(LIVI(m) ! m(1).(vn)(! n(h).CN(h) l(nk))) 

3.4.1 Prompts and control-specific full abstraction 

We would agree with [App92] that the intended meaning of (throw-ing to) a 

continuation is a "jump with arguments". But the CPS transform into the A-

calculus allows the definition of control operators that are rather unlike jumps, 

such as Felleisen's abort operator A, definable as 

AML = Ak.(1JM(.Ax.x)) 

By ignoring the continuation k, AM discards the surrounding evaluation context 

and jumps to the top level. But this is not the same as a jump by throw-ing to 
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some continuation previously reified by a callcc, as the destination of the jump 

changes when the phrase AM is enclosed in a bigger program. 

Stranger still from the point of view that continuations are like jumps, Felleisen's 

prompt or control delimiter, definable as 

= )tk.k(M(Ax.x)) 

can intercept jumps out of M. 

We would argue that there is a fundamental difference between callcc and 

throw on the one hand and A and % on the other, certainly from a naive and 

probably from an implementation point of view. callcc is often described as 

labelling a control state, much as one can label a command in low-level imperative 

languages. throw is then analogous to JMP or goto in that it jumps to such a 

label. But whereas the label bindings introduced by callcc can be statically 

determined from the program text, A refers dynamically to the top level. The 

prompt %, from this point of view, destructively updates all the references from 

within its argument to labels on the outside. 

Whereas the definition of A for CPS into the A-calculus looks innocuous, its 

very behaviour seems odd for it-calculus semantics. A is characterised by its 

discarding of the surrounding evaluation context E[ ]' that is JE[AM] = M. 
But consider for instance E[] = (Ax.y)[ ]. Consider 

'1(Ax.y)(AM)Ll(k) = (vn)(! l(xk)i(y) I AM(n) I! n(a)1(ak)). 

Here OAMO has no access at all to k. It is hard to see how this could ever be 

equal to (k). This would appear to be simply a violation of the visibility of 

names, reflecting the fact that the reference to the top level k that AM needs to 

escape is essentially dynamic, whereas ircaIculus names are statically scoped. 

Given that Sitaram and Felleisen [SF90] have shown that the prompt is nec-

essary for the full-abstraction of standard CPS, it would be interesting to see 

whether the it-calculus semantics is a fully abstract translation. Continuation se-

mantics in the it-calculus provides a different angle than the standard CPS model 

on the relative status of various control constructs. In the usual CPS semantics, 

direct style does not allow for control operators; and as soon as the interpretation 

is "bumped up" in the functional hierarchy by the CPS transform, the prompt is 

introduced along with callcc and throw. Felleisen and Sitaram [SF90] argue on 

the basis of this for the naturality of the prompt. In the it-calculus semantics, by 

contrast, the control operators already exist in the structure necessary to support 

the A-calculus; and the prompt could be introduced only in a very imperative 

manner, by destructively updating the continuation of its subterm. 
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3.4.5 Remark We point out a connection between Miler's original encoding 

of the A- in the ir-calculus and a recently discovered CPS transform [HS971 for 

the AM-calculus [Par92]. In each case, functions are not fully CPS transformed. 

Rather, a construct in the target language not properly inside the CPS discipline 

is used for the translation of functions. For the ir-calculus, the parameter of 

the translation is used for input, whereas in CPS it would only ever be used for 

asynchronous output. Recall Milner's original transform [Mil9l] from the A- to 

the 7r-calculus (which he calls "encoding of the lazy A-calculus"): 

£Jx(k) = 

£jAx.M(k) = k(xh).LMD(h) 

LjMN(k) = (vm)(E,JMD(m) I (vn)((nk)  I !n(h).JN(h))) 

The Hofmann- Streicher CPS transform () from the Aft-calculus is defined as 

follows. 

= Ak.xk 

Ax.M = A(x,k).Mk 

MN = Ak.M(N,k) 

= Aa.M() 

[a]M = A0.Ma 

O+T = 

F,X.T = F, x: 

Here r abbreviates r -+ o. The typing invariant of () is: if F F- M : T , then 

F F- M : -'f. (CPS transforms are usually more comprehensible if one does not 

77-reduce them.) From our point of view, such transforms are somewhat vexing, 

in that they introduce continuations in some places, but do not appear to break 

down function types into continuations in quite the same way that the canonical 

CPS transforms do. It is not clear whether they can be accommodated in our 

semantic framework. 

3.5 Flattening transforms 

We review flattening transforms, known to be a first step towards CPS; see 

[LD93], although our account is somewhat different. 
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A first-order analogue of flattening for tuples leads us to a motivation for pre-

monoidal categories: we derive them from the computationally natural principle 

of naming all intermediate results. 

3.5.1 Flattening applications 

We recall from [LD931 that CPS transforms can be staged by first translating into 

a flattened form (called Core Direct Style in [LD931); here we use a let-language 

similar to that in [DH94]. 

3.5.1 Definition (Flattening transform for A-terms) 

= 
(Ax M)' de =f 

Ax.M 
del 

(M N) = let f = M' in let a = NL in fa 

3.5.2 Definition The CPS transforms for fiat A-terms are defined as follows. 

T = k(x) 

Ax. M = k(f){f(xk)=M} 

fa = f(ak) 

let x = N in M = N{k(x)=M} 

X  = x(k) 

Ax.M = k(f){f(xk)=M} 

fa= f(k){k(f)=f(ak)} 

let x=NinM = M{x(k)=N} 

3.5.3 Proposition The call-by-value and the lazy call-by-name CPS transforms 

factor over flattening. 

M=M M=M 

3.5.2 Flattening tuples 

In the above, the only compound expressions (or serious terms) were combinations 

M N. What the flattening transform achieved was to compile A-calculus into a 

de-sugared form in which the only combined expressions were those made up of 

variables, f a. 

We will now consider a first-order analogue of this, focussing on products 

instead of function spaces. We de-sugar (flatten) tuple expressions (M, N) in the 



same way as was done for applications M N. The target language shares some 

features with Moggi's metalanguage [Mog89], most notably in the distinction 

between values and computations, but without any reference to monads. 

In this setting, we have a very restricted notion of value: tuples of variables. 

More complex entities cannot themselves be entries in a tuple; instead, all inter-

mediate results are named and only the names can appear in tuples. Values are 

given by the following BNF: 

V::=Q 1 X  (VV) 

Computations are values or let-expressions 

M::= V I let x = M in M 

in general, though, M will range over other things in addition to the above, e.g. 

computations with side-effects. 

3.5.4 Definition The typing of the flattened tuple language is given by the 

following rules. 

x:rI-  x:r 
	['I-U:cx AF- V:T 

where U and V are values 

FHN:a z,x:uHM:T 	FF-N:a x:a,/HM:r 
L,FE- let x=NinM:r 	F,LF- let x=NinM:r 

3.5.5 Definition The tuple flattening transform is defined as follows. 

def 
X = x 

(M, N)' 	let a = MLI in let b = N in (a, b) 

3.6 A duality on CPS terms 

We recall the call-by-value and (lazy) call-by-name CPS transforms. 

= k(x) 

Ax.M = k(f){f(xk)=M} 

MN = M{k(f)=N{k(x)=f(xk)}} 

X  = x(k) 

Ax.M= k(f){f(xk)=M} 

MN = M{k(f)=f(xk){x(k)=N}} 
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It is striking that the translations of a free variable x under the two transforms 

are dual to each other in the sense that each arises from the other by swapping 

operator and argument. The same duality is evident in the translations of the 

argument N in an application MN; this is N{k(x)= . .. } for call-by-value and 

{x(k)=N} for call-by-name. 

As long as continuations are unary, it is easy to define a transform that 

swaps operator and argument everywhere. This does not make sense for gen-

eral, polyadic, continuations, as one cannot have a tuple in the operator position. 

But inasmuch as replacing k(x) with x(k) amounts to replacing x with a thunk, we 

can define a transformation for non-unary continuations f() in the same spirit, 

by thunking them, giving f(q){q(p)=p()}. To compensate for this thunking, the 

bindings for non-unary continuations . . . {f()=. . .} need to be translated with 

an additional forcing q(p), giving . . . {f(q)=q(p){p(i)=. . .  

3.6.1 Definition For a CPS term M, let its dual M' be defined inductively as 

follows: 

def k (x) 	= x(k) 

	

M{n(x)=N}' 	N'{x(n)=M'} 

	

-mI 	def 
f(yi 	= f(q){q(p)=p(y)} 

	

M{f()=N}' 	M'{f(q)=q(p){p(yi)=N'}} 

for 7 7~ x; that is, W ranges over sequences other than those of unit length. 

The duality between call-by-name and call-by-value is particularly vivid when 

we transform terms after they have been flattened. 

3.6.2 Proposition For a CPS term M, M-- = M 

PROOF By induction on M. The cases k(x) and M{n(x)=N} are trivial. For 

the remaining two cases, we have 

LJ 
1W) 

= 
f(q){q(p)=pW)}L 

= 
p)L{p(q)=q(f)} 

= p(q){q(f)=fW)}{p(q)=q(f)} 

=1W) 

M{fW)=N} 
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= Mi ff (q)=q(p){p(y)=N'}}' 

= p(q) {p(q)=q(f) {f(y)=N"}}{q(f)=M"} 

= q(f){f(y)=N"}{q(f)=M"} 

= M"{f(7)=N"} 

M{f(y1)=N} 	by the induction hypothesis 

EJ 

This is a duality between call-by-value and call-by-name in the sense that it 

connects the corresponding CPS transforms. 

3.6.3 Proposition For a A-term M not containing control operators, 

M'=M and M'=M 

PROOF By induction on M. For M = 

-J_ x =k(x) I  =x(k)=x 

And conversely. Let the induction hypothesis hold for M and N. 

MN' 

= N{k(x)=M{k(f)=f(xk)}}' 

= f(xk)'{f(k)=M'}{x(k)=N'} 

= f(q) {q(p)=p(xk)}{f(k)=M'}{x(k)=N'} 

= M'{k(p)=p(xk)}{x(k)=N'} 

= M{k(p)=p(xk)}{x(k)=N} 

=MN 

MN' 

= M{k(f)=f(xk){x(k)=N}}' 

= N'{k(x)=f(q){q(p)=p(xk)}}{f(k)=M'} 

= N'{k(x)=M'{k(p)=p(xk)}} 

= N{k(x)=M{k(p)=p(xk)}} 

=MN 

Ax.M 
I  

= k(f){f(xk)=M}' 
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= f(k){f(q)=q(p){p(xk)=M'}} 

= f(k){f(q)=q(p){p(xk)=M}} 

= k(p){p(xk)=M} 

= Ax.M 

\'r 1%,f 

= k(f){f(xk)=M}' 

= f(k){f(q)=q(p){p(xk)=M'}} 

= k(p){p(xk)=M'} 

= k(p){p(xk)=M} 

A:j5.IV.L 

0 

However, the duality does not in general respect equality, that is there are 

M1  and M2  with M1  = M2  (provable equality), but not M1 ' = M2 1 . Even for 

terms arising as CPS transform of )-terms, equality is not preserved in general. 

Consider (x.y) (fg). 

(\x.y)(fg) = f(gx){k(x)=k(y)} 

(,\x.y)(fg) = y(k){k(x)=f(gx)} = k(y) 

Clearly, the Garbage Collection axiom is the culprit here, so perhaps restricting 

to the linear CPS calculus could help with the preservation of equality. Note 

that the duality is well-behaved with respect to the JMP and ETA laws, in that 

it transforms their redexes into each other. 

(M[m m])' = (M{n(x)=m(x)})' = x(m){x(n)=M'} = M'[n -* m] 

3.7 Two connections between call-by-value and call-
by-name 

We have already mentioned in 3.1.5 that the lazy call-by-name CPS transform 

can be seen as arising from thunking. 

Consider )-calculus augmented by two special forms, force and delay. We 

give a translation from )-calculus into the augmented variant. 

X t  = forcex 

= 
(MN)' = Mt (delay N t ) 
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We adapt the call-by-value CPS transform for special forms force and delay as 

follows. 

forcex = k(x) 

delay M = k(p){p(k)=M} 

Then call-by-name factors over call-by-value by virtue of thunking [HD95]: 

Mt (see [HD951). 

We note that the variables appearing in a source term are reused in its CPS 

transform, along with continuation variables freshly generated by the CPS trans-

form. For different transforms, this reuse is conceptually quite different. 

In call-by-value, the variables from the source language are recycled to denote 

the value of the translated term being passed to the current continuation. The 

latter is anonymous, inasmuch as the current one is always used. For instance, 

in T = k(x), the variable x evaluates to itself; hence x is passed to the current 

continuation, which, in the shorthand version of the transform, is always called k. 

For Ax.M = k(f){f(xk)=M}, the ,\-expression evaluates to a closure; a pointer 

(private name) to this is passed to the current continuation. 

For call-by-name, there are two intuitively different, but equivalent readings. 

Either one of these may seem more natural, depending on whether one looks at 

the thunking or the flattening transform as an intermediate step towards call-by-

name CPS. They are equivalent in that they are adjoint correspondent under 

the self- adjointness on the left. 

In the first interpretation, which regards call-by-name as a variant of call-

by-value obtained by thunking, A-calculus variables are recycled in the manner 

described above for call-by-value. The difference that the environment does not 

hold values, but thunks. Hence x = k(x) is read as saying that the thunk whose 

address x is stored in the environment is forced by being sent the current contin-

uation k. (Categorically, then, x : -r I- x : rfl denotes a morphism  

representing this forcing.) According to this view, the translation of )-expressions 

is identical to that under call-by-value. 

The second interpretation of call-by-name holds that source language variables 

are recycled to denote the current continuation of the translated expression. The 

latter, rather than the current continuation, now becomes an anonymous request 

channel or return address. x = k(x) is read as saying that k is passed to the 

current continuation, called x, of the transform of the )-term x. (Categorically, 

this means that ftx : T I- x : -Fj denotes a morphism -'frJ -+ -fr j representing 

the identity.) Under this interpretation, application in particular is quite different 
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from the call-by-value case. 

= f(q){q(p)=p(xk)} 

f is now the current continuation of application, to which the request channel q 

is passed. 

3.8 From flattening tuples to premonoidal cate-
gories 

One could argue that the tuple notation (M, N) in a call-by-value language should 

be considered as no more than syntactic sugar for the flattened form 

let a = M inlet b N in (a,b) 

and that semantics should be based on the de-sugared form. Thus semantics 

should not be based on the categorical structure for which the tuple language 

M ::= () I x I (M, M) is the internal language, finite products [Cro93]; but 

instead on the structure corresponding to the de-sugared let-language. 

In the spirit of categorical semantics (for an accessible introduction, see e.g. 

the textbook [Cr0931), we now attempt to arrive at a categorical semantics. 

The minimal setting for a semantics of the flattened tuple language is a cate-

gory equipped with a "tensor", more precisely, a binoidal category [PR971. 

The let-construct is decomposed into tensor A 0 (_) and composition. That 

is, in a judgement 

L, F I- let x = N in M : 

L1] is composed "in parallel" with [F I- N: al by means of the tensor EAfl ® (_), 
and the result is composed "sequentially" with 1[L, x : a I- M : by means of the 

categorical composition "; ". 
In order to make the semantics cope with ambiguities in the notation, specif-

ically writing environments as associative lists, we require coherence conditions 

that make the different readings of ambiguous syntax agree semantically. This 

leads to the notion of premonoidal category [PR97]. 

3.8.1 Definition Given a premonoidal category and an interpretation ftfl of 

base types as objects of that category, we give a semantics to the flattened tuples 

language as follows. 

def = 	(... (ftr®...)...)®frj 
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ftx:rHx:r 	deffl 	= 	id 

	

IF, LF let x=N in M:r]] 	ftFHN:uJJ®ftz; Ix: a,LHM:rfl 

ftL,F I- let x = N in M: 	ftL]]® IF I- N: crfl; IA, x : a F- M: Tfl 
def 

	

IF, zI- (U,V):a®-i- JJ 	ftFHU:P}I®ftL;fta]®ftLF - V:TE 

de ftx : r1 , (y : T2, z : r3 ) I- ((x, y), z) : ( Ti ® T2) 0 	=f assoc 
def 	—1 ft (x : r1 , y : 'r2 ), z : 73  I- (x, (y, z)) : 'r1  0 (r2  ® 3)J1 	= 

The coherence theorems 1PR971 for premonoidal categories then let us write en-

vironments associatively. The ambiguities in the syntax do not lead to problems 

because "every diagram commutes" (as long as it is made up of the denotations 

of values). 

The let expression can be written almost exactly the same in ML (let val 

x = N in M end). By way of illustration, consider the following ML code. 

fun assoc ((x,y),z) = (x,(y,z)); 

assoc : ('a * 'b) * ' c —> 'a * (' b * 

fun tensorleft f (a, x) = (a, f x); 

tensorleft : (' a —> 'b) —> 'c * ' a —> 'c * 

fun tensorright f (x,a) = ( f x, a); 

tensorright : (' a —> 'b) —> 'a * 'c —> 'b * ' C; 

In Scheme, we would write flattened tuple expressions using let* like this: (let* 

((a M) (b N)) (list (a b))). Note that the heterogeneous lists in Scheme 

allow us to define a strict premonoidal category by using list concatenation for 

defining ®. 

Some readers may be surprised that the premonoidal structure is not in fact 

monoidal. We briefly illustrate why one should not expect this. For example, in a 

language with state, there are two possible meanings of a tuple (M, N), depending 

which component is evaluated first. Consider the following examples, where we 

make the evaluation order explict by using let. 

let val s = ref 0 in 

let val x = (s := !s + 1; !s) in 
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let val y = (s := 's + 1; !s) 

in #1(x,y) end end end 

let val s = ref 0 in 

let val y = (s := !s + 1; !s) in 

let val x = (s := !s + 1; !s) 

in #1(x,y) end end end; 

Just as for state, in the presence of continuations (first-class or otherwise) there 

are two possible meanings of the tuple (throw k 1, throw k 2). 

callcc(fn k => 

let val x = throw k 1 in 

let val y = throw k 2 

in #1(x,y) end end); 

callcc(fn k => 

let val y = throw k 2 in 

let val x = throw k 1 

in #1(x,y) end end); 

In a monoidal category, there would be no way to distinguish between the 

two composites. This makes monoidal categories suitable for those cases where 

both composites are evaluated in parallel or where there can be no interference 

between the two (which would the case, say, if both had access to disjoint pieces 

of state). But with control, as given by continuations, we have both a sequential 

evaluation order and interference between the components, since a jump in one 

will prevent the other from being evaluated at all. 

Put differently, the presence of computational effects, like state and control, 

"breaks" the bifunctoriality, so one is left with a binoidal category. (Partiality 

appears to be a separate case that should perhaps not be lumped together with 

genuine effects like state and control.) 
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Chapter 4 

®-i-categories 

In this chapter, we develop a categorical account of the structure inherent in 

first-class continuations. 

For first-class continuations, it is particularly worthwhile to look at the cate-

gory of computations, for the following reasons: 

• First-class continuations allow the full callcc to be added to the language, 

which is the most powerful version of control found in actual languages. 

This contrasts with the situation for state, where only a rather weak notion 

of global state is added by commonly used notions like the state monad. 

• The construct to be studied has universal properties on the category of 

computations. That does not seem to be the case for constructs associated 

with state, such as assignment. 

• Continuations are an advanced concept in programming languages that 

could be made easier to use by semantic clarification. While local state 

has subtleties, it is not obvious if global variables as introduced by the state 

monad are all that much in need of elucidation. 

(We have made a comparsion with state here, as state and control appear to be 

the most natural things to add to a programming language, but this discussion 

would apply to other effects, e.g. exceptions.) 

4.1 Introduction: what structure do we need? 

The task of finding a semantic infrastructure for continuation semantics is some- 

what analogous to that of interpreting A-calculus in a cartesian closed category. 

We need a first-order structure for interpreting environments and tuple types, in 
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analogy with, but weaker than, cartesian products, as well as higher-order struc-

ture for interpreting continuation types. These now become the fundamental 

notion, while arrow types are derived as a special instance of continuation types. 

But whereas in )-calculus every morphism is a "pure function", in CPS there is a 

need to identify a subcategory of effect-free computations (or values) that satisfy 

stronger properties than the general, possibly effectful, computations. 

We show that effect-freeness in the presence of first-class continuations is a 

more subtle notion than would at first appear. In particular, it is not enough to 

exclude straightforward jumps like throw k 42. 

In our framework, environments are modelled by means of a premonoidal cat-

egory [PR97]: this is a categorical framework which provides enough parallelism 

on types to accommodate programs of multiple arity, but no real parallelism on 

programs. For each object (type) A, there are functors A ® (_) and  (_) ® A. 

For morphisms f : A -+ A' and g B -+ B', there are in general two distinct 

parallel compositions, f®B; A'®g and A®g; f®B'. The central morphisms are 

those f such that for all g, the above composites agree. That is, those programs 

phrases which are not sensitive as to whether they are evaluated before or after 

any other. This provides a robust notion of effect-free morphism. 

The continuation type constructor extends to a contravariant functor, as every 

function a —* r gives rise to a continuation transformer i cont —+ or cont in the 

opposite direction. This functor is adjoint to itself on the left, i.e., there is a 

natural bijection 

-'C --~ B 
We use the notation - and refer to an application of the continuation functor 

more succintly as a negation, without claiming any deep connection. 1  

Intuitively, a morphism -'B —+ C expects both a B- and a C-accepting 

continuation as its argument and current continuation, respectively. The above 

correspondence arises by simply switching these. This ties in with the typing of 

continuations in Standard ML of New Jersey. 

We can define the unit force : --A —* A of this adjunction, the isomorphism 

of adjunction q: hom(-iB, C) —+ hom( ,C, B) and the negation functor itself. 

We require this to hold even "parametrically" in some other object A 

A®-'B—C 
A®-'C —*B 

'There is a formal resemblance between the continuation functor and logical negation, just 
as there is a formal resemblance between, say, slice categories and division on the integers by 
virtue of C/i C and C/A/B C/(A x B). 
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The unit of this adjunction is the application map apply: A® -(A ® -'B) -+ B. 

Restricted to the subcategory of central morphisms, -1 is adjoint to itself on the 

right. 

B--iA 

Intuitively, a central morphism A —p -'B expects an argument of type A and 

returns a B-accepting continuation. Hence there is demand for both A and B; 

and again the correspondence arises essentially by swapping. 

The unit of this adjunction is a generic delaying map thunk : A -* --A. 

Using thunk, we define a morphism 

pair: C -* -'(A® -'(A®C)) 

which is a natural transformation in the centre. This in turn is used to define 

A-abstraction. 
- 	 def 
AAf = pair; -(A ® -'f) 

This definition of A-abstraction in terms of control (and tuple types) does not 

give rise to a closed category, although we have the following. 

(A ® sf); apply = A ® pair; A ® -(A ® -if); apply = A ® pair; apply; f = f 

The corresponding A(A ® g; apply) = g, however does not hold in general. Hence 

this A-abstraction does not give rise to a cartesian closed category. But it is still 

sufficient for interpreting a call-by-value A-calculus, as a central g can be pushed 

into A (and values denote central morphisms). Although neither SML nor Scheme 

make this identification of function types [A -+ B] with -'(A (9 -'B), we can still 

define a pair of coercion functions (figures 1.12 and 1.13). 

The basis for our categorical account of continuation semantics will be the 

negation functor, corresponding to the typing based on -' in Chapter 2 However, 

the continuations considered there were actually polyadic, that is, in k(x i  ... z1 ) 

k is applied to a tuple of arguments. That is why, before introducing -', we need 

some first-order structure for building up such tuples (as well as environments). 

4.2 Semantics of environments in a premonoidal 
category 

Before addressing the categorical semantics of environments, we should perhaps 

clarify what we mean by "environment" here. The terminology we adopt may not 

be completely standard, but is a rational one in being semantically motivated. 



In Type Theory, the antecedent of a judgement x 1  : r1 ,. . . , x,-, : T H M : r is 

usually called a context. In Computer Science, an environment is traditionally a 

map from variables to values. Here we use the word environment in the general 

sense of anything that ascribes something (types, values, ...) to variables; the 

former, then, is a type environment and the latter a value environment. 

Semantically, a type environment denotes an object in some semantic category, 

while a value environment denotes an element thereof. (In the categorical sense 

of element: an element of an object being a morphism with that object as its 

codomain.) 

This generalises the usual notion of types denoting objects and terms denoting 

their elements in a straightforward pointwise fashion to indexed collections of 

both: value and type environments, respectively. 

In the sequel, we concentrate on the semantics of type environments and do 

not deal with value environments explicitly. But their semantics is implicit in 

that a morphism Irl -~ ftrlj can be seen as mapping elements of JrJ to elements 

Of ftrfl. 
In particular, suppose our semantic category consists of sets with structure, 

and that we build up the denotation of a type environment ftx 1  : ri ,. . . , x, : r,j 

as the product of the denotations of the types ftrjfl. Then a value environment p is 

(up to isomorphism) a (global) element of the denotation of the type environment 

1 

This also implies a notion of value environments "matching" type environments 

in that p ascribes to each x, a value v2  having type r. 

The above generalisation of environments is also closely related to the view 

of structures in Standard ML having the signatures which they match as their 

"type" [FT95], to the extent that an ML structure represents a value environment 

and a signature a type environment. 

Another reason for avoiding the word "context" here is that in Computer 

Science this often refers to a notion of "term with a hole", such as evaluation 

context. Using "context" in the sense of "type environment", moreover, may lead 

to an unfortunate inversion of terminology if the word "environment" is then used 

for (the totality of) computing agents with which some interaction is possible, a 

concept more closely allied with "evaluation context" or indeed "continuation". 

We will use a premonoidal structure 0 for interpreting environments of the 

form ftxi : Ti, . .. ,x : -r,j as i['jJ ® . . 0 

4.2.1 Definition (1PR971) A strict premonoidal category is a category IC to- 
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gether with an object 1 e ObK and, for each A E Ob/C, endofunctors A ® (_) 

and (_) ® A that agree in the sense that 

(A® (_))(B) = (()® B))(A) =: A® B 

such that 1 ® (-) = id = (-) 0 1 and 

(A®B)®C = A®(B®C) 

(f®B)®C =.f®(B(OC) 

(A(Dg)®C = A®(g®C) 

ry;jroi --J 

A morphism f : A -+ A' is called central if it commutes with everything in 

the sense that, for all g : B -+ B', we have 

That is, for f to be central, we require these diagrams to commute 

A®B Ae9AB, 

feBj 
A'® 

A'®B 	A'®B' 

B®A 

B®f 

B®A' 9  B'®A' 

The centre Z(K) of K is the subcategory of K consisting of all objects and all 

central morphisms. Let t : Z(1C) '-* K be the inclusion. 

The inclusion of the centre will often be left implicit. 

4.2.2 Remark To simplify the account, we have concentrated on the strict case, 

rather than the more general premonoidal category. Because each premonoidal 

category is equivalent to a strict premonoidal category (implicit in [PR971), the 

restriction to strictness is not a very severe one. 

One could reasonably expect everything to generalise to the general case in a 

routine way. 

In any case, the emphasis here is on the categorical structure of continuations, 

so we believe it to be defensible to postpone coherence issues until this is well-

understood and definitive. - For the present, the canonical example is a term 

model (which we try to understand more abstractly), so it would be somewhat 

counterproductive not to take advantage of the strictness afforded by term models. 
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4.2.3 Definition A ®-category is a strict premonoidal category K such that ® 

is given by cartesian product in the centre of K and furthermore, the twist map 

arising from this product 

(7r2 ,7r i ) : A®B —* B®A 

is natural in A and and in B. 

We extend the morphism pairing operation ( , ) given by the products in the 

centre of /C to the whole of K as follows. (Note that this implies a choice of 

which component is computed first: here it is the second.) For f : C —* A and 

g: C —* B, let 

(f, g) 
d=el 

 (idc ,idc);C®g;f®B : C — A®B 

4.2.4 Definition We say that a morphism f : A —* B is copyable if it respects 

the binary products of the centre in the sense that 

f;(id,id) = (f, f) : A —* B®B 

and that f is discardable if it respects the terminal object 1 of the centre in the 

sense that 

f; !B =!A : A — 1 

In [Fi189], discardable morphisms are called total. 

4.3 Continuation types as higher-order structure 

We will be interested in a particularly simple kind of adjunction: a contravariant 

functor being adjoint to its own dual, with the unit and co-unit being the same. 

4.3.1 Definition A functor F : C°P —+ C is called self-adjoint on the left if 

there is a natural transformation e : FF° — p idc  such that Fe; eF = Id. Dually, 

F is called self-adjoint on the right if F'P is self-adjoint on the left. 

(See also [Mac7l, p.  87] for the "on the left" idiom.) 

The continuation functor -i has two universal properties, adjointness on the 

left and right; we axiomatise them here in terms of the universal maps apply and 

thunk, respectively. 

4.3.2 Definition A 0--category is a 0-category K together with 
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. a functor -' : IC° 1) —+ Z(K) such that for each object A of )C, 

(A ®t-'()) : K°' —+ IC 

is self-adjoint on the left (let applyA : A ® -'(A ® -'B) —+ B be the unit of 

this adjunction), and 

. a natural transformation thunk: id z (,c ) —+ -i-i in Z(k) 

such that 

• apply is dinatural in A 

o thunk; force = id where force
(Lef 

 apply 1  : -- A —+ A 

• -'force =thunk-i 

def 
• letting apply = A 0 -'(A (9 force); applyA,  we have 

-'force = thunk-' 

thunk;-i-iapply = apply;thunk 

thunkAec  = A®thunkc ;A®-iapply;apply 

applyAeA, = ( 72,71) o -'(A 0 A'0 -iB); A'(& apply; applyAl 

The first of these four axioms establishes another link between forcing and 

thunking (in addition to the more familiar thunk; force = Id); the second states 

that the call-by-name application, unlike the call-by-value one, is effect-free; the 

other two are somewhat technical coherence conditions. 

Intuitively, dinaturality of the application map means that modifying the 

operand of a function application by a map f : A —+ A' is the same as modifying 

the operator by a corresponding continuation transformer. 

Al-(f 0-1) 
A®-'(A'®-'B)

-. 
	'A®-'(A(9-'B) 

	

f®_.(A1®B)1 	 apply 

	

A' o -, (A' ® -'B) 	
apply 

Dinaturality is rquired as a separate axiom, as it does not seem to follow from 

naturality (unlike in a Cartesian closed category). 

The universal property of the continuation functor can be expressed by the 

following diagrams (naturality and triangular identity for force.) 

force 	 —'force 

	

-i-i A 	' A 	-IA 	-i-i-iA 

JN 	[force 

force 

	

--B 	B 	 -'A 
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In addition to the usual thunk; force = Id, we have another axiom linking forcing 

and thunking. A consequence of this is the self- adj ointness on the right of the 

restriction of -i  to the centre, with unit thunk. 

	

thunk 	 thunk 
A 	-1 -A 	A 	A 

91 -thunk 

thunk 
B 	3- __1__1B 	 -A 

(where g is central.) In chapter 6 (figures 6.3 and 6.4), we will consider programs 

written in "compositional" style, that is, using sequential composition of functions 

and the programming analogues of thunk, -', ... (figures 1.12 and 1.13). We hope 

that the simple and quite symmetric categorical laws expressed by the above 

diagrams could facilitate reasoning about programs written in this style. 

4.3.3 Definition Given a cartesian closed category C (with strict products), and 

an object R of C we can define a 0--category K; as follows 

	

ObAC 	ObC 

	

IC(A,B) 	C(RB , RA) 

A ® (_) is given by the product A x (_) in C. The functor -, is R'-'. force 
def
= 

( \ 	 def 	 I 	 RA iR'-' and thunk = R'R-', where 71A : A —* R is the unit of the contin-

uation monad" on C. We call K; the standard model for C and R. 

Despite the apparent generality of this construction, we regard this as an 

overly specific approach that does not do justice to the full generality of CPS 

(compare section 2.6). It consists essentially of implementing CPS in simply-

typed )-calculus and then interpreting this in the usual fashion in a cartesian 

closed category. 

4.3.4 Remark In the category C, the functor [(_) —+ R] is self-adjoint on the 

right. The two isomorphic views of the continuation semantics category as a cat-

egory of continuation transformers and as the Kleisli category of the continuation 

monad are connected by the self-adjointness (i.e. its isomorphism of adjunction). 

C(A , RB) C(BRA) 

This is also the connection between the typings of the Plotkin-style (continuation 

last) and Fischer-style (continuation first) CPS transforms. On types, this gives 

the continuation monad view a —+ r = —* - i-rr, or the continuation transformer 

view a --+7-  = —+ -ia , respectively. 
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4.4 Some interdependencies of properties 

We write OA  for the isomorphism of adjunction for the self-adjointness on the left. 

This is an involution. OA : K(A (D -'B, C) —+ AC(A 0 -IC, B) 

QAf 1_-'f  A 0 —f; aPPlYA  
def 

For A = 1, we have 0 = 	JC(-ìB,C) —p ftC(-'C,B) with Of = -'f ;force. 

4.4.1 Remark Note that because of the finite product structure on the centre, 

each functor A 0 (_) comes equipped with a comonad structure, the unit being 

given by discarding, the multiplication by weakening. 

We can regard çi5A as essentially the same as q, but on the co-Kleisli category 

for the comonad A 0 (_) 

	

ObKA 	ObK 

	

KA(B,C) 	! K(A®B,C) 

For each A, K has its own "indexed negation" 'A,  defined as 

def 
'Af = cbA(A 0 force; f) 

This "indexed functor" point of view has some advantages. In particular, 

some of the axioms of an ®-i-category become more comprehensible: they were 

essentially reverse-engineered to make 'A  viable as an indexed functor. This issue 

will be addressed more fully in chapter 8 where we take the indexed category 

presentation as fundamental. 

4.4.2 Remark What is perhaps surprising about this definition is that we have 

made such strong assumptions about the centre. All central morphisms are 

deemed to be effect-free, so that they respect the product. While centrality is cer-

tainly necessary for effect-freeness, there is in general no reason to assume that it 

is sufficient. It appears to be the presence of first-class continuations, specifically 

the unit force, that that makes centrality such a strong property: if a morphism 

commutes with everything, it must commute with force, and that implies that it 

commutes with reification. Slightly more technically, if f : A —* B is central, 

then f 0 -'-i--'B; B 0 force = A 0 force; f 0 -'B. This implies the naturality of 

thunk, as 

f;thunk 

= A 0 thunk; A 0 -'( f 0 -i--i--'B; B (9 force; apply); apply 

= Aothunk;A0 -i(Ao force; f(9--iB;apply);apply 

= thunk;-i--if 
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4.4.3 Remark If a morphism f is thunkable in the sense that it makes the 

naturality square 
thunk 

A 	-,-iA 

thunk 
B 
	
-'-'B 

commute, then it respects binary products. 

f; (Id, Id) 

= f; (thunk; force, thunk; force) 

= f; thunk; (force, force) 

= thunk; —'--if;  (force, force) 

= (thunk; —i---if; force, thunk; —'—if;  force) 

= Ulf) 

4.4.4 Remark Instead of defining -, to have the centre as it codomain, we could 

have required the adjoint correspondence 

A® -'B —C 

A® --iC —B 
to be natural in A , as this implies that every morphism of the form -if is 
central. This property is perhaps more intuitive in terms of control flow: control 

manipulation concerning B and C does not affect a separate strand of control 

g:A—A'. 

4.4.5 Proposition Every negated morphism -'C 	-'B is central. 

PROOF Let B 	C and A ' A'. We need to show that 

A ® -'C 
AØf 

 A ® -'B 	A' ® -'B 

and 

A®-iC 

are the same morphism. Applying OA  to the first composite, we get 

çbA (A®-if;g(9-iB) 
= (IA(A 0 -if; gO -'B; idA'(DB) 
= 7fA(9(&B;idA'Ø-B);f 
= g®-'(A (&—iB),cbAi(IdAlØ,B),f 

For the second composite: 

OA (9 0 -'C; A' ®-'f) 
= çbA(g ® -'C; A' ® -if; id A ' (D -, B ) 
= g ® -'(A' ® -'B); cbA '(A' (& -if; idA' Ø B) 
= g® -'(A' ® -'B); q)A1(ldA1Ø,B); f 

76 



Because OA  is an isomorphism, this means that A®-if; g® -'B = g®-iC; A'® -'f. 
0 

4.4.6 Proposition 

A'®A® -'(A®A'®-iB) 

A®A'®-i(A®A'®-iB) 

A'(DAØ(AØforce) 
A'& A ® -i(A ® -i-i(A' ® -iB)) 

A ' OaPP'YA  

A' ® -(A' ® -iB) 

aPPIYAI 

applyA®AF 	
B 

could equivalently be expressed in terms of coherence for the indexed negation 

A'®A idAØA , ØB 
A'®A®-i(A®A'®B)

—' 
 

FAIIdAFØB 

A ® A' 0 - , (A 0 A'(& B) 
AØAhidAØAFøB 

4.5 )-abstraction in a ®-i-category 

Just as in the standard CPS transforms, function types a —+ r will be decomposed 

into continuations for arguments a and result continuations -'r. So instead of 

exponentials, we have a derived notion of arrow type 

[A-+B] 

The corresponding application map is the unit of the adjunction 

applyA :AO -i(A® --iB) 4 B 

In a cartesian closed category, we could define )-abstraction in terms of the 

right adjoint [A —f (_)] in A x (_) -1 [A —+ (_)} and the unit of adjunction (the 

curried pairing map) pair: C —p [A —p (A x C)] as \f g pair; [A—+ f]. The 

notion of ,\-abstraction that we have in the present setting can be defined in a 

way that is formally very similar, although we do not have cartesian closure. 

We define a pairing map as 

def 
pair = thunkc; -(A ® -i(A (& force); applyA) : C —+ i(A ® (A (9 C)) 

Note that of the two possible composites of the functors A 0 (_) and -, one 

is self-adjoint on the left, the other on the right. A 0 -(_) is self-adjoint on the 

left -'(A (9 (_)) restricted to the centre is self-adjoint on the right. 
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The pairing map then allows us to define (call-by-value) )-abstraction. 

);f 	pair; -(A ® -if) 

Although we may read apply and pair as having the types familiar from cartesian 

closed categories, that is 

apply : 

pair : C—[A-(A®C)] 

this is really a kind of secondary etymology, as in reality apply and pair are the 

unit/counit of negation functors A ® -(_) and -(A ® (_)), respectively. 

apply : A®-i(A®-iB)--B 

pair : 

4.5.1 Proposition The following two diagrams commute 

AØC 
Aøpair 

apply 

A®C 

pair 	
-'(A®-'(A®--'(A(9-'B))) 

id—( A O— B) 	 I(AØaPPIY) 

In the framework of premonoidal categories, a notion of call-by-value )-abstraction 

was proposed [Pow]. Formally, this is a mild variation on monoidal closure, re-

quiring not A 0 (_), but it composition with the inclusion of the centre to have 

a right adjoint, hence the name "central" closure. 

4.5.2 Proposition A 0--category is centrally closed, in the sense that 

t((_)(9A) H --i(A®--i()) 

where t: Z(k) -* K. In terms of equations: 

A®A(f);apply = f 

X(A 0 g; apply) = g 

)(AOg;f) = 

= 	f;h) 



where g is central. 

The fact that pair is not natural with respect to all morphisms is what makes the 

"protecting by a )." technique work in this setting. (It is really the precomposition 

with thunk that does the protecting.) 

4.5.3 Corollary The inclusion of the centre is left adjoint to double negation. 

1 -I --1 --1 

The isomorphism of adjunction is 

K(A,B) — Z(AC)(A,-'-'B) 

f 1-4 thunk;-i-f 

This is a categorical formulation of thunking as a form of reification, given 

here by f —* thunk; -i--if. 

4.5.4 Corollary AC is the Kleisli category for the monad -'-' on Z(AC). 

We nonetheless prefer to regard the category of computations AC as primary, rather 

than reifying everything and then running a Kleisli interpreter on top of it. 

4.5.5 Proposition The call-by-name application and abstraction satisfy the fol-

lowing: 

A® )t A
f;apply = f 

® A a PPY A) = 9 

Moreover, apply is itself central. 

It could appear as if we were somehow recovering a Cartesian closed category. 

But that is not really the case. Although the centre does have finite products, the 

centrally closed structure given by apply does not restrict to the centre, as apply 

is not itself central. Intuitively, this is because the application map is a jump 

with arguments, and jumps are too effectful to be central. So there is a trade-off 

of sorts: one can either have the products or the higher-order structure. 
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Chapter 5 

The CPS term model 

In this chapter, we build a term model of a ® -'-category from the syntax of 

(simply-typed) CPS calculus. This is analogous to the (standard) construction 

of a Cartesian closed category from simply-typed A-calculus (e.g. [Cro931). 

The CPS calculus is of course rather different in style from A-calculi, so instead 

of familiar structures like (Cartesian) closure, or its generalisation to other binding 

constructs as adjoints to reindexing 1,  we get self-adjointness as the algebraic 

manifestation of first-class jumping (hinted at in section 1.2.1 in the introduction). 

5.1 Building a category from CPS terms 

In this section we will attempt to isolate the crucial structure that makes con-

tinuation semantics work, gradually abstracting from the CPS calculus to arrive 

at a syntax free-presentation that will lead to a categorical semantics in the next 

section. 

The jumping and the binding construct of CPS calculus correspond to iden-

tities and composition in the term model. 

The self-adjointness on the left is responsible for various generalised jumps 

(which eliminates double-negations); while the self-adjointness on the right builds 

new places to jump to (which introduces a double negation). 

5.1.1 First-order structure 

In [App92], CPS terms are likened to the machine code of a von Neumann machine 

(as far as control is concerned). But as far as sequential composition is concerned, 

CPS terms are even more low-level than code, as they do not have a default or 

current continuation. The basic idea, then, is to ascribe meaning not to a CPS 

'Consider for instance the definitions of fl, >, V, 3 in a topos 
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term by itself, but to a CPS typing judgement that lists the free variables of the 

term, distinguishing one of them as the current continuation. 

The type environment part :b', k:— of a judgement ±:ô, k:—'f F- M gives 

each morphism [:ô, k:- F- M] a unique domain and codomain, as required. 

Conversely, if the domain 6 and codomain F are clear from the context, we can 

write more succinctly [k F- M]. 
Once a current continuation has been singled out in a judgement, there is a 

natural concept of sequential composition: 

def 
(in F- M]; [Wk F- NJ = [xk F- M{n()=N}] 

This has [xk F- k(±)] as its identity. 

Furthermore, we have product types (by concatenation); and although these 

are not categorical products, we do have projections 7ri  = [± k F- k()] as well 

as contraction J = [k F- k()]. 

Hence we have enough parallelism on types to accommodate multi-arity maps 

denoting program phrases of more than one free variable. Given the sequential 

nature of CPS, we would not expect genuine parallelism of morphisms (denoting 

terms) f 0g. 

Given two CPS judgements 

[±kF-M] 	[çhF- N] 

there are in general two different composites; we can run either M or N first. 

In each case, the term first to be evaluated has to carry along the free variables 

needed by the second judgement. If we run M first, this gives a judgement 

[xy7k' F- M{k()=k'(iT2)}] 

But implicit in this composition of M and N was the notion of "carrying along 

free variables". Considered on its own this is, for every object A, a functor A®() 

defined by 

A ® [xk F- M] 
del 

 [y7±k' F- M{k(z)_—k(y7z)}] 

Symmetrically, we have a functor (_) 0 A- 

5.1.2 Application as double negation elimination 

All the above are trivial terms in the sense that they jump to the current continu-

ation. A CPS judgement that does not do this is evidently [hk F- h(k)]. But this 

is just the identity [kh F- h(k)] with the argument and the current continuation 

interchanged. 
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More generally, given any [hk F- M} with a continuation parameter h, let 

lel 
çb[hk F-  M] = [khF- M] 

- extends to a functor. We can define it in terms of 0 and force as 

q(force; f). Concretely, this boils down to the following: 

-, [h F- M] 

= 	(force; [xh F- MJ) 

= /([kl F- k(1)]; [xh F- M]) 

= cb[kh F- k(1)f1(Y)=M}] 

= [hk F- k(l){1(ri)=M}] 

The switching operation does not interfere with any other names ±' in the 

environment, that is, a judgement [xhk F- M] can be switched to yield [xkh F- M]. 

And this is natural. 

This switching operation is quite unfamiliar from direct-style programming, 

but used on identities, projections and contraction it gives rise to some of the most 

important idioms that we need for the interpretation of A-calculus with control. 

force switching argument h and current continuation k in the identity [hk F- k(h)] 

gives 

force: [kh F- k(h)] : -i--iA —+ A 

apply switching argument f and current continuation k in the identity gives 

apply: [x7k F- f (xk)] : A ® -(A ® - ,B) - B 

throw switching h argument and current continuation k in the projection 71  

[xhk F- k()] gives 

throw = [Thk F- k(f)] : A ® -A -4 B 

callcc switching argument k and current continuation f in [kf F- f(kk)] gives 

[1k F- f(kk)] : -'(- IA ® - iA) —* A 

Note that the clauses for application, throw and callcc in figure 3.1.1 consist 

essentially of composing with one of these constants, while force is essentially the 

denotation of a free variable in call-by-name. 
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5.1.3 Thunking as double negation introduction 

The units of the self- adj ointness on the right wrap their argument into a thunk. 

thunk = [xk I- h(f){f(h)=h(x)}J 

pair = [±k F- h(f){f(?7h)=h(7x)}J 

5.2 The 0-i term model 

5.2.1 Definition The category K(CPS) is constructed as follows. Objects are 

sequences f of types. A morphism from 6 to TF is an equivalence class [f:6, k:-v F- 

M] of judgements, where 	k:-i F- M and Y': 6' , k':-'r F- M' are equivalent if 

M = M'[f"k' '- ±k] 

is derivable. 

ObK(CPS) = {r1  .. . 	r is a CPS type expression} 
AC(CPS)(,) = {[f:ê,k : 	HM]I:a,k: -' F-Misderivable) 

Identities and composition correspond to the two term-forming rules of CPS 

calculus. 

Id a = 
n:-' F- M]; [ç:, h:-' F- M] = [, h:f F- M{m(y?)=N}] 

The structure on morphisms is given as follows: 

h:-'r F- M] = [h:-ir, k:-, -iö F- k(f){f(x)=M}] 

	

[:ôi ,k:-F- M]®a2  = 	 F- M{k(z)=h(iyi)}] 

	

ä ®[ 2 ,k:-'F- M] = 	, 2 ,h:-i( 1 ) F- M{k(z)=h(yz')}] 
appIy 	= 	f:-i(6, -vt), k:-f F- f(xk)] 

	

thunkq  = 	k:-'--'-i F- k(f){f(h)h(5)}] 

5.2.2 Remark We should point out that focussing on the term model is not 

really a restriction to syntactic, as opposed to semantic models. 

Consider the definition of the premonoidal structure on the category of con-

tinuation transformers on a Cartesian closed category, where a morphism is of 

the following form: 

It would be easy to say that C(9 4D is given by virtue of the functor (_) C  and the 

evident isomorphims 

RCXA (R 	(R(R 	RCXB 
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As soon as definitions become more complicated, that style becomes hopeless and 

one needs to adopt a more systematic approach by using the internal langauge 

of the Cartesian closed category, that is simply-typed A-calculus with products 

and a constant for every morphism in the category. Then we can write the 

definition more concisely and rigorously as: 

C® 
def 
 ftk : RCXA I-A(c,a) : C 	A.'1(Ab.k(c,b))a : RI 

Up to ordering of variables, this is essentially the definition in the CPS term 

model, with CPS specialised to the A-calculus. Moreover, the axioms of the CPS 

calculus are sound for the translation to A-calculus, hence proofs are translated 

to proofs about (the internal language of) Cartesian closed categories. 

Reasoning within the CPS term model is thus similar to using the internal 

language of a Cartesian closed category or the internal logic of a topos instaed of 

doing diagram chases. 

5.2.3 Proposition K(CPS) as defined in Definition 5.2.1 is in fact a category. 

PROOF 

id is the identity 
id; [h I- N] 

= [fn H n(Y)J; [c/i i- N] 
= [f/i I- n(f)fn(77)=N}] 
= [fhHN[->f]] 

= [c/iF-N] 

[fn F- M]; Id 
= [in HM];[çhHh(y1)] 
= [f/i I- M{n(y1)=h(y1)}] 
= [fhl-M[ni-+h]] 
= [fnl-M] 

• composition is associative 

([fmHL];[77nHM]);[kHN] 
= [fn I- L{m(y1)=M}]; [zk F- N] 
= [fk I- L{m(y)=M}{n(2)=N}] 
= [fk H L{n(zN}{m(y)=M{n(z')=M}}] 
= [fk H L{rn(y1)=M{n(z)=M}}] 
= [fmHL];([?7nH MI; [kHNJ) 

U 

5.2.4 Lemma A morphism [fk H M] is central if for all N with Z V FV(N), 

i5FV(M) 

M{k(z)=N{h(?i5)=1(i)}} = N{h('iiJ)=M{k(z)=l(iuii)}} 



PROOF Let f = [xk F- M] : A -+ A' be central. Then for all g = [yTh F- N] 

B—B',f®B;A'®g=A®g;f®B'. 

f®B;A'®g 

= [Tl F- 

A g; f OB I 
 

0 

For instance, the identity [k F- k(x)] is central, but force = [hk F- h(k)] is not: 

take M = x(k) and N = y(h). 

5.2.5 Lemma If a morphism f is central, then thunk; -' --if = f; thunk. 

PROOF If f = [k F- M] is central, then by Lemma 5.2.4, 

M{k(y)=h(f){f(1)=z(91)}} = h(f){f(1)=M{k(y?)=z(i1)}} 

Hence, applying {z(ff1)=1(y1)}, we have 

M{k(y1)=h(f) {J(1)=z(1) }}{z(771)=1(yi) } 

= h(f){f(1)=M{k(yT)=z(il)}}{z(f/1)=l(y)} 

And this simplifies to 

M{k(ff)=h(f){f(1)=1(y)}} = h(f){f(k)=M} 	 (5.1) 

Now 

-'-if 

= 
= -'[kp F- p(g){g(±)=M}] 

= [ph F- h(f){f(k)=p(g){g(x)=M}}] 

thunk; ---,f 

= [xn F- n(p){p(k)=k(i)}]; [ph F- h(f){f(k)=p(g){g()=M}}] 

= [xh F- n(p){p(k)=k(x)}{n(p)=h(f){f(k)—p(g) {g()=M}}}] 
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= [±h H h(f){f(k)=p(g) {g(x)=M}}{p(k)=k()}] 

= [h I- h(f){f(k)=g(){g()=M}}] 

= [±h H h(f){f(k)=M}] 

f; thunk 

= [k I- M]; [h I- h(f){f(l)=1(y)}] 

= [±'h H M{k(y=h(f){f(1)=l(y)}}1 

So by (5. 1), thunk; -'-if = f; thunk. 

This implies that thunk is a natural transformation in the centre. 

5.2.6 Remark The isomorphism of adjunction of the self-adjointness on the 

right is a map : hom(A, -iB) -+ hom(B, -A) defined by 

b[k H M] = [ilh I- k(f){f()=M{k(1)=1(y7)}}] 

This is an involution when restricted to central morphisms; for general morphisms, 

it is not quite an involution: 

"[k I- M] = [k H k(g){g(y)=M{k(l)=1(y)}}] 

Consider x= a and M = a(k). 

5.2.7 Proposition The centre of K(CPS) has finite products: 0 together with 

the evident projections 
def 	.. 

In = [x 1 x 2 kHk(x)] 

is a product in the centre of K(CPS); and the empty sequence together with 

evident morphism [k H kØ] is a terminal object in the centre. 

PROOF For f = [ k H Mi l, let 

def 
(fi, f) = {xh I- M 1 {k 1 (T1 )=M2 {k 2 (7j2 )=h(7j1 172 )}}]. 

(71, 72) 

= ([Il k, H k 1 (f 1 )], [ 2 k 2  H k2(Y2)1) 

= [ 12 h H 

= [ 12 hHh( 12 )] 

=id 
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Note that central morphisms can be copied and discarded because the corre-

sponding thunks can. This is the key to the proof, the remainder being routine 

manipulations of the definition of ( ). Let [k I- M] be central. Then 

M{k(y1)=h(f){f(l)=1(y1)}} = h(f){f(k)=M} 

Therefore 

M{k(y)=IØ} 

= M{k(y)=h(f){f(k)=k(y)}}{h(f)=IØ} 

= h(f){f(k)=M}{h(f)=IØ} 

= IØ{f(k)=M} 

=10 

Similarly, we have 

M{k(y)=1(yyt)} 
= M{k(jj)=p(y7) {p(?7i)=q(y) {q(:V2) =l(th2)}}} 
= M{k(y)=f(){p( 1 )=f(q){q(y72)=1(7i j2 )}}{f(r)=r(yi)}} 
= 
= h(f){f(k)=M}{h(f)=f(p){p(7j 1 )=f(q) {q(72 )=1(ç12)}}} 
= f(p){p(77i)=f(q){q(ç2)=l(fj12)}}{f(k)=M} 
= M{k(71 )=M{k(g2 )=1( 1 g2 )}} 

This means that, for a central morphism g, we have g; (Id, Id) = (g, g). Let 

g:A—*B and f:B--->.C. Then 

g; (fl, 12) 

= g;(id,id);B0f2 ;Ci ®f2  

= (id,id);A®g;g®B;B®f 2 ;fi ®C2  

= (id,id);A®g;A®f 2 ;g®C2 ;fi ®C2  

= (Id, Id); A® (g; f2);  (g; 1') ® C2  

= (g; fl, g;f2) 

Similarly, for central gi , (gi, g); 7rj = 9j 	 EJ 

5.2.8 Lemma A morphism f : A -+ -A' is central if f is of the form 

[±k F- k(f){f(y1)=M'}] 

with k V FV(M'). 



PROOF Let N = b(h) with b and h fresh. Because [fk I- M] is central, 

M{k(a)=b(h){h(y7)=l(ayi)}} = b(h){h(y)=M{k(a)=l(ayi)}} 

Applying (_){l(a7)=a(y)} to both sides, we get 

M{k(a)=b(h) {h(y1)=l(ay) }}{l(ayi)=a(y) } 

= b(h) {h(y=M{k(a)=l(ay)}}{l(ay)=a(y)} 

Simplifying this yields 

M[k '- b] = b(h){h(y)=M{k(a)=a(y1)}} 

Hence 

f 

= [kF- M] 

= [fbHM[k4b]] 

= [b I- b(h){h(y)=M{k(a)=a(y)}}] 

[±b I- b(h){h(y)=M'}] 

for M' = M{k(a)=a(yi)} and b V FV(M'), as b is fresh. 	 0 

5.2.9 Definition (Trivial CPS term) A CPS term is called trivial in k if it 

is of the form 

k(p 1  . . 	 {Pjm(jm)Mjm} 

with k V FV(1/!). 	 ç {1,...,n}) 

5.2.10 Proposition Suppose that there are no base types in CPS calculus. Then 

a morphism f : A -+ B in K(CPS) is central if f = [k F- M] such that M is 

trivial in k. 

This means we can find a trivial representative for the equivalence class, not 

that all representatives are of this form (one could simply expand a redex). For 

instance, 

id = [k I- k()] = [k I- n(h){h(k)=k(x)}{n(h)=h(k)}] = thunk; force 

PROOF By cases on B. If B = -"i- , apply lemma 5.2.8. Otherwise, B = TOT, . . . 

and we proceed by induction on n. Since B is a sequence of type expressions, we 

split off the first one, which must be of the form -r o  = -iu. Apply the induction 



hypothesis to f; 72 : A -4 r, . . . r. By lemma 5.2.8, f; 7t1 : A -4 T0 = 

defined as 

f; it, = ['tiih I- M{k(py)=h(p)}] 

must be of the form 

f; it, = [zih H h(p){p(±)=M'}I 

As! is central, f = (f;iri ,f;ir2 ). Then 

(1; irk,  1; ira ) 

= 	['üik I- M{k(p=h(p){h(p)=M{k(q2)=k(p2)}}}] 

= 	['9k I- M{k(py)=h(p)}{h(p)=M{k(qz')=k(pz)}}] 

= 	[ziik I- h(p) {p()=M'}{h(p)=M{k(qE)=k(pz)}}] 

= 	[ulk I- M{k(qz)=k(pz)}{p()=M'}} 

= 	[ulk I- k(pp, .. . {Pjm(jm)Mjm}{P()M'}] 

5.2.11 Conjecture We conjecture that respecting the finite product structure 

can be characteried syntactically by the occurrence of the current continuation. 

A morphism in K(CPS) is cancellable if it is of the form 

[k F- k(p 1  . . . p1){n,(7,)=N,} . . . {i2mWm)Nm}] 

A morphism in ,AC(CPS) is copyable if it is of the form 

[k F- q(p, . . . p1){n,(ffi)=N,}... {flmWm)Nm}] 

with k V FV(NJ ). 

5.2.12 Proposition K(CPS) is a ®-'-category. 

I.i.1 Id  

. 	is functorial: - preserves identities 

-'id 
= -[±hHh()] 
= [hk I- k(f){f()=h(f)}] 
= [hk F- k(h)] 
= id 



-1 preserves composition 

-'[il/i I- N]; -'[in F M] 
= [hk' F k'(n){n(y)=N}]; [nk I- k(m){m()=M}] 
= [hk I- k'(n){n(y)=N}{k'(n)=k(m){m(f)=M}}] 
= [hk F k(m){m(f)=M{ri(y1)=N}}] 
= -[h F M{n(y)=N}] 
= -([nI-M];[77hFNJ) 

• 	1C(A ® -'B, C) 	K(A ® -iC, B) is natural in B and C, i.e. OA  (A ® 
—ig;f)=çb(f;g) 

(o(9 -[y7h' F- N]);cbe[±kn FM] 
= 	® [hk' F- k'(n){n(yt)=N}]; [±nk I- M] 
= [±hh' F- k'(n){n(y)=N}{k'(n)=h'(±n)}]; [xnh F- M] 
= [±'hk F k'(n){n(y)=N}{k'(n)=h'(fn)}{h'(xn)=M}] 
= [hk F h'(n){n(yi)=N}{h'(n)=M}] 
= [hk F M{n(y)=N}] 
= cbe [±kh F M{n(y)=N}] 
= ç& ([xkn F M]; [çh F N]) 

• 	IC (A 0 -iB, C) 	J'C(A ® -'C, B) is natural in A, i.e. cbAl(g 0 -'B; f) = 

g®-'C;q A (f) 

Oa! ([±n F M] 0 -'jf; [yhk F N]) 
= q ([Thn' F M{n(y7)_—n'(yh)}]; [yhk F N]) 
= q[xhk F M{n(y)=n'(ilh)}{n'(ch)=N}] 
= [±kh F M{n(y1)=N}] 

[xkh F M{n(y1)=n'(çk) }{n'(çk)=N}] 
= [xkn' F M{n(y)=n'(ilk)}];  [ykh I- N] 
= [xn F M] ® —'p; cbe [Uhk F N] 

• (—) ® ó is functorial 

id 1  ®U2 

= [±kHk()]®o 
= [h F k(±){k(2)=h(2y)}] 
= [ih F (h())[-* ±]] 
= [ThFh(±yi)] 
= id 152  
= id 1®2  

([nFM]; [Wk F NJ) ® 
= [±k F M{n(y)=N}J 0 
= [iJh F M{n(y)=N}{k(z)=h(iJ)}] 
= [i5h F 
= [i5h F M{n(y)=N{k(z)=h(iii)}}] 
= [iik F 
= [i5n' F M{n(yi)=n'(iY)}]; [ilüih  F N{k(z)=h(iil)}] 
= [nFM]®Y;[kFM]Ø 
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Analogously for 6 ® (-). 

In [Fi1891, a different notion of value was proposed: a morphism f : A —+ B 

is called total if it can be discarded in the sense that A —+ B —* 1 = A —+ 1. 

This is plausible insofar as jumps cannot be discarded, so that by excluding jumps 

one might hope to isolate those program phrases that do not have control effects. 

5.2.13 Proposition ® is not a product in the subcategory of total morphisms. 

PROOF The following morphism twicecc is total (but not central). twicecc does 

not respect ®. 

twicecc 
def  = [±hk F- k(1){1=k(7h)}] : A ® -'A —* A 0 -iA 

Informally, in terms of continuation transformers, twicecc could be read as "k -4 

k o V. 

This is total, because twicecc; [tYk F- kØ] = [xk F- kØ] However, twicecc is not a 

value: it is too effectful to be copyable, in that twicecc; (Id, Id) =A (twicecc, twicecc) 

can be distinguished by ; [zcfz'c'gr F- f(zq){q(w)=g(wc)}]. 

The two composites are "h3" as distinct from "h4", that is, 

[fahk H 

[ahk F- h(q){q)=h(tiq){q(i5)=h(üiq){q(uii)=h(üJa)}}}] 

We omit the calculations here; this counterexample will be discussed in Chap- 

ter 6, where we demonstrate experimentally, by exhibiting programs, that twicecc 

cannot be copied. 

5.3 The indexed term model 

We have mentioned in remark 4.4.1 during the discussion of ® -'-categories that 

it may be helpful to think about negation as indexed. 

As this chapter establishes the connection between CPS calculus and cate-

gories, we now sketch how this indexed viewpoint is related to a two-zone CPS 

calculus (see remark 2.4.3), in which operations such as negation affect only a 

subset of the environment. We arrive at an indexed category as a term model of 

the alternative (indexed) view of ®-'-categories to be developed in chapter 8. 

We define the equivalence of judgements as follows: 	k:-' H M and 

k':-J' H M' are equivalent if 

M = M'[±k' i-f ±k] 
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is derivable from the axioms of CPS calculus. 

The indexed category H : C° —* Cat is defined as follows 

the objects of C and all the fibres HC are sequnces of CPS type expressions 

the product of objects in C is given by concatenation of sequences 

• a morphism from ê to F in the base category C is an equivalence class of 

trivial judgements 

17: öt,q : -f F- q(pi .. .p){p 1 (f 1 ) =Mil  } ... {Pjm(fjm)=Mjm} 

a morphism from F1  to in H6 is an equivalence class of judgements 

: ê; f: F1 , k: -,,F2 F- M 

. the structure on the fibres is given as follows 

	

id 	[;fkF-k(f)] 

	

[; fn F- M]; [; 17k F- N] 	[1; fk F- M{n()=N}] 

C*[i;  77k F- M] 
def 

 = [zx; Wk F- M] 
de 

L[if; i5k F- M] =
f 
 [1; fiiik

/ F- M{k()=k'(fy)}} 

'cc[f;ti5kF- 	
def

M] 	= 	[;fi5kF-M] 

def 

	

fk F- M] 	[; kh F- h(f){f(f)=M}] 
def 

	

force 	= 	[z; hk F- h(k)] 

• Reindexing on f along h: for f = [f/c F- M] and 

h = [17q F- q(pi  . . .p){p 1 (f 1 )=M 1 } . . { Pjm(fjm)=Mjm}] 

let 
def 

Hh(f) = [Wk F- M{p 1 (f 1 )=M 1 } . . . { Pjm(fjm)Mjm}] 

5.4 Recursion in CPS 

We can define a term model K(REcCPS) of a ®-i-category analogously to defi-

nition 5.2.1, but using the recursive CPS calculus. 
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Recursion plays no part in any of the categorical structure of a 0--category, 

but we may ask what additional categorical structure it gives rise to. As a first 

step towards an answer to that, we sketch how a looping operator could be intro-

duced categorically as a dinatural transformation. To some extent, this amount 

to a categorical account of "recursion from iteration" [Fil94a]. 

f. Ax. Mf(k) 
de 

 ! k(f){f(±h)=JMflh)} 

A looping operator on a 0--category K is a dinatural transformation 

fixA : K1(A ® (_), (_)) 	ZIC(A, 

XA,C 

	

IC (A ® C, C) 	
fi 	

Z)C(A, -'C) 
AC) 

(A 0 B, C) 	 ZK(A, -iC) 

Kg 	
f_ 
	 g) 

XA,B 

	

® B, B) 	ZK(A, -B) 

For A®B 1  >C and C 9 B 

f1x(f;9); -19 = fixA (A®g;f) 

5.4.1 Proposition In IC = ,AC(REcCPS), there is a looping operator 

fixA IC (A 0 (_), (_)) 	Z(K)(A, 

given as follows 

def 
fix jr[: F, j: 6 , k: -'ê F- M] 	[: F, h: -'-'s F- h(k){k(y=M}] 

def 	_. _. _. 	 def 
PROOF Let f = [x r, yn F- M] and g = [zk I- N]. Then 

fix f (f; g); g 

= fix 74q F- h(k){k(yi)=M{n(z=N}}]; [kq F- q(f){f(z=N}] 

= [q I- h(k){k( 	M{n(i)=N}}{h(k)=q(f) {f (?=N}}] 

= [q H 	 (zj  

fix(® g; f) 

= fix[fn H N{k(y=M}] 

= [q H q(n){n(z=N{k(y=M}}] 
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. 

Our notion of equality for the recurive CPS calculus in not quite strong enough 

without some induction principle allowing us to conclude that 

(zl 	= q(n){n(z=N{k()=M}} 

as required for the dinaturality. Alternatively, we could construct the term model 

from term modulo observational congruence 2.3.2. We conjecture that for this 

notion of equality the dinnaturality would follow, i.e.: 

(zl 	q(n){n(i=N{k(y=M}} 

5.4.1 Recursion from iteration 

The point of having a looping construct for recursively-defined continuations is 

that, given our decomposition of functions into special continuations, it is exactly 

what is needed for recursively-defined functions. The link is established by the 

self- adj ointness (on the left). 

If M is the body of a recursively defined function f : a -* r in the environment 

F, we have a judgement F, x : a, f : (a -+ r) I- M : T whose denotation is a 

morphism 

E[F1 ® I[iJ ® 'U[11 0 -iftyjj) -* lIi 

applying the isomorphism of adjunction q" yields a morphism 

lefrl (E[MU : ftFfl 0 ftaJ 0 frfl - afl (9  -iftrfl 

and looping this gives a morphism 

ftFfl - -i(ftafl ® - 'frll) 

which is the denotation 

jif. Ax. M]J : ftF} -+ E[a - 

This can be seen as a categorical distillation of Filinski's "Recursion from itera-

tion" [Fil94a], where 0 was called a "context-switch". 



Chapter 6 

Effects in the presence of first-class 
continuations 

In this chapter, we demonstrate that first-class continuations give rise to strong 

and rather subtle effects. First of all, this is an illustration and validation of our 

categorical semantics. The issue that we wish to clarify and give support to is 

our choice of the subcategory of effect-free computations. 

While semantic considerations form the backdrop, it is also possible to read 

this chapter as an exploration of a simple idea: that the current continuation can 

be used twice. Once it is established that this can indeed be done, essentially the 

same idea leads to counterexamples to at least three separate conjectures: 

• Andrzej Filinski's view of the total morphisms as effect-free 

The idempotency hypothesis of Andrzej Filinski and Amr Sabry 

• The decomposition of force (Felleisen's C-operator), attempted by James 

Laird 

Put more positvely, this shows that callcc is very expressive (in the sense of 

[Fe191]). The examples here seem to indicate that, intuitively or "morally", first-

class continuations ought to be grouped together with state among the strong 

computational effects and not with much weaker effects like divergence. 

Preliminaries 

We make use of the categorical combinators that were defined in figure 1.12 on 

page 19 and figure 1.13 on page 20 for ML and Scheme, respectively. 

We need to make a distinction between jumps in which the value thrown is 

not itself of continuation (or function) type, as in a plain goto like throw k 0, 

and the unrestricted jumps afforded by callcc. We call the former first-order 

jump or exit, and the latter first-class jump. 

95 



6.1 Using the current continuation twice 

One way of thinking about the denotations of terms in the presence of first-

class continuations is as "continuation transformers" transforming a continuation 

for their codomain backwards into a continuation for their domain, by analogy 

with predicate transformers transforming postconditions into preconditions. At 

first sight this appears to be dual to the usual functional way of thinking about 

denotations as transforming a value (of the type given by the domain of the 

denotation) forward into a result (of the type given by the codomain). However, 

this is not really a duality, because, although each value transformer gives rise to a 

continuation transformer by precomposition, not every continuation transformer 

arises this way. Non-standard manipulations of the control flow, as by control 

operators, do not simple apply the current continuation to a result. For instance, 

a jump typically ignores the current continuation. (Strictly speaking, this applies 

only to first-order jumps that do not pass the current continuation as an argument 

the way force does.) But there are other ways, apart from applying it or ignoring 

it, of transforming the current continuation: such as using it twice. 

The identification of functions with certain continuations cuts both ways: not 

only can we reduce functions to continuations; we may also regard continuations 

of the appropriate type as functions and treat them accordingly. 

In the context of the present discussion, this means that we can regard a 

computation of type 

'la * 'la cant -> 'la * 'ía cont 

viewed (on the meta-level) as a continuation transformer 

('la * 'la cant) cant -> ('la * 'ía cant) cant 

as just a "function transformer" mapping the function space 'ía -> 'a into itself. 

A fairly obvious candidate for such a function transformer is the function twice 

f -*fof. 

This continuation transformer counterpart of twice, while not representing a 

jump (ignoring the current continuation), is still a non-standard control manipu-

lation, as it is different from applying the current continuation to a result. 

6.1.1 Writing twicecc compositionally 

We have two alternative ways of writing twicecc. We can take the CPS term 

k(l){1(y)=k(77h)} 
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fun twicecc (n,h) = callcc(fn k => 
(ft n => throw k (n,h)) 
(callcc(fn q => throw k (n,q)))); 

twicecc : 'la * 'la cont -> 'la * 'la cont; 

Figure 6.1: twicecc in continuation-grabbing style (NJ-SML) 

(define twicecc 
(lambda (1) 

(call/cc (lambda (f) 
((lambda (n) 

(f (list n (cadr 1)))) 
(call/cc (lambda (q) 

(f (list (car 1) q))))))))) 

Figure 6.2: twicecc in continuation-grabbing style (Scheme) 

fun twice f = f o f; 

twice : ('a -> 'a) -> ('a -> 'a); 

fun twicecc a = (phi(funtocont o twice o conttofun) o thunk) a; 

twicecc : 	'la * 'la cont -> 'la * 'la cont; 

Figure 6.3: twicecc in compositional style (NJ-SML) 

(define (twice f) 
(compose f f)) 

(define twicecc 
(compose 
(phi 
(compose fun-to-cont twice cont-to-fun)) 

thunk)) 

Figure 6.4: twicecc in compositional style (Scheme) 
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and do a continuation-grabbing style transform (see definition 2.6.8 on page 41) 

to arrive at an ML (and similarly, Scheme) program (figures 6.1 and 6.2). 

This amounts to writing a continuation-passing style function composition in 

the source language (ML or Scheme), bypassing its control structure in favour 

of explicit jumps and continuation bindings. Although this method provides a 

practical use for continuation-grabbing style, it is somewhat rough and ready, 

in that it is a functional analogue of spaghetti coding and makes it harder for 

the compiler to supply useful type information for those subterms that are non-

returning. 

Informally, we could paraphrase figures 6.1 and 6.2 as follows. The current 

continuation is seized by a callcc. It is then treated as a function by being 

composed with itself. This composition, though, is done in the style of CPS. 

That is to say, it the continuation treated as a function is invoked twice, each time 

with an argument and a result continuation. Composition is achieved by making 

the result continuation of the first invocation to be evaluated (textually this is 

the second one) refer to the place where the second one expects its argument. 

This is done by the inner callcc seizing the A in the operator position as its 

continuation. 

A more structured approach would be to start with the familiar function 
def 

twice = ) f.fof 

twice: [A — A] —* [A - A] 

which up to coercion is a map 

-(A ® -A) —* -(A (9 -A) 

Negating this and and composing with thunk and force yields 

A® -iA —* -i-i(A®-iA) --i-i(A®-A) —AØ -iA 

And this is what we do in figures 6.3 and 6.4, using the categorical combina-

tors from figures 1.12 and 1.13. twicecc becomes a one-liner in ML, consisting 

mainly of function composition (with a i-redex to prevent non-generic weak type 

variable). 

As a first illustration of what twicecc does, consider the following example 

in ML: 

callcc(fn k => 

(fn (n, h) => throw h (n+1)) 

(twicecc (0, k))); 

(* val it = 2 : mt *) 



Here the continuation of twicecc could be phrased as "pass the first argument 

incremented by one to the second argument". The continuation that twicecc 

supplies to its arguments, then, is twice that; hence 0 is incremented twice before 

finally being passed to the (top-level) continuation supplied by the surrounding 

call cc. 

6.2 Copying and discarding 

The fact that twicecc is total in the sense of discardable is corroborated by 

considering its composite with a function that discards its argument. 

fun bang - = 0; 

bang : 'ía —> unit; 

fun discardtester testee = 

callcc(fn k => ((fn - => 42) o testee)(0,k)); 

We demonstrate the fact that twice cc is not copyable (see proposition 5.2.13) 

by counterexample. 

Copying twicecc (using copy_twicecc) and attempting to copy its result 

after it has been run (using twicecc...copy produce different results: 

— distinguisher copy_twicecc; 

val it = 3 : mt 

— distinguisher twicecc_copy; 

val it = 4 : mt 

The context that can distinguish copy_twicecc and twicecc_copy, abstracted 

as distinguisher above, could be visualised as follows. 

inc 	
n f 	 g 

We can show similarly that force is not copyable either (figures 6.2 and 6.8). 

force is in some sense maximally effectful: it is a jump, but as it passes the 

current continuation as an argument, it is more sensitive than an ordinary jump, 

which is oblivious to its current continuation. 

The distinguishing context to show that force is not copyable is built us-

ing the one for twicecc. Roughly speaking, (force, force) will behave like 

(twicecc,twicecc) when each occurrence of force is given a separate copy of 

twicecc wrapped in a thunk. 
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fun copy_twicecc x = (twicecc x, twicecc x); 

fun twicecc_copy x = (fn y => (y,y)) (twicecc x); 

fun distinguisher testee = 
callcc(fn k => 

(fn (((n,h),f),(_,g)) => 
throw h (conttofun f (conttofun g n))) 
(testee ((O,k),funtocont (fn n => n+1)))); 

Figure 6.5: Effectfulness of twicecc. Copying a computation, copying its result 
and a context to distinguish them (NJ-SML) 

(define copy-twicecc 
(lambda (1) 

(list (twicecc 1) (twicecc 1)))) 

(define twicecc-copy 
(lambda (1) 

((lambda (y) (list y y)) 
(twicecc 1)))) 

(define distinguisher 
(lambda (testee) 

(call/cc (lambda (k) 
((lambda (1) 

((cadaar 1) 
((cont-to-fun (cadadr 1)) 
((cont-to-fun (cadar 1)) 
(caaar 1))))) 

(testee 
(list (list 0 k) 

(fun-to-cont 
(lambda (n) (+ n i)))))))))) 

Figure 6.6: Effectfulness of twicecc. Copying a computation, copying its result 
and a context to distinguish them (Scheme) 
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fun copyforce h = (force h, force h); 

fun forcecopy h = (ft a => (a,a)) (force h); 

fun distinguisher2 f= distinguisher (f o (delay twicecc)); 

Figure 6.7: force is not copyable (NJ-SML) 

(define copy-force 
(lambda (h) 

(list (call/cc h) (call/cc h)))) 

(define force-copy 
(lambda (h) 

((lambda (y) (list y y)) 
(call/cc h)))) 

(define (distinguisher2 testee) 
(distinguisher 
(compose 
testee 
(negate (negate twicecc)) 
thunk))) 

Figure 6.8: force = call/cc is not copyable (Scheme) 
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6.2.1 twicecc is not thunkable 

This also provides an example for the fact that twicecc is not thunkable in the 

sense that composing with thunk does not succeed in wrapping the computation 

of twicecc into a thunk. Hence the following simple-minded attempt to define 

the distinguishing context for the non-copyability of force does not work: 

fun forcecopytesterwrong f = 

distinguisher (f o (pseudodelay twicecc)); 

Because forcecopytesterwrong cannot pass twicecc to each occurrence of 

force, both tests evaluate to the same value, 4. 

- forcecopytesterwrong copyforce; 

val it = 4 : mt 

- forcecopytesterwrong forcecopy; 

val it = 4 : mt 

A proper distinguishing context uses the delaying idiom, which negates twice cc 

fun forcecopytester f = 

distinguisher (f o (delay twicecc)); 

Now the non-copyablity of force manifests itself in the same way as for twicecc 

- forcecopytester copyforce; 

val it = 3 : mt 

- forcecopytester forcecopy; 

val it = 4 : mt 

6.2.2 Cancellable and copyable are orthogonal 

Considering that values are copyable and discardable whereas jumps (throw) are 

copyable but not discardable, we can summarise that copyable and discardable 

are orthogonal. 

While it is evident that values can be discarded and jumps cannot, the right 

column was previously thought to be unoccupied, in that Filinski [Fi189] thought 

that cancellability, separating the top from the bottom row, was sufficient for 

separating value from all effects. 

I 	 II copyable  I not copyable I 
discardable x 	)x.M twicecc a 

not discardable throw k 42 force h 
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A corollary of this table is that a first-order jump like throw 42 is not max-

imally effectful. When it comes to being effectful, it is self-defeating in that it 

forgets the current continuation. This implies that is it copyable, because one 

jump (Ax. (x, x)) (throw k 42) is as good as two (throw k 42, throw k 42), because 

the first jump will ignore it continuation containing the second jump, so that it 

does not matter whether the latter is present or not. The quintessential first-class 

jump force, by contrast, is not oblivious to its continuation, as this is passed as 

an argument. This makes force sufficiently sensitive to its continuation to resist 

copying. 

6.2.3 First-class control is not an idempotent effect 

distinguisher also gives us a counterexample to the conjecture, due to Andrzej 

Filinski and Amr Sabry, that control is an idempotent effect; thanks to Andrzej 

Filinski for pointing this out to me. [Andrzej Filinski, personal communication]. 

The idempotency conjecture holds that x.(x, x))M should be indistinguish-

able from (M, M) 
The conjecture could be perhaps be supported by informal arguments about 

first-order jumps. We have mentioned that these can be copied essentially because 

they are oblivious to their continuation, so that it does not matter if another jump 

follows. Hence the idempotency could be defended for values, as well as for first-

order jumps. What it fails to take into account are terms that do not simply 

pass something to the current continuation, but do not ignore it either. There 

seems to be an assumption of a kind of excluded middle here, along the line of: 

functions in continuations semantics can return a value or else they are got o's. 

As witnessed by twicecc, first-class continuations are more subtle than that. 

Continuations of the appropriate type can be used just as ordinary function de-

clared with a fun or define. 

To refute the idempotency hypothesis, we once again use distinguisher and 

twice cc: 

distinguisher (fn x => (fn y => (y,y)) (twicecc x)); 

distinguisher (fn x => (fn a => (fn b => (a,b)) 

(twicecc x)) (twicecc x)); 

To the extent that that such ideological conclusions can be drawn from this 

example, we should like to argue that it is misleading to think of first-class control 

as a form of non-termination due to jumping. 
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6.3 Centrality and effect-freeness 

Having demonstrated in section 6.2 that discardable morphisms are too permissive 

a notion to be a suitable characterization of effect-free computation, we now try 

to add some plausibility to the claim that centrality in the presence of first-class 

continuations is a suitable notion. 

We mentioned in remark 4.4.2 that it is due to the self-adjointness that cen-

trality can be assumed to imply effect-freeness. There is some room for misun-

derstanding here, as there is a different, but weaker, argument for such an impli-

cation. We hope to clarify the connection between centrality and effect-freeness 

in the presence of first-class continuations by some concrete examples 

First note that we can talk about centrality in quite a general setting: when-

ever we have a language having a let- and a tuple construct, we can define a 

term M to be central if for all fresh variables a and b and all other terms N, 

let a = M inlet b = N in (a, b) 

is the same (under whatever notion of equality we happen to have) as 

let b = N inlet a = M in (a, b) 

For instance, if our notion of effect is given by (not necessarily first-class) 

continuations and at least two different values that can be thrown, then terms M 

that throw cannot be central. We only need to take for N a term that throws 

something else in order to tell the difference between the two composites. 

-(callcc (fn k => 

let val a = throw k "A side effect." in 

let val b = throw k "A subtly different side effect.\n" in 

a end end)); 

= = = val it = "A side effect." : string 

- (callcc (fn k => 

let val b = throw k "A subtly different side effect." in 

let val a = throw k "A side effect." in 

a end end)); 

= = = val it = "A subtly different side effect." : string 

If additional side-effects, such as input-output, are present in the language, it 

is quite straightforward to see that twicecc is not central; see figure 6.11. Some 

more care is needed if control is the only effect. 
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fun forcefirst (a,b) = 
let val y = force b in 
let val x = (output(std_out, "A side effect.\n"); 42) in 

(x,y) end end; 

fun forcelast (a,b) = 
let val x = (output(stcLout, "A side effect.\n"); 42) in 
let val y = force b in 

(x,y) end end; 

fun trytoreify f (n,k) = 
(phi(fn h => 

(fn (x,y) => throw y x) 
(f ((n,k),h)))) (thunk 0); 

val effectnotinclosure = trytoreify forcelast (0,0); 
effectnotinclosure : jilt cont cont; 

val effectinclosure = trytoreify forcefirst (0,0); 
effect inclosure : mt cont cont; 

force effectnotinclosure; 

force effect inclosure; 

Figure 6.9: force can reify by being precomposed (in ML) 

105 



(define (forcelast 1) 
(let* 

((x (begin (write "A side effect.") (newline) 42)) 
(y (call/cc (cadr 1)))) 

(list x y))) 

(define (forcefirst 1) 
(let* 

((y (call/cc (cadr 1))) 
(x (begin (write "A side effect.") (newline) 42))) 

(list x y))) 

(define (trytoreify f) 
(lambda (1) 

((phi 
(lambda (h) 

((lambda (1) ((cadr 1) (car 1))) 
(f (list 1 h))))) 

(thunk (list))))) 

(define effectnotinclosure ((trytoreify forcelast) (list))) 

(define effectinclosure ((trytoreify forcefirst) (list)))) 

(call/cc effectnotinclosure) 

(call/cc effectinclosure) 

Figure 6.10: force can reify by being precomposed (in Scheme) 
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However, with first-class continuations, one can do much more than subject M 

to testing for effects; one can actually reify M. For N = force h, the composite 

with force coming after M 

let a = M inlet b = force h in (a, b) 

passes to h the continuation after running M; this gives access to the value that 

M returns after being run and possibly side-effecting. The composite with force 

coming first, by contrast, passes to h the continuation before M is computed. 

This has the same effect as wrapping the whole computation, include possible 

side-effects, into a thunk. 

So instead of the somewhat weak argument "if M had effects, we should be 

able to find a test N that can tell the difference", we know that force will reify 

anything that follows. Now, intuitively speaking, in order for the two composites 

to agree, (i.e. for M thunked and unthunked to be the same) M itself must 

already be as good as reified. 

Depending on whether force appears first or not, one can achieve either the 

genuine thunking 

	

thunk 	__ 
A 	-' -A 	-i-iB 

or the "pseudo-delaying" 

	

I 	thunk 
A>B 	>-i-,B 

The difference between these two is demonstrated in figures 6.9 and 6.10. 

6.3.1 twicecc is not central 

We established in 6.2 that twicecc cannot be copied. In our semantics, central 

morphisms respect the product and can be copied. Thus twicecc cannot be 

central - at least that is what the semantics predicts. 

To show that this is indeed the case, and so to validate our semantics, we 

consider a final experiment. 

As in the above, counterexamples are easier to find if we allow ourselves the 

additional observations afforded by I/O) - see figure 6.11 for a demonstration 

that twicecc is not central. 

For the general case, without relying on I/O, we reuse the distinguishing 

context once more. The fact that twicecc is not central is demonstrated in 

figures 6.12 and 6.13. 
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callcc(fn k => 
(fn ((Q,x),y) => throw x y) 
(let val y = output(std_out, "Side effect.\n") in 
let val x = twicecc (Q,k) in 

(x,y) end end)); 

(* prints once 

callcc(fn k => 
(fn ((O,x),y) => throw x y) 
(let val x = twicecc (O,k) in 
let val y = output(std_out, "Side effect.\n " ) in 

(x,y) end end)); 

(* prints twice *) 

Figure 6.11: twicecc is not central (shown using I/O) 

fun twicecc_first (a,b) = 
let val x = twicecc a in 
let val y = force b in 

(x,y) end end; 

fun twicecc_last (a,b) = 
let val y = force b in 
let val x = twicecc a in 

(x,y) end end; 

fun centralitytester testee = 
distinguisher ((fn h => (force h, force h)) 

o (trytoreify testee)); 

centralitytester twicecc..last; (* val it = 3 : mt *) 

centralitytester twicecc_first; (* val it = 4 : mt *) 

Figure 6.12: twicecc is not central (In ML) 



(define (twicecc_first 1) 
(let* 

((x (twicecc (car 1))) 
(y (call/cc (cadr 1)))) 

(list x y))) 

(define (twicecc_last 1) 
(let* 

((y (call/cc (cadr 1))) 
(x (twicecc (car 1)))) 

(list x y))) 

(define (centralitytester testee) 
(distinguisher 
(compose 
(lambda (h) (list (call/cc h) (call/cc h))) 
(trytoreify testee)))) 

(centralitytester twicecc_last) 

(centralitytester twicecc_first) 

Figure 6.13: twicecc is not central (In Scheme) 
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6.4 Another non-copyability result 

We consider another morphism that is total, but not copyable, while easier to 

understand in intuituive terms than twicecc. We will also need it for the con-

struction of counterexamples in Sections 6.5 and 6.7 below. 

Written as a CPS term, twicecc seems to be the simples way of using the 

current continuation twice. 

{Thk H k(xq){q(y)=k(h)}] 

If we want something of function type using its current continuation twice, we 

can write the following CPS term in the same spirit as twicecc, though slightly 

longer: 

[k F- k(f){f(xp)=k(f){f(yq)=q(x)}}] 

Despite being longer as a CPS term, this is easier to write in ML or Scheme, 

requiring no messy Continuation Grabbing Style: 

callcc(fn k => throw k (fn x => throw k (ft y => x)))} 

This term passes a function to its current continuation k. When this function is 

called with an argument x, the constant function always returning that argument 

is passed to k. Hence the function eventually (on the second call to the current 

continuation) returned by the term is the function always returning the argument 

to the first call. We can regard this as the solution to the following continuation 

programming exercise: 

Define a function f such that all calls to f return the argument of the 

first call of f. Do not use state. 

(We name this argf c, for "argument of first call".) 

At first sight, it seems hard to see how to do this without state: the obvious 

solution, after all, uses two variables (or in ML, references): a non-local variable 

to hold the argument of the first invocation and a boolean flag to record if the 

function has been called before (if not, then the variable needs to be assigned). 

See figures 6.16 and 6.17 for a version of argfc with local state. In Scheme (fig-

ure 6.17), we can give a better analogue of argfc with continuations (figure 6.15) 

by using a function that updates its own definition when it is called. 
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fun argfc 0 = 
callcc(fn k => 

throwk (fn x => throw k (fn y => x))); 

let val f = argfc 0 in 
[f 1, f 2, f 3, f 41 end; 

let val f = argf c C) in 
[f 42, f 2, f 3, f 41 end; 

fun distinguisher testee = 
let val (f, g) = testee argfc 0 in 

(f 1, g 2) 
end; 

distinguisher (fn f => fn x => (f x, f x)); 
(* (1,2) : mt * mt *) 

distinguisher (fn f => fn x => ((fn y => (y,y)) (f x))); 
(* 	(1,1) : mt * mt *) 

Figure 6.14: argf c cannot be copied (in ML) 

111 



(define argfc 
(lambda 0 

(call/cc 
(lambda (k) 

(k 
(lambda (x) 

(k 
(lambda (y) x)))))))) 

(let ((f (argfc))) 
(list (f 1) (f 2) (f 3) (f 4))) 

a list with the all entries the same (1,2,3 or 4); unspecified which 
bigloo picks the last 

(let ((f (argfc))) 
(list (f 5647) (f 3425) (f 2484) Cf 75473))) 

Cannot be copied 

(define (distingiiisher testee) 
((lambda (1) 

((car 1) 1) 
((cadr 1) 2)) 

((testee argfc)))) 

(distinguisher 
(lambda (f) 

(lambda 0 
(list (f) (f))))) 	 ; 	2 

(distinguisher 
(lambda (f) 

(lambda C) 
((lambda (y) (list y y)) 	; 
(f))))) 

Figure 6.15: argfc cannot be copied (in Scheme) 
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fun argfc 0 = 
let val fc = ref true 

and arg = ref 0 
in 

fn x => 
(if !fc then (fc := false; arg := x) 
else 0; 

!arg) 
end; 

Figure 6.16: argfc with local state (in ML) 

use local variable for argument of first call 

(define (argfc) 
(let 

((fc #t) 
(arg 0)) 

(lambda (x) 
(if fc 

(begin 
(set! fc #f) 
(set! arg x))) 

arg))) 

use variable for the function 

(define (argfc) 
(letrec 

((fc #t) 
(f (lambda (x) 

(if fc 
(begin 

(set! fc #f) 
(set! f (lambda (y) x)))) 

(f x)))) 
f)) 

Figure 6.17: argf c with local state (in Scheme) 
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datatype void = VOID of void; 

fun invoid (VOID x) = invoid x; 

fun callcc' f = callcc(fn k => f (fn x => VOID(throw k x))); 
callcc' : 	(('la -> void) -> 'la) -> 'la; 

Figure 6.18: Variant of callcc with void-returning continuations 

6.5 The failure of Laird's bootstrapping of force 

In [Lai97], James Laird claims that control operators at ground type are sufficient 

in that one can inductively define them at function types. Specifically, he gives 

an inductive definition for the double-negation control operator of type 

((('a -> 1 2b) -> void) -> void) -> 'a -> 1 2b; 

in terms of that of type 

(( 1 2b -> void) -> void) -> 1 2b) 

[James Laird, personal communication/email]. 

For ML, the inductive definition supposes a variant of callcc in which con-

tinuations are identified with functions . . . - > void; see figure 6.18. 

In figure 6.19, we give a simplistic version lairdi first; the function laird 

can then be seen as a refinement thereof designed to cope with control effects in 

its argument. The Scheme analogue is in figure 6.20. 

The informal argument for the correctness of this construction seems essen-

tially similar to that which one could advance in favour of the idempotency hy-

pothesis. The function laird, in its improved version, first gives its argument 

h a chance to side-effect by jumping out of the current evaluation. If h did not 

jump, it can then be treated like a value. 

Implicit in this reasoning, one can find the assumption that all total morphisms 

are effect-free. Again, it is refuted by using the current continuation twice: figures 

6.21 and 6.22. 

The importance of this refutation lies in that it invalidates Laird's claim to 

have a fully abstract semantics for a language with callcc [Lai97]. Hence the 

situation for full abstraction is not improved by Games models. There still is a 

tradeoff between models with the full callcc, but not fully abstract without the 
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fun lairdi (h :(('a -> 1 2b) -> void) -> void) = 
fn x => 
(force' : (( 1 2b -> void) -> void) -> 1 2b) 
(fn y => h Mn z => y (z x)))); 

lairdi : ((('a -> 1 2b) -> void) -> void) -> 'a -> 1 2b; 

fun laird h = 
(fn u => 
fn x => force' (fn k => 

h (fn f => k (f x)))) 
(force' (fn p => h (fn f => p (fn z => z)))); 

laird : ((('a -> '2b) -> void) -> void) -> 'a -> 1 2b; 

Figure 6.19: Laird's bootstrap in ML 

(define (laird h) 
((lambda (u) 

(lambda (x) 
(call/cc (lambda (k) 

(h (lambda (f) (k (f x)))))))) 
(call/cc (lambda (p) 

(h (lambda (f) (p (lambda (z) z)))))))) 

Figure 6.20: Laird's bootstrap in Scheme 
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val argfct = 
callcc'(fn a => 

(fn k => 
invoid (k (fn x => 

invoid (k (fn y => x: string))))) 

(force' a)); 

argfct : ((string -> string) -> void) -> void; 

fun lairddistinguisher testee = 
(fn f => 

(f "Not Laird."; 
f "Laird.")) 

(testee argfct); 

lairddistinguisher force'; 

lairddistinguisher laird; 

Figure 6.21: Failure of Laird's bootstrap: A distinguishing context in ML 

(define argfct 
(call/cc (lambda (a) 

((lambda (k) 
(k (lambda (x) (k (lambda (y) x))))) 

(call/cc a))))) 

(define (lairddistinguisher testee) 
((lambda (f) 

(f "Not Laird.") 
(f "Laird.")) 

(testee argfct))) 

(lairddistinguisher call/cc) 

(lairddistinguisher laird) 

Figure 6.22: Failure of Laird's bootstrap: A distinguishing context in Scheme 
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prompt [SF901, and fully abstract models with callcc only at base types, as in 

[KCF92I. 

A possible formal connection between the refutation of Laird's attempt at 

bootstrapping force and the categorical approach appears to be given by co-

herence conditions, or more specifically lack thereof. Whereas the unit of the 

self- adj ointness on the right satisfies coherence, the unit for the self- adj ointness 

on the left seems to be inherently indecomposable. Intuitively, it seems evident 

(in the light of the counterexample) that force at function type o -* r needs 

to pass the continuation of type —(a -+ T) to its argument and cannot get away 

with passing something else fabricated from a continuation of type —'r. It may be 

an open problem meriting futher work to state in precisely which algebraic sense 

force is indecomposable (or possibly prime). 

6.6 Cross reference to preceding chapters 

The programs in this chapter are intended to illustrate a (semantic) point. This 

relates then to material in other chapters. We give a little link table. 

I 	Slogan I ML code I Scheme code I Proposition or remark 

twicecc not copyable figure 6.5 figure 6.6 5.2.13 

force can reify figure 6.9 figure 6.10 4.4.2 

twicecc not central figure 6.12 figure 6.13 implied by 5.2.7 

6.7 Discriminating Ax.xx and Ax.x(Ay.xy) under call 
by name 

We show that the expressive power of callcc is sufficient to distinguish the 

terms Ax.xx and )tx.x(\y.xy) under call-by-name. Moreover, the key ingredient 

for making the distinction is a term that uses its current continuation twice. 

Recall the Plotkin call-by-name CPS transform from Definition 3.2.2: () 

extended with callcc and throw. 

= x(k) 

Ax-M= k(f){f(xk)=M} 

MN = M{k(f)=f(nk){n(k)=N}} 

callcc M = M{k(f)=f(gk){g(p)=p(k)}} 

throw M N = M{k(k)=N} 
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Here we consider this as an untyped transform from untyped )-calculus (with 

callcc) to untyped CPS calculus. 

We define a source language term argf c by 

def argf c = callcc(Ah.throw h (x.throw h (.Ay.x))) 

Let A(k) 
def 
= argfc be the corresponding CPS term (for current continuation 

k), that is to say: 

rfc 

ca11cc\h.throw h (Ax.throw h (Ay.x))) 

= h(k) {k(k) =k(f) {f (xk)=h(k) {k(k)=k(f) {f (yk)=x(k) }}}} {h(p)=p(k) } 

= k(f){f(ap)=k(f){f(bq)=a(q)}} 
def 

.A(k) 

First, we note that A(k){k(f)=f(yk)} = y(k). 

A(k){k(f)=f(yk)} 

= k(f){f(ap)=k(f){f(bq)=a(q)}}{k(f)f(yk)} 

= f(yk){f(ap)=f(yk){f(bq)=a(q)}} 

= y(k) 

Now the CPS transform of xx is: 

= x(k){k(f)=f(xk)} 

Therefore, 

(..\x.xx) argfc 

k(f){f(xk)=xx}{k(f)f(xk){x(k)A(k)}} 

= 	xx{x(k)=A(k)} 

= 	x(k){k(f)=f(xk)}{x(k)=A(k)} 

= 	A(k){k(f)=f(xk){x(k)=A(k)}} 

= 	A(k){k(f)=f(xk)}{x(k)=A(k)} 

= 	x(k){x(k)=A(k)} 

= A(k) 

On the other hand, the CPS transform of x(.Ay.xy) is: 

x(Ay.xy) = x(k) {k(f)=f(nk){n(k)=k(g){g(yk)=x(k){k(f)=f(yk)}}}} 
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Hence, 

(Ax.x(Ay.xy)) argfc 

= k(f){f(xk)=x(,\y.xy)}{k(f)=f(Xk){Z(k)A(k)}} 

= x(Ay.xy){x(k)=A(k)} 

= x (k){k(f)=f(rik){n(k)=k(g){g(yk)=X(k) {k(f)=f(yk)}}}}{x(k)=A(k)} 

A(k){k(f)=f(nk){n(k)=k(g){g(Yk)=A(k){k(f)=f(Yk)}}}} 

= A(k){k(f)=f(nk)}{n(k)=k(g){g(yk)A(k){k(f)f(Yk)}}} 

= n(k){n(k)=k(g){g(yk)=y(k)}} 

= k(g){g(yk)=y(k)} 

Finally, A(k) and k(g){g(yk)=y(k)} can be distinguished. 

The terms Ax.xx and )x.(,\y.xy) are one of the canonical examples cited as 

evidence of the expressive power of the ir-calculus [San95]. While it was originally 

claimed that this expressive power was due to specific features of the 7r-calculus, 

notably nondeterminism, the realisation of the importance of CPS in the trans-

lation form ) to or-calculus makes it seem plausible that it is in fact due to the 

presence of continuations [Davide Sangiorgi, personal communication]. The above 

can be seen as preliminary evidence of this view. It is perhaps not surprising that 

we can distinguish Ax.xx and )x.x(.Ay.xy), in that the same terms were already 

used in [P1075] as a counterexample to show a non-completeness result. 

Compare this with Theorem 8.5 and the "conditional u-rule" Corollary 8.4 

in [San94]. There Sangiorgi shows that in a Church-Rosser calculus, Ax.xx and 

Ax.x(,\y.xy) cannot be distinguished. Roughly, the reason is that in case M 

diverges, both MM and M(Ay.My) diverge; otherwise M and )y.My (y fresh) 

cannot be distinguished. 

This reasoning, valid for a restricted class of calculi, appears to be precisely 

what gave rise to the flawed assumptions about control operators encountered in 

the preceding sections. 

In the remainder of this section, we formualise the distinction between )x.xx 

and .Ax.x()y.xy) in Scheme. In order to make Scheme behave like call-by-name, 

we use a thunking transform, with the thunks being implemented by means of con-

tinuations. Concretely, this means that variable occurences need to be replaced 

by forcings and function arguments need to be thunked. The first is achieved by 

replacing x with (call/cc x) Recall that in Scheme, forcing a CPS thunk is just 

a special case of call/cc. (This is not necessarily the same as Scheme's built in 

force, which may or may not be implemented in this way.) In the two A-terms 
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and Ax.x(\y.xy), the only arguments are values, hence we can thunk them by 

applying then function thunk, and if the argument is a variable that cancels its 

forcing, i.e.(thunk(force x))= x, so we can just write x. 

Notice that the call-by-name semantics of argfc is the same as the call-by-

value semantics of an almost identical term. 

callcc7h.throw h (Ax.throw h (Ay.force x))) 

= call cc(Ah.throw Ii (Ax.throw h (Ay.x))) 

So in Scheme, the distinguishing context will consist essentially of a (call by name) 

application to callcc(Ah.throw h (Ax.throw h (\y.force x))). 

For writing the distinguishing context in figure 6.23, we need to take some 

care in thunking term that are not values. For thunking a value, we can simply 

apply the function thunk: 

(define (thunk a) 

(call/cc 

(lambda (k) 

((call/cc k) 

a)))) 

However, applying thunk to a side-effecting term does not succeed in wrapping 

the side effect into the thunk. In (thunk (write 'Effect)), the argument will 

be evaluated an the effect will not be wrapped into the thunk. That can only be 

achieved by putting the side-effecting term into the thunking idiom: 

(define effect-in-thunk 

(call/cc 

(lambda (q) 

((lambda (p) 

(p (write 'Effect))) 

(call/cc q))))) 

The printing occurs only when (call/cc effect-in-thunk) is forced. 

More generally, a computation, as opposed to a value, is thunked by the 

following idiom: 

(call/cc 

(lambda (q) 

((lambda (p) 

(p 
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(define lambda-x-xx 
(lambda Cx) 

((call/cc x) 
X))) 

(define lambda-x-x-lambda-y-xy 
(lambda (x) 

((call/cc x) 
(thunk 
(lambda (y) 

((call/cc x) 

(define dist 
(lambda (testee) 

((lambda (f) 
(f (thunk 1)) 
(f (thunk 2))) 

(testee 
(call/cc 
(lambda (q) 

((lambda (p) 
(p 

(call/cc 
(lambda (h) 

Ch 
(lambda Cx) 

(h 
(lambda (y) 

(call/cc x))))))))) 
(call/cc q)))))))) 

Figure 6.23: Distinguishing Ax.xx and .\x.x\y.xy) under call by name 
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computation to be thunked 

)) 

(call/cc q)))) 

In figure 6.23, we put all these ingredients, namely, (a variant of) the function 

argfc, the thunking idiom, and a distinguishing context like that in figure 6.15, 

together to get a distinguishing context for )x.xx and )x.x(Ay.xy) under call by 

name. 

(dist lambda-x-xx) evaluates to 1, while (dist lambda-x-x-lambda-y-xy) 

evaluates -to 2. 
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Chapter 7 

Categorical semantics in 
® -i-categories 

In this chapter, we develop the categorical counterparts of CPS transforms (see 

chapter 3). 

7.1 Call-by-value semantics 

Given the notions of )-abstraction from section 4.5, a simply-typed )-calculus 

can be interpreted in a ®-i-category. 

For call-by-value, control operators are naturally part of such a semantics, as 

they relate directly to the fundamental operations on the - type. Specifically, 

callcc is interpreted as post-composition with the adjoint correspondent 

[-A — A] = -(-iA (& -A) —# A 

of the diagonal map -iA —* -'A ® -'A. 

7.1.1 Definition (Semantics for call-by-value with callcc ) Given a ®-'-

category K, we can give an interpretation V{—fl for )-calculus with control as 

follows. Types and environments are interpreted as usual, except for the breaking 

down of arrow types. 

Vft -'rlI 

VFja -4 Tfl 

Vftx 1 :ri ,...,x:,j 

def 

def 

def 

= 

Vfr 1 fl®®Vfrfl 

A judgement F F- M : r denotes a morphism VF — Vfrfl, defined by induction 

on M. 

Vfri:ri , ... , x:T H x :rj]1 
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VFF-Ax.M:a-+rll 
del 

v Vx:a,FHM:Tll 

	

VF F- throw M N:ojl 	! (V[' F- N:-r]], V[F F- M:-irfl); V [r] ® -'r; apply 

	

V({F F- callcc M nj 	VF F- M:-'n —+ r; -'(id,v1, id-,v1); force 

de 

	

V(F F- MN: r]] 	! (Vft[' I- N : all, V[[F F- M: a —~ n]) ;  apply 

What makes the call-by-value semantics work is the fact that all values denote 

central morphisms, together with the fact that the centre has finite products and 

that we have central closure. 

7.1.1 The naturality of callcc 

Perhaps the most canonical property of control operators is the naturality of 

callcc, in the sense of the following axiom from [Hof94]. 

V (callcc M) = ca11cc\k.V (M(Ax.k (Vx)))) 

where V ranges over values, i.e. V ::= x I )x.M. However, this relies on con-

tinuations being a special case of procedures, as in Scheme. With a typing for 

continuations like that in NJ-SML, instances of this axiom will be ill-typed. 

The negation operation suggested by our categorical semantics, definable as 
del 

negate = )f.)h.ca11cc((throw h) o f o callcc o throw), is useful for adapting 

this axiom as follows 

V (callcc M) = callcc(V o M o (negate V)) 

(For example, let V = fn n => n + 1 and M = f  k => throw k 1. Then V 

(callcc M) and callcc(V o M o (negate V)) both evaluate to 2.) This 

axiom is sound for our semantics. 

7.1.2 Proposition 

VftF I-  V (callcc M) nfl = V[F F-  callcc(V o M o (negate V)) : nfl 

7.2 Plotkin call-by-name semantics and variants 

Plotkin call-by-name is a slight variation on call-by-name obtained by the tech-

nique of thunking arguments in applications and forcing variables; this is a cate-

gorical analogue of [HD951. 

We consider the doubly-negated -i--iA as the type of lazy data of type A. 
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7.2.1 Definition (Plotkin Call-by-name semantics) Given a 0--category, 

we define the Plotkin call-by-name semantics £ft—fl as follows. 

def 

	

  fl 	 & 
def 

	

£fr1: Ti,  ...,x:Tfl 	= 

Again, a judgement F F M : r denotes a morphism PF}J —+ Pftrfl. 

	

Pftx1:r1,...,x:rFxj:'rj]1 	
c4g 	

ir;force 

	

PFFx.M:cx—*rfl 	1 Pfr:0r,FFM:Tfl 

	

PF F MN: rh 	(.A 1  P[[F F N: U]], 7'[[F FM: a —+ r); apply 

The Plotkin call-by-name semantics satisfies the full /3 law by thunking argu-

ments at the point of application. Thus arguments are always central. However, 

the application map is still the same as in call-by-value; the "jump with argu-

ments", apply, which is not central. 

The Plotkin semantics rests on the thunking corollary 4.5.3 along with the 

central closure 4.5.2. 

7.2.2 Remark We now have the categorical framework in place in order to talk 

more abstractly about some of the issues addressed in terms of name-passing in 

chapter 3. We mentioned in remark 3.1.5 two possible choices for a semantics with 

the call-by-name typing. These correspond to the two passages in the naturality 

square for thunk. Because the naturality does not hold in general (only in a 

subcategory), there really is a choice. 

As explained in [DH94], the Reynolds and modified Reynolds have the same 

semantics of function types, but they differ in the choice of when the delayed 

argument is forced. 

7.2.3 Definition Given a 0--category, we define the Reynolds call-by-value se-

mantics RH as follows. 

-7®-ifl.ftrfl) 

R4x 1  : Ti, .. . , x, : 

A judgement F F M : r denotes a morphism R.Ffl —+ 7ftrfl. 

Rx1:ri,...,x:rFx:rj 	
def ]J 	= 	7r3 ;force 

RftF F Ax.M :01 —+ rh g X1((force;thunk) ®R[F];R.x : a,F FM : 

RftF F MN : 	

d4 	
() RE[F F N : 011,7E[F FM: a —+ rfl);apply 
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7.2.4 Definition Given a 0--category, we define the modified Reynolds call-by-

value semantics 7Z!jj-fl as follows. 

—+ r] 
	del 

T1,. . . , x : 
	del 	

® 7'IITnfl 

A judgement F F- M: r denotes a morphism lZ'ftF]] —+ R'frfl. 

Rfri:Ti,...,x:TF-x:T 
	del 
 = 

R![F F- Ax.M : a —~ 	
' 	

force ® R'[[Ffl; R'J[x : a, F F-  M : 1]) 
'R'IIF F- MN : r]] 	! (,\ 7'E[r' I- N : a], R,'F F- M : a —+ r]]); apply 

7.3 Uncurrying call-by-name semantics 

The uncurrying call-by-name semantics relies on the variant )-abstraction A and 

application apply.  

7.3.1 Definition (Semantics for uncurrying call-by-name) 

del 
= 	-i(jVfri]]® ... ØVft 1jØ_v\fI[b11) 

def 

	

'r F- x : T]] 	= 

del 

	

j\fftFF-Ax.M:a—]] 	 j\fftx:a,FF-M:fl 

	

AF F- MN : rfl 	! (jVftF F- N : a]],VftF F- M: or —* rfl) ;  apply 

The undurrying call-by-name semantics, by contrast with the Plotkin one, 

uses an application map that is itself central (see 4.5.5). Hence all denotations 

are central. This it what make this semantics validate both the full 3 and ij. 

We can now explain more conceptually the invariant (lemma 3.3.1) that made 

the syntactic soundness proof of the uncurrying call-by-name CPS transform 

work: it is just one of the many equivalent characterisation of centrality, namely 

thunkability. 

Both the denotations of variables and the application map used by the un-

currying semantics are central (denotations of )-abstraction are central for all 

semantics considered here). This is what makes the uncurrying semantics gen-

uinely call-by-name. For the Plotkin call-by-name semantics, by contrast, not 

even the denotations of variables are central. 
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7.3.2 Proposition For the special case of the term model, that is K; = K:(CPS), 

the denotation of a judgement is the equivalence class of its CPS transform. 

VftF F M: T1 = 	[J]F, k : -ITO F 	M(k)] 

PftF F M: r]] = 	[P(F), k : -'(]T) I- 	M(k)] 

RV F-  M:  nj = 	[7?-90, k : -1(T[) F- IMO (k)] 

1?'L[FF- M:i = 
.A/ftF F- M: 	]1 = 	[.Af(I', k: -vVn[) F- .Af(]MD(k)] 

For the shorthand transformation this reads as follows 

VFFM:njJ= Fr, k:-"rFM] 

PftF FM: nj = [F,k: FM] 

jVE[FFM:r]= [f,k:- nF] 

7.4 State and meta-continuation-passing 

A very elementary construction on a premomoidal category is to "add state": 

each morphism takes and returns an additional argument. This can be regarded 

as depending on, and possibly modifying, some global variable. Whiel this is not a 

very satisfactory account of state in programming languages, it is sufficient to give 

a categorical counterpart of meta-continuation passing style 3.2.4 on page 50. The 

combination of first-class control and (even a single piece of global) state seems 

to be a rather powerful one; see [Fi194b]. 

ObJC!S = ObK 

K;!S(A,B) = 	K;(S(9A,S®B) 

SA = 	-'(S(9A) 

= S® -'! 

YAJ - 	PSøA 

thunks = 	S®pair 

7.4.1 Remark In VS, we have operations for dereferencing and assigning to 

the single piece of state: 

=:S—+1 

!:!—S 
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These are just the second projection 

def 
= = 72:S®S—S=10S 

the diagonal map 
def - 
= Os:S®1=S—+S®S 

in the base category K. Note that, in the CPS term model ! = [sk I- k(ss)] and 

= [sxk F- k(x)]. In that sense, ! is essentially the same as callcc, and := the 

same as throw. There may be a connection with the relationship, mentioned in 

the introduction, between figures 1.7 and 1.8, and figures 1.5 and 1.6. Compare 

also figures 6.16 and 6.15 in Chapter 6. 

7.4.2 Conjecture We conjecture that, under some "mild" conditions on K, if K1 

is a ®-i-category and S e 0b, then K1!S is a (D--category. 

Meta-continuation-passing style arises as the special case S = -'R. Expressions 

of type R can be aborted and control-delimited. 

7.5 Categorical semantics for CPS calculus 

Assigning a morphism to each CPS calculus judgement is made somewhat awk-

ward by the fact that these judgements have only premises (typing for names), 

but no conclusions (type for the whole term), so that there does not seem to be 

a canonical choice for the codomain of its denotation. This is perhaps surpris-

ing, but we would argue that CPS is so low-level that even composition is not 

fundamental, but a relatively involved idiom from its perspective. 

We could either choose a "dummy" codomain (the corresponding continuation 

never being used) or single out one of the names in a judgement as the current 

continuation corresponding to the codomain. 

Compared to the (syntactic) CPS transforms from the CPS literature, the 

first of these is analogous to a Continuation Grabbing Style [Sab96] transforma-

tion, while the second would amount to a Back to Direct Style [Dan94, DL921 

transform. 

We sketch each of those, before giving a more detailed account of a Direct 

Style semantics for a small fragment of CPS calculus. 

7.5.1 Continuation Grabbing Style semantics for CPS-calculus 

A Continuation Grabbing Style semantics for CPS-calculus could be defined as 

follows. 
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F I- M]]: F]] -+ -'1 

ftF,: 6,k: -6 F- k(±)]j 

= ir 

ftF F- M{n(f)=N}]] 

7.5.2 Back to Direct Style semantics for CPS-calculus 

A Back to Direct Style would have to solve the problem of how to choose a 

current continuation, corresponding to the codomain of the denotation, in each 

CPS calculus judgement. 

One could introduce conventions for singling out one variable (the last, say) in 

a judgement as the current continuation. (Incidentally, it is not trivial that this 

is always possible; we conjecture that in the non-recursive CPS calculus, for each 

derivable judgement at least one variable in the typing assumptions is assigned a 

continuation type.) 

A judgement F, k: -yr F- M would then denote a morphism 

[[F]] -+ 

The problem is how to define this inductively on the structure of M. 

If, in a binding M{n()=N}, k is free in N, but not in M, then the denotation 

of F, k : - iT F- M{n()=N} should be a straightforward composition ' of the 

denotations [[F,n : -ió F- M]] and ftF,: a F- N]]. 

But in general k may occur anywhere in M or N or both, requiring a compli-

cated case analysis. (In [Dan94, DL921, this necessitates intricate techniques for 

digging out a current continuation.) 

We restrict ourselves to a fragment of CPS so simple that a few cases are 

enough: that is we consider only the linear unary CPS calculus. This is a fairly 

severe restriction: without polyadic continuations, we loose the ability to trans-

late functions. On the other hand this simple fragment has a clean categorical 

semantics: it is the internal language of a self- adj ointness. 

It is straightforward to build a category equipped with a self-adjoint functor 

from the syntax of simply-typed, linear unary CPS calculus along the lines of 

definition 5.2.1. We focus on the other direction. 

'In the co-Kleisli category k[rl  
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7.5.1 Definition Given a category K together with a self-adjoint functor - 

froP -* K with unit force, we define a semantics for the linear unary CPS 

calculus. 

I[xk F- k(x)fl = id 

frk F- x(k)fl = force 

frk F- M{n(y)=Nfl = xn F- Mfl; (Jyk I- N 	, k E FV(N) 

ftxk F- M{n(y)=N} = -' yx F-  N]]; ftnk I- M]] 	, k e FV(M) 

7.5.2 Lemma frk F- M]] = ]Jyh F- M[xk '-* yh]]] 

7.5.3 Lemma The denotation ofajudgement kx F- M with the variables swapped 

is the adjoint correspondent of the denotation of the original judgement xk F- M. 

-iftxk F- Mfl; force = ftkx F- Mfl 

PROOF By induction on M. 

k(x) 

-'xk F- k(x)]]; force 

= -id; force 

= force 

= ftxk F-  x(k)fl 

x(k) 

-iftxk F- x(k)]]; force 

= -force; force 

=id 

= ftxk F- k(x)]] 

M{ri(x)=N} First, let k e FV(N). 

-4xk F- M{n(y)=n}fl; force 

= -i(frn F- Mfl; Eyk F- NJ); force 

= -iftyk F- N]]; -'xn F- Mfl; force 

= -iftykF-  NJ; ftnxF-Mfl 

= ][kx F- M{ri(y)=N}]] 
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Because of the naturality of and the triangular identity for force, we have: 

-i(--[xk F- ME;force);force 

= -'force; -'-[Jxk  F- Mfl;force 

= -'force; force; E[xk  F- ME 

= frkF- M] 

7.54 Proposition The semantics 	fl of linear unary CPS-calculus in defini- 

tion 7.5.1 is sound with respect to the axioms of the calculus given in defini-

tion 2.4.1. 

PROOF We show for each axiom M1  = M2  that M1 fl = 

JMP 

ftm(x){n(y)=N}fl 

= ftxn F- n(x)J; yk F- N]] 

= id;E[yk F- Nfl 

= I[ykF-  Nil 

= frkF-M[yH+x]]] 

ftxk F- ri(k){n(y)=N}]] 

= -i[[yx F- NE;  ([nk F- n(k)]] 

= -'[[yx F- NE;  force 

= [xyF-N]] 

= xkF-N[yH+k]fl 

ETA 

ftxk F- M{n(y)—k(y)}]] 

= ([xn F- Mfl; ftyk F- k(y)]] 

= ftxnF-M]];id 

= ftxnF- M]J 

= xkF-M[n-+k]]] 
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frk F- M{n(y)=x(y)}J] 

= -4yx F- x(y)J]; link  F- MI 

= id;link F- MJ] 

= ftnkl -Mfl 

= ftxkF-M[n'-x]]J 

FL0AT-L: ii E FV(L) 

. k e FV(M) 

lixk F- L{rn(y)-M}{n(z)=N}J] 

= -'][zx F- NJ]; link F-  L{rn(y)=M}]] 

= -iftzx F- NE; ][nm F- U]; [[yk F- MJ] 

= ][xm F- L{n(z)=N}J]; liyk F- M] 

= frk F- L{n(z)=N}{rn(y)=M}] 

. k e FV(N) 

frk F- L{m(y)=M}{n(z)=N}]] 

= -([yx F- ME; limn F- U]]; ][zk F-  NJ] 

= -1][yx F- It/I]]; ][rnn F- L{n(z)=N}]] 

= ][xk F- L{ri(z)=N}{m(y)=M}]J 

FL0AT-R: n E FV(M) 

. k E FV(N) 

frk F- L{m(y)_-M}{n(z)=N}J] 

= (ftxrn F- L]]; ftyn F- Mfl; )lizk F- N]] 

= ][xm F- L]]; (liyn F- MJ]; Eyk F- NJ]) 

= ftxrn F- U]; ][yk F- M{n(y)=N}]] 

= ][xk F- L{m(y)=M{n(z)=N}}Jj 

. k e FV(L) 

lixk F- L{rn(y)=M}{ri(z)=N}]] 

= -4zx F- NJ]; link F-  L{m(y)=M}J] 

= -4zx F- NJ]; -'][yn F- MJ]; limk F- U] 
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= -(yn H MI; zx I- Nfl; mk F- L 

= --iftyx F- M{n(z)=N}]]; t[mk  F- L]] 

= I[xk F- L{m(y)=M{n(z)=N}}fl 

t 

We have established that an extremely distilled version of CPS, a unary name- 

passing calculus, is the internal language of a self-adjointness. From the point of 

view of categorical semantics, an intriguing question would be what, if anything, 

in the categorical structure makes its internal language a name-passing calculus. 
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Chapter 8 

Indexed -i-categories 

In Chapter 4, we have mentioned that we can see the continuation functor as 

indexed. Here we develop this point of view. Although relevant for continuation 

semantics, the possibility to use either indexed categories or premonoidal struc-

ture for the semantics of environments arises in denotational semantics in general, 

so we treat it at its natural level of generality. 

This chapter presents joint work with John Power [PT97]; in particular, the 

result (8.3.4 below) on which the connection is built is due to him. 

8.1 Environments as indices 

Traditionally in denotational semantics, there have been two categorical ways of 

modelling environments. The first is given by finite products in a Cartesian closed 

category, as for instance in modelling the simply typed )-calculus. Over the years, 

that has gradually been extended. For instance, in order to model partiality, one 

must generalise from finite product structure to symmetric monoidal structure; 

and more recently, that has been further generalised to the notion of symmetric 

premonoidal structure [PR97]. 

A premonoidal category is essentially a monoidal category except that the 

tensor need only be a functor in two variables separately, and not necessarily a 

bifunctor: given maps f : A -+ A and g : B -* B', the evident two maps from 

A ® B to A' ® B' may differ. Such structures arise naturally in the presence of 

computational effects, where the difference between these two maps is a result of 

sensitivity to evaluation order. So that is the structure we need in order to model 

environments in the presence of continuations or other such strong computational 

effects. A program phrase in environment F is modelled by a morphism in the 

premonoidal category with domain Ij. 

The second approach to modelling environments categorically, also used to 
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model the simply typed A-calculus, is based on indexed categories with structure, 

and has been heavily advocated, although not introduced, by Bart Jacobs [Jac92]: 

the slogan is that contexts, which we call environments, are indices for the cate-

gories in which the terms definable in that context are modelled. Here, a program 

phrase in environment F is modelled by an element 1 -+ I-rl in a category that 

implicitly depends on F, i.e., by an arrow from 1 to rfl in the fibre of the indexed 

category over ftl]. We consider a weak version of indexed category with structure, 

called a r,-category, implicit in recent work by Masahito Hasegawa [Has95]. In 

the setting of indexed categories, various binding constructs can be studied. A 

r,-category has a weak first order notion of binding, given by the assertion that 

reindexing along projections has a left adjoint. In programming terms, that cor-

responds to a special form that binds an identifier but is not reifying in the sense 

that it does not produce a first class function. Hasegawa [Has95] compares it to 

lambda in early LISP. 

The first major result of this chapter is to prove the above two models of envi-

ronments equivalent. More precisely, we show that every symmetric premonoidal 

category with a little more of the structure cited above, gives rise to a ic-category, 

and that this gives a bijection between the classes of symmetric premonoidal cat-

egories with such structure and ic-categories. The extra structure we need on a 

symmetric premonoidal category )C is a category with finite products C and an 

identity on objects strict symmetric premonoidal functor J : C -+ )C. At first 

sight, that may seem a somewhat complex structure, but in fact, as made precise 

in [Pow], it is particularly natural category theoretic structure, more so than that 

of premonoidal structure alone, as it is algebraic structure. 

Related Work 

The relationship between symmetric premonoidal categories and r,-categories is 

related to work by Blute, Cockett, and Seely [RBS]. Implicit in their work is 

the construction which, to a symmetric premonoidal category with a little added 

structure, assigns a r,-category. The latter are closely related to their context cat-

egories. Identifying precisely which indexed categories thus arise did not appear 

in their work. 

Bart Jacobs' thesis [Jac9l] championed the view of contexts as "indices for 

the terms and types derivable in that context." We believe this to be relevant 

not only to type theory but also to the modelling of environments in computer 

science, and we use it for that purpose in our third approach to continuation 

semantics. 
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Ong [0ng96] also uses a fibration to model environments for his categorical 

formulation of the )-calculus [Par92]. As this calculus is an extension of the call-

by-name A-calculus, Ong can assume every fibre to be Cartesian closed. However, 

for call-by-value programming languages like ML or Scheme, one cannot assume 

Cartesian closure. (And even if one were to assume call-by-name, the intended 

meaning of callcc would be less than clear.) 

8.2 Premonoidal categories 

In this section, we recall the definitions of premonoidal category and strict pre-

monoidal functor, and symmetries for them, as introduced in [PR971 and further 

studied in [Pow]. We also develop a basic construction on a premonoidal category 

that we will need later. A premonoidal category is a generalisation of the concept 

of monoidal category: it is essentially a monoidal category except that the tensor 

need only be a functor of two variables and not necessarily be bifunctorial, i.e., 

given maps f : A -+ B and f' : A' -* B', the evident two maps from A 0 A' to 

B 0 B' may differ. 

Historically, for instance for the simply typed A-calculus, environments have 

been modelled by finite products. More recently, monoidal structure has some-

times been used, for instance when one wants to incorporate an account of par-

tiality [RR88]. In the presence of stronger computational effects, an even weaker 

notion is required. If the computational effects are strong enough for the order 

of evaluation of f : A -+ B and f' : A' -+ B' to be observable, as for instance 

in the case of continuations, then the monoidal laws cannot be satisfied. The 

leading example for us of such stronger computational effects are those given by 

continuations. However, for a simple example of a premonoidal category that 

may be used for a crude account of state [PR97], consider the following. 

8.2.1 Example Given a symmetric monoidal category C together with a speci-

fied object S, define the category K to have the same objects as C, with K(A, B) = 

C(S (9 A, S ® B), and with composition in /C determined by that of C. For any 

objectAofC,onehasfunctorsA® — :/C—+/Cand —®A:/C--+ IC, but they 

do not satisfy the bifunctoriality condition above, hence do not yield a monoidal 

structure on )C. They do yield a premonoidal structure, as we define below. 

In order to make precise the notion of a premonoidal category, we need some 

auxiliary definitions. 
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8.2.2 Definition A binoidal category is a category K together with, for each 

object A of AC, functors hA : AC -+ AC and kA : AC -+ AC such that for each pair 

(A, B) of objects of AC, hAB = kBA. The joint value is denoted A ® B. 

8.2.3 Definition An arrow f : A -* A' in a binoidal category is central if for 

every arrow g : B - B', the following diagrams commute: 

A®B A®9A®B, 

fØBj , ØB' 
A'Ø 

A'®B 	A'®B' 

B®A gOA  

B®f 	 B'Øf 
' 

BOA / 9 
ØA 
 >B'®A' 

Moreover, given a binoidal category AC, a natural transformation a : g ===> h 

B -* AC is called central if every component of a is central. 

8.2.4 Definition A premonoidal category is a binoidal category AC together with 

an object I of AC, and central natural isomorphisms a with components (A® B) ® 

C 	A ® (B ® C), 1 with components A -+ A ® I, and r with components 

A 	10 A, subject to two equations: the pentagon expressing coherence of a, 

and the triangle expressing coherence of I and r with respect to a. 

Now we have the definition of a premonoidal category, it is routine to ver-

ify that Example 8.2.1 is an example of one. There is a general construction 

that yields premonoidal categories too: given a strong monad T on a symmetric 

monoidal category C, the Kleisli category Kleisli(T) for T is always a premoidal 

category, with the functor from C to Kleisli(T) preserving premonoidal structure 

strictly: of course, a monoidal category such as C is trivially a premonoidal cate-

gory. That construction is fundamental, albeit implicit, in Eugenio Moggi's work 

on monads as notions of computation [Mog89], as explained in [PR97]. 

8.2.5 Definition Given a premonoidal category AC, define the centre of AC, de-

noted Z()C), to be the subcategory of AC consisting of all the objects of AC and the 

central morphisms. 

For an example of the centre of a premonoidal category, consider Example 8.2.1 

for the case of C being the category Set of small sets, with symmetric monoidal 

structure given by finite products. Suppose S has at least two elements. Then 

the centre of AC is precisely Set. In general, given a strong monad on a symmetric 

monoidal category, the base category C need not be the centre of Kleisli(T), but, 

modulo a faithfulness condition sometimes called the mono requirement Mog89, 

PR971, must be a subcategory of the centre. 

The functors hA and kA preserve central maps. So we have 
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8.2.6 Proposition The centre of a premonoidal category is a monoidal category. 

This proposition allows us to prove a coherence result for premonoidal cat-

egories, directly generalising the usual coherence result for monoidal categories. 

Details appear in [PR97]. 

8.2.7 Definition A symmetry for a premonoidal category is a central natural 

isomorphism with components c: A® B -+ B ® A, satisfying the two conditions 

C2 = 1 and equality of the evident two maps from (A (D B) ® C to C ® (A 0 B). 

A symmetric premonoidal category is a premonoidal category together with a 

symmetry. 

All of the examples of premonoidal categories we have discussed so far are 

symmetric, and in fact, symmetric premonoidal categories are those of primary 

interest to us, and seem to be those of primary interest in denotational semantics 

in general. For an example of a premonoidal category that is not symmetric, 

consider, given any category C, the category End,, (C) whose objects are functors 

from C to itself, and for which an arrow from h to k is a C-indexed family of 

arrows a(A) : h(A) -4 k(A) in C, i.e., what would be a natural transformation 

from h to k but without assuming commutativity of the naturality squares. Then, 

this category, together with the usual composition of functors, has the structure 

of a strict premonoidal category, i.e., a premonoidal category in which all the 

structural isomorphisms are identities, which is certainly not symmetric. 

8.2.8 Definition A strict premonoidalfunctor is a functor that preserves all the 

structure and sends central maps to central maps. 

One may similarly generalise the definition of strict symmetric monoidal func-

tor to strict symmetric premonoidal functor. 

In order to compare the various models of environments in the next section, we 

need to study a construction that, to a premonoidal category, assigns a Cat-valued 

functor. 

8.2.9 Definition A comonoid in a premonoidal category K consists of an object 

C of K, and central maps 6 : C -* C 0 C and v: C -+ I making the usual 

associativity and unit diagrams commute. 

It follows from centrality of the two maps in the definition of comonoid that one 

has the usual coherence for a comonoid, i.e., n-fold associativity is well defined, 

and comultiple products with counits are also well defined. 
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8.2.10 Definition A comonoid map from C to D in a premonoidal category IC 

is a central map f C -* D that commutes with the comultiplications and 

counits of the comonoids. 

Again, it follows from centrality that a comonoid map preserves multiple applica-

tion of comultiplication and counits. Given a premonoidal category IC, comonoids 

and comonoid maps in K; form a category Comon(K) with composition given 

by that of IC. Moreover, any strict premonoidal functor sends a comonoid to 

a comonoid, so any strict premonoidal functor H : K; - £ lifts to a functor 

Comon(H) : Comon(IC) -p (L). 

Trivially, any comonoid C in a premonoidal category K; yields a comonad 

on IC given by - ® C, and any comonoid map f : C -p D yields a map of 

comonads from - ® C to - ® D, and hence a functor from Kleisli(— (& D), the 

Kleisli category of the comonad - ® D, to Kleisli(— ® C), that is the identity 

on objects. So we have a functor from Comon(C)°P to Cat, which we denote by 

s(/C). See [PR97] for this construction and another application of it. 

Now, given a category C with finite products, every object A of C has a unique 

comonoid structure, given by the diagonal and the unique map to the terminal 

object. So Comon(C) is isomorphic to C. 

Thus, given a category C with finite products, a premonoidal category IC, and 

a strict premonoidal functor J : C -+ K, we have a functor ic(J) C°1 -+ Cat 

given by s(IC) composed with the functor induced by J from C Comon(C) to 

Comon(IC). 

8.3 k-categories 

In this section, we introduce r,-categories, and show that the construction at the 

end of Section 8.2 yields an equivalence between premonoidal categories with 

added structure as we shall make precise, and ic-categories. 

Hasegawa has decomposed the )-calculus into two calculi, the ic-calculus, and 

the (-calculus IHas951. This analysis arose from study of Hagino's categorical 

programming language. The idea of the ic-calculus, also known as the contextual 

calculus, is that it has product types on which its abstraction and reduction are 

constructed, and it can be regarded as a reformulation of the first-order fragment 

of simply-typed A-calculus, but does not require the exponent types. We do not 

explicitly present the r,-calculus here. However, we do describe the notion of ic-

category, which is a categorical analogue of the definition of r,-calculus. Further, 

we compare the notion of r,-category with that of symmetric premonoidal category 
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with a extra structure. That relationship is one of the main theorems of the 

chapter, which we later extend to relate our two main models of continuations. 

Given a small category C, a functor from COP to Cat is called an indexed 

category, a natural transformation between two indexed categories is called an 

indexed functor. The notion of indexed natural transformation is definable too, 

and this gives us a evident notion of adjunction between indexed categories. In 

concrete terms, it amounts to an ObC-indexed family of adjunctions, such that 

the units and counits are preserved by reindexing along each f : A —+ B. And 

given an indexed category H : COP —4 Cat, we denote by H° COP Cat the 

indexed functor for which HAOP = (HA) °' with HfOP  defined by H1 . 

We will need the definitions of HOP and adjunctions between indexed cate-

gories in later sections to extend the notion of a functor being self-adjoint on 

the left, as in the semantics for continuations with premonoidal structure used to 

model environments in Chapter4 to that of an indexed functor being self-adjoint 

on the left as in the semantics for continutations using k-categories to model 

environments in Section 8.4. But now for our definition of k-category. 

8.3.1 Definition A k-category consists of a small category C with finite prod-

ucts, together with an indexed category H : C°' —+ Cat such that 

. for each object A of C, ObH A  = ObC, and for each arrow f A —+ B in 

C, the functor H1  : HB —p HA is the identity on objects 

. for each projection ir : B x A —* B in C, the functor H, has a left adjoint 

LB given on objects by — x A 

• (the Beck-Chevalley condition) for every arrow f: B —+ B' in C, the nat-

ural transformation from LBoHfxid A  to H1  OLBF induced by the adjointness 

is an isomorphism. 
LB' 

HB'XA 	 HB' 

HfxidAI 	

Hf 

HBXA 	
LB

:. H 

We shall denote the isomorphism associated with the adjunctions given in the 

definition by 

ic: HB X A(C,C') HB(C x A,C'). 

A k-category allows us to model the environments in the presence of continu-

ations or other computational effects. Of course, modelling computational effects 
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involves more structure than that of a r,-category: for continuations, it requires 

the assignment to each type r of a type -'r that awaits an input of type r. We 

shall study such structure in Section 8.4, where we shall define an indexed 

category. But here, we restrict out attention to modelling environments, and we 

shall pursue our leading example, that of continuations, later. 

8.3.2 Proposition Given a r,-category H : C° —* Cat, there is an indexed 

functor mc: s(C) —* H as follows: for each A in C, we have a functor from s(CA) 

to HA. On objects, it is the identity. To define inc 1  on arrows, given f : A —* B 
in C, consider the arrow LB : 1 —+ B in HB corresponding under the adjunction to 

idB  in H1 . Applying H1  to it gives a map Hf(LB) : 1 —* B in HA, or equivalently, 

under the adjunction, a map from A to B in H1 . Define inc i ( f) to be that map. 

I 
1 	 A 	-B 	 1 

A 	 1 	 1 	 B 

inci(f) 	
Hf(tB)1 	

H1 	A 	tB 	 I idB 

B 	B 	B 	B 

This plus naturality determines the rest of the structure. 

PROOF It is immediate that inc, preserves identities, and one can prove that 

it preserves composition: this follows by proving that for any map f : A —+ B in 

C and any map g: 1 —+ C in HB, the map H1  (g) corresponds to the composite 

in H1  of Inc 1  (f) with the adjoint correspondent to g. Moreover, this yields a 

functor IflCA for every A, with naturality as required. 

Using proposition 8.3.2, we can exhibit the relationship between symmet-

ric premonoidal categories with specified extra structure and ic-categories. This 

forms the basis for the first main result of the chapter, Prop 8.3.4. First, for the 

construction of a ic-category from a symmetric premonoidal category, we have 

8.3.3 Proposition Given a small category C with finite products, a small sym-

metric premonoidal category IC and an identity on objects strict symmetric pre-

monoidal functor J : C —+ PC, the functor ic(J) : C°' —+ Cat is a ic-category. 

PROOF It follows immediately from the construction of ic(J) in Section 8.2 that 

for each object A of C, we have Obic(J)A = ObC, and that for each arrow 

f : A —+ B in C, the functor ic(J) 1  is the identity on objects. Moreover, the 

existence of the adjoints to each ,c(J), follows directly from the construction and 
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the fact that C is symmetric. The Beck-Chevalley condition also follows directly 

from the construction. 	 0 

Now, for the converse, giving our first main result of the chapter. 

8.3.4 Proposition Let C be a small category with finite products. Given a it-

category H : C°1) —4 Cat, there are a symmetric premonoidal category K; and an 

identity on objects strict symmetric premonoidal functor J C —+ K, unique up 

to isomorphism, for which H is isomorphic to ic(J). 

PROOF Define K; to be H1 . For each object A of ?C, equally A an object of C 

since 0bH1  = ObC, define — 0 A : K —p K; by the composite L o H where 

A —* 1 is the unique map in C from A to 1. Note that ! is of the form 

ir, so the left adjoint exists. Moreover, for each map g C —+ C' in K, we 

have g®A: C  A —+ C' x A. The rest of the data and axioms to make Ka 

symmetric premonoidal category arise by routine calculation, using the symmetric 

monoidal structure of C determined by its finite product structure, and by use of 

the Beck-Chevalley condition. 

Define J : C —* K by inc 1  as in proposition 8.3.2. It follows from the Beck-

Chevalley condition that for a map f: A —+ B in C, and for a map g: C -+ D 

in HB, we have that H1  (g) is given by the composite of J(idc x f) with the 

adjoint correspondent of g. The Beck-Chevalley condition further implies that 

(inc i —)® A agrees with inc i (— x A). It follows from functoriality of the H1 's that 

every map in C is sent into the centre of K. Functoriality plus the Beck-Chevalley 

condition similarly imply that all the structural maps are preserved. So J is an 

identity on objects strict symmetric premonoidal functor. 

It follows directly from our construction of J that K(J) is isomorphic to H. 

Moreover, J C —+ K is fully determined by H since C is fixed, K must be H1  up 

to isomorphism, with premonoidal structure as given, and J must agree on maps 

with the construction as we have given it. Hence, J is unique up to isomorphism. 

0 

8.4 Continuation semantics in indexed -i-categories 

In this section, we use the definition of ic-category as a basis, together with self-

adjointness, for defining the notion of an indexed -'-category. We then use that 

latter definition to give our third continuations semantics. In the final section, 

we shall prove that it is essentially equivalent to the second, i.e., that given by 

(9--categories. 
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8.4.1 Definition An indexed -'-category consists of a r,-category H C° —* Cat 

together with an indexed functor - H° —* s(C) such that inco - is self-adjoint 

on the left, together with a coretract thunk of force1 o mc, where force is the unit 

of the self-adjunction, such that 

. force is dinatural in A with respect to all maps in H1  and 

• letting (forceA)B  be the correspondent under the adjunction to LAH,((forcel)B), 

we have 

-'force 1  = thunk, 

thunk;-'--iforce = force;thunk 

thunkA x c = A x thunkc ; A x -'force; force 

ic'(idcX A) = —'c(LH(forcei)); forcec 

The left adjoint to reindexing along projections gives rise to a comonad on 

each fibre, which we will write as (_) ® A. Furthermore , using mc, we have a 

diagonal map 6A  A —+ A ® A in each fibre. 

The thinking behind the definition is as follows. The category C with its finite 

product structure allows us to model an environment as the product of the types 

it contains. In the indexed category, program phrases defined in an environment 

will be modelled as elements in the fibre over the denotation of that environment. 

ciiI1 x 	x ftcrfl 

x:HM:r 

H 

The isomorphism of adjunction ic is a first order binding construct that allows 

us to make the dependency of a program phrase on certain variables explicit. The 

negation functor is much as before, except that it now acts on those variables 

explicitly singled out by a previous ic. 

FxC 	F 	 F 	F 

K 
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The motivation for the axioms is as for Ø-'-categories, except that here, we can 

avoid one of the axioms as it follows from the indexing of -. However, we need 

our last axiom here in order to make the indexing of -' coherent: intuitively, it 

means that negating the retrieving of a value of type C from the environment 

to cons a value of type C to a value of type A gives us an operation of partially 

satisfying demand for a value of type C while leaving the demand for a value of 

type A untouched. 

This formalism, unlike that for a ® -'-category, separates the data and the 

control mechanisms. The indexed functor - is in some sense oblivious to the 

indexed structure with which first order data manipulation is described. We do 

not want control to interfere with any data with which it is not concerned. So 

the ability to model continuations with indexed categories as we do here is a 

clear indication that we have separated the two. In the final section, we show 

that this modelling is essentially equivalent to that using premonoidal categories 

and self-adjointness. We take this as evidence that modelling continuations by 

self- adj ointness is a robust notion in the sense that it is not overly sensitive to 

the way we model environments, as we could model them in two different ways, 

in each case fitting the self- adj ointness into this framework. 

To model )+ca11cc, types are interpreted as objects in C. Environments are 

interpreted using the product in C. 

def 
= 
	

ft
Tj 
 

def 
= 
def = 	ftTiflX ... XftT7J 

A judgement F I- M : i-  denotes an element Jr F- M : TJ : 1 —*JTJ in the fibre 

over ft['fl. 

[[F I- )x.M : a —+ T}] 

[[F 1- throw M N: a]] 

[[F I- callcc M : i- ]] 

[[F F- MN: 

! H rj k 1 (d1rj1) 
def 

thunk; -i(ic--iftF, x : a F- M : 

[[F F- M : -ir]];-(,c(H, 1 ftF F-N: T]])); force 
def = 	ftFF-M:-'T---*r]];--'8;force 

ftFF- M:a-~ rfl;-1(ftFF-N:afl®ftTfl);force 

Again, the semantics as such is not the topic of the present chapter. We only give 

some hint at how it is intended to work. 

We write a morphism from X to Y in the fibre over C as 

x 
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The most interesting clause is the one for A-abstraction in that abstracting over 

a variable implies moving from one fibre to another. 

In a more traditional (call-by-name) setting, ). would be interpreted by means 

of an adjoint to reindexing. Here, it is more elaborate, as it is decomposed into 

the first-order abstraction given by the structure on the fibration on the one hand 

and the fibrewise "negation" given by the continuation functor on the other. 

A judgement F, x : a F- M : r denotes a morphism 

1Irxfr 	
7-fl 

Negating this given an arrow 

-'1 

which, by virtue of ic, amounts to 

X -'fril 	Irl 	> -'1 

Negating this yields a morphism 

--i-il
Ii 

 > -'([afl X -'11 1 ) 

All that remains to be done in order to get the meaning of Ax.M is to precompose 

with thunk: 1 —+ -i---'l, taking care of the double negation: 

1 	 –'--ii 	 -'(11ah x -iftrfl) 
I'i 

8.5 Relating ®-'-categories and indexed -i-categories 

In this final section of the chapter, we build upon the equivalence between Ic-

categories and symmetric premonoidal categories with the extra structure speci-

fied in Proposition 8.3.4 to relate 0--categories and indexed --categories. They 

are almost but not quite equivalent. The only difference lies implicit in Propo-

sition 8.3.4: for our definition of ®-'-category, we assert that the centre of our 

category has finite products, whereas Proposition 8.3.4 merely asserts that we 

have a category with finite products mapping, as the identity on objects, into the 

centre of our category. We regard this as a minor difference, as the latter merely 

extends the former mildly without changing any other structure. 
del 

Let öA = ( id A , id A ) : A —p A ® A 

Let K be a 0--category. Let *A be the Kleisli composition 

del 
f*Ag = ( iri , id);A®f®g 
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Define A : K1eis1i(A ® 	
) O) 	K1eis1i z( ,c) (A x (_)) by -'AB = B on 

objects and by 
def 

'Af = A®-'f;apply 

on morphisms. This is well-defined: A ® -'f is central, because -if is, and 

apply = apply; thunk; -'thunk = thunk; -i--iapply; -ithunk 

is also central. 
def 

Define forceA : -'A -'AB —+ B in K1eis1i(A (9 (_)) by forceA = 7F2; apply 1 . 

'A preserves identities 72  : A ® B —+ B because 

'A (72) 

= - A(!(9B) 

= A®-'(!(9B);A® -'(A®apply l );applyA  

= A®-'(A®apply l ;!®B);applyA  

= A ® -'(! ® -'-'B; 10 apply 1 ); applyA 

= A ® -(1 ® apply 1 ); A ® -i(! ® ----' B); applyA 

= A ® -(1 ® apply 1 ); ! ® -'( 1 (9 -'--'B); apply 1  

= A 0 -i(apply 1 );! 0 -i--i--iB; apply 1  

= ! ® -'B; 10 -'(apply1 ); apply 1  

= 7r2 :A®-'B—+-'B 

'A preserves composition: let f : A ® B —+ C and g: A 0 C —+ D. Then 

'A(f *A g) 

= -i A (SA ®B;A®f;g) 

= A® —'(8A 0 B;A(g f;g);A 0 -'(A(& apply 1 ); apply 

= A® -'(A®apply l ;5A ®B;A(gf;g);apply 

= 4 ®A®A®C;A®A®g;A®A®(A(gf) ; apply 
A®A 

'A(f) *A -A (9) 

= 5A 0 -'B; A 0 A 0 -(A& apply 1 ; f); A 0 applyA; A (&-(A  0 apply 1 ; g); apply 
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So the required identity follows from the axiom 

applyA®AI = (7r2, in) 0 -(A ® A' ® -'B); A' (9 apply, applyAl 

and the facts that (7 2 , in) is central and 8; (72 , in) = 6. 

The triangular identity -lAforceA *A forceA = id holds: 

—'AforceA *A forceA 

= 'A (72; apply 1 ) *A forceA 

= (A (D -iapply 1 ; -'A ( 7r2)) *A forceA 

= (A ® -'apply1 ; it2) *A forceA 

= 6A ® - iB; A® A® -iapply 1 ;A ® 72 ; ir2 ;apply 1  

= A® -'apply 1 ; 6A ® -'--i-iB; A® 72; it2; apply 1  

= A®-'apply 1 ;ir2;apply 1  

= A ® -iapply1 ; ! ® -'--'--'B; apply 1  

= ! ® -'B; 1 ® -'apply 1 ; apply 1  

= 72 ; -iapply 1 ; apply 1  

= 

force is natural: 

'A'Af *A force A  

= A ® -'(A (9 - 'f; apply); apply ; apply 1  

= A® -'apply; A® -i(A (D -if);  apply4 

= A® —apply ;apply;f 

= A®apply1 ;f 

= force A  *A f 

Putting this all together, it follows that we have 

8.5.1 Proposition Given a 0--category, (IC, - , apply, thunk), the construction 

(i'c(J), 'A,  force A ) as above, together with the given thunk, give an indexed 

category. 

PROOF Most of the proof is given above. For the rest, the axioms hold simply 

because the category H1  is given by K. 	 0 

8.5.2 Proposition Given a symmetric premonoidal category IC for which the 

premonoidal structure restricts to finite product structure on the centre, to extend 
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this to the structure of a ®-'-category is equivalent to extending the structure of 

the ic-category ic(J) to that of an indexed -'-category. 

PROOF We need to prove that the construction of the proposition is a bijection 

up to isomorphism. Given an indexed —'-category, one can obtain a 0--category 

by considering H1 . In order to show that the construction applied to that ®--

category yields the original indexed -'-category, everything is routine provided one 

can show that for any indexed -'-category, the behaviour of on H1  determines 

its behaviour on HA for all A. But this follows from the fact that -' is indexed 

and from the final axiom. El 

There is little difference between the notions of indexed -'-category and 0-- 

category. The only difference between them lies in the choice of an explicitly 

given category with finite products and an identity on objects strict monoidal 

functor into a symmetric premonoidal category rather than consideration of a 

property of the centre. The former is the structure given naturally by an indexed 

-n-category. Computationally, it is natural to assume that in the presence of first-

class continuations the whole of the centre admits finite products. This is because 

the self-adjoint structure allows every central morphism to be reified, as explained 

in section 6.3. 
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Chapter 9 

Towards a graphical representation 
of CPS 

In this chapter, we present a graphical notation that may be seen as an extreme 

distillation of CPS (a negation-only fragment). This graphical representation 

relates to CPS roughly as Miler's graphical action structure PlC [Mi193] for the 

ir-calculus relates to the full ir-calculus. We may regard it as giving some insight, 

though the match with CPS is not a perfect one. (See also [Mi194] and [Par951.) 

Given the composition and identity definable in the calculus, we naturally 

arrive at a ("CPS") monoid. Despite its simplicity it has some of the deeper 

structure characteristic of CPS: considered as a one-object category, it comes 

equipped with a contravariant functor self-adjoint on the left and on the right. 

Among the aspects of CPS that can be illustrated by the graphical presenta-

tion we would like to point out the following: 

. The self adjointness, and in particular 

. a view of the isomorphism of adjunction as turning a program upside down 

. A view of variables as nodes in a graph or pointers 

While our graphical formalism allows to visualise the above, it fails to address 

other aspects of CPS. The self- adj ointness "degenerates" (in the sense of a line 

degenerating to a point, say) to a duality. However, the degeneracy is not a 

collapse (in the sense that all morphisms are equal). 

9.1 A graphical calculus 

The 	-calculus consists of boxes EJ possibly containing "bullets" ., linked 

by directed edges 
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An arrow can be linked (on either end) to the box or the bullet it contains; 

hence there are four possible ways (apart from the direction of the arrow) in which 

two boxes can be linked. 

If nothing connects to the bullet, we omit it. 

The calculus has the following four rules: 

= - 	(a) 

	

EII> 	= 	('8) 

	

EII 	= 	( ij) 

L1-111111 = LIII 	(a) 

Strictly speaking, these rewrite rules are only a shorthand for a more complicated 

pattern matching. In the last two laws, the two boxes are to be fused into one; 

this (and if there is one, the • inside) inherits all arrows connected to either of 

the fused boxes. For example, applying ij may look like this: 

9.2 Duality, or inside out 

We point out two dualities. Poincaré duality: the rOles of boxes and arrows are 

interchanged, while the bullet/box distinction remains: 

is dual to 	0- 
is dual to 	 LIII 

While the Poincaré duality appears to reflect a certain symmetry of the formal 

set-up, the second duality, that between boxes and bullets may be more relevant 

as an operation. 

-III 	is dual to 	_____ 

is_  dual _to 

150 



This latter duality can be regarded as "turning inside out" inasmuch as the dual 

of putting the left box into the one on the right 

is given by putting the right box into the left one 

The rules are connected by the dualities like this: 

Poincaré 

(a) 	(a) 
bullet/ 

box 	
C@) 	(i) 

So up to the two dualities, the four laws are only a single law, stating that 

connected things at the same level of box nesting can be merged. 

9.3 The CPS monoid 

The elements of the CPS monoids are finite nonempty sequences of boxes, where 

any two adjacent ones are connected in one of the eight possible ways, i.e. any 

box/bullet combination and any direction of the connecting arrow. We usually 

draw these vertically or, to save space, from left to right. Elements which can 

be proved equal using the laws are identified (so the elements of the monoid are 

actually equivalence classes, but this will be glossed over by representative-wise 

definitions etc.). 

We use 

LIF>L1 
as a meta-notation ranging over morphisms. Here are some examples of mor -

phisms that will be used later. 

id 	 force 	 thunk 
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In addition to these constants, we also have operations on morphisms. For mor-

phisms f and g, the composition f; g, the negation -if and the transpose Of are 

defined as follows: 

f;g 	-,f 	Of 

The associativity of composition is trivial. 

We write proofs of equations about the CPS monoid as sequences of graphs 

side by side, with adjacent graphs transformed into each other by one rewrite 

step. id  is the identity: 

=0 Y =77  Y 

9.4 Self-adjointness, or upside down 

9.4.1 Proposition -i is a contravariant functor right adjoint to its dual. force is 

both the unit and counit of this adjunction. 

PROOF 

-' preserves identities -'id = id: 
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- preserves composition -'g; -'f = -'(1; g): 

- is natural: -'--if; force = force; f 

T T 
f 	f 	I 	I 
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triangular identity for -I: -'force; force = id 

This completes the proof of the adjointness. Notice that the adjoint correspondent 

of a morphism f is just its transpose Of, that is, f upside down. 

The self-adjointness on the right follows from the fact that force and thunk are 

actually inverses in this model, i.e. force; thunk = id. Hence force is the unit of a 

duality; but then so is its inverse thunk. 

9.5 A semantics for linear unary CPS calculus 

Recall the typing of linear unary CPS calculus. 

xIc I- 
	 xk I- x(k) 

xnl-M ykl-N 
	

nkl-M yxl-N 

xk I- M{n(y)=N} 
	

xk I- M{n(y)=N} 
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We can give a semantics for the linear unary CPS-calculus in the 	- 

monoid 

ftxkF- k(x)fl 	 jxkF-x(k)fl 

ftzk F- M{n(y)=N}fl 	 frk I- Mjn(y)=Njj 	[ 
IxnFM1I 	 lyxI- N 

LJ 	 L 

lykFNJj 

This semantics can be summed up in the following recipe for drawing the graph-

ical representation of a term. To translate a linear unary CPS term, do the 

following:- 

a-convert if necessary, making all variables pairwise distinct; 

. draw a box for each variable; 

. for every subterm of the form k(x), draw an arrow from the box for x to a 

bullet in the box for k; 

• for every subterm of the form M{n(x)=N}, draw an arrow from a bullet in 

the box for N to the box for x. 

9.6 Duality and degeneracy 

Put crudely, the graphical representation can account for ... ( ... ), but not . . . {... = 
.}. This is analogous to the way PlC does not account for guarding [Mil94]. 

The self- adj ointness and the duality appear closely connected. 

Somewhat more ominously, we have 

force; thunk = Id 

This means that force and thunk are both isomorphisms; hence both self-adjointnesses 

collapse to a duality. 
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Thus this calculus is a degenerate model even of the tiny fragment of CPS that 

it can describe, as it does not adequately account for reification. It is reification 

(wrapping things into closures) that makes a proper CPS negation non-involutive. 

On the other hand, the calculus has a great deal of the intuitive flavour of CPS; 

and if the missing ingredient is indeed only reification, we could hope for the 

following connection between CPS negation (self-adjointness, unit not iso) and 

classical negation (duality): 

CPS - reification = duality = classical negation 

If this is so, one should get a classical negation from CPS by adding a law for 

dissolving closures: 

classical negation = CPS + (—reification) 

So the degeneracy of this model may actually be useful for exploring those con-

nections in a simplified setting. Note that attempting to add extra axioms to the 

CPS calculus in order to enforce "classicality" will quite easily lead to collapse, 

e.g. if one makes force; thunk = id by adding the following axiom 

h(k){k(a)=n(f){f(p)p(a)}} = n(h) 	(INv) 

This issue of the degeneracy of a self- adj ointness (for instance to a duality), is 

also explored in Masahito Hasegawa's manuscript [Has97). 

Preliminary though they are, the ideas in this chapter may lead to two com-

plementary directions for further work. On the one hand, we could attempt to 

add extra structure on the graphs to represent reification. A conventional way 

to do this would be to add boxes to encapsulate certain subgraphs and preclude 

certain reductions, as in [Mi1941 and [Par95]. 

On the other hand, the duality aspects of CPS may become clearer if ad-

dressed in a setting where there actually is a duality functor. Duality seems to 

have a powerful, though somewhat ambiguous, influence on intuitions about con-

tinuations. (For instance, the subtitle of Filinski's early categorical account of 

continuations is "an investigation of duality".) 

A related point is the duality on terms from section 3.6, which can be visual-

ized here as the box/bullet duality. 
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Chapter 10 

Conclusions and directions for 
further research 

10.1 Conclusions 

We have tried to show that continuations are a universal raw material from which 

low-level as well as high-level programming language constructs can be crafted. 

The categorical properties of the operations, such as force basically being the unit 

of adjunction, appear to defy common prejudices against control manipulation as 

excessively low-level and unprincipled. Like functions, continuations scale up well, 

but unlike functions, they do not require "purity". That is to say, the adjunction is 

not destroyed by the addition of effects in the style done by call-by-value languages 

like ML or Scheme. 

To some extent what we have attempted here is a bridge-building effort be-

tween a tradition of semantics, centred around a few institutions in the USA, 

relying much more on metacircular interpreters for Scheme than on, say, domains 

and the more mathematically inclined European (predominantly British) tradi-

tion. Whether or not the Schemers need anyone to tell them that there is an 

adjointness about remains to be seen, but we believe that for the European tra-

dition of semantics, it is of particular importance to maintain the link between 

theoretical fields such as categorical semantics and programming languages. 

10.2 Directions for further work 

10.2.1 Language design 

The self- adj ointness seems characteristic of continuations that are first-class as 

well as statically bound. Neither ML-style exceptions nor a Lisp-style (dynam- 

ically bound) catch construct appear to give rise to this kind of structure. We 
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conjecture, then, that self-adjointness is a semantic criterion that sets first-class 

continuations apart. 

Perhaps the best use of category theory in the semantics of programming 

languages is to rationalise semantic definitions [Ten9l]; we hope to add more 

objective reasons to the general impression that continuations are, for lack of a 

better word, "cool". (This may even lend some moral support to the cause of their 

inclusion in future ML-like languages, whether idealised or real.) 

The treatment of continuations in the type system of Standard ML of New 

Jersey is already fairly conducive to our semantic views of them (not least because 

it shaped them in the first place). A suggestion that we could offer is to facili-

tate passing between functions and continuations, by making it easy to convert 

between, or even identifying arrow types a -+ r with special continuations, i.e. 

-'(a * 

In traditional imperative languages, both functions and continuations (in the 

form of jump labels, say) are very far from being first-class: both can be intro-

duced only as compile-time literals. 

But semantically (even more categorically) it is precisely the first-class ver-

sion that is more natural. First-class functions (of different flavours) give rise 

to cartesian, or monoidal, or central, closure. First-class continuations give self-

adj ointness. 

On the basis of that, we would argue that callcc is the natural choice of con-

trol operator. While advanced, it is not particularly incomprehensible. Attempts 

to "improve" on it may be counterproductive. 

The drive for first-class notions without arbitrary restrictions (as well as the 

related principle of orthogonality of such notions), appears to be one of the major 

feedbacks from semantics into practice, in particular language design, and on a 

more everyday level, programming language teaching. 

(Given that first-class control is more natural than plain goto in that it enjoys 

universal properties, one could be led to speculate whether there is not a notion 

of first-class state more natural than plain ":".) 

10.2.2 Applications to programming 

While Scheme in particular is expression-oriented, the categorical combinators 

could form the basis for a more composition-oriented approach to continuations. 

We conjecture that they, together with a recursive (reflexive?) continuation 

type, could be used as a set of primitives for upward (in the sense of [FWH92]) 

continuations and coroutines in particular. (See also sections 1.1.2 and 1.2) in 
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the introduction. 

A related point is that we seem to be almost forced to define a continuation 

transformer akin to the negation functor for reasoning about callcc in the setting 

of an ML style typing of continuations. See 7.1.1. 

10.2.3 Relation to ir- and related calculi 

Continuation Passing Style transformations have been studied primarily as a 

translation between different versions of A calculus. Such a translation between 

different A-calculi is indifferent to the calling mechanism of the target calculus. 

What appears to have been studied much less (although it underlies CPS com-

piling) is that CPS is indifferent even as to whether the target language is a 

A-calculus at all, in that function application is translated into a kind of message 

passing between caller and callee. In that sense, CPS transforms are closer in 

spirit to ir-calculus and related formalisms than to A-calculi. 

Much of the expressiveness of the ir-calculus appears to be due to the fact 

that its "first-class" names can be used to implement generalized first-class con-

tinuations. We propose to find criteria for when names are used in such a CPS 

discipline, in order to scale up some of the essentially simple structure of CPS 

from the sequential to a concurrent scenario. In particular, a categorical charac-

terization of continuation types appears to be quite robust in the sequential case, 

so that a generalisation to channels used as continuations appears possible. This 

would allow the isolation of a class of well-behaved computations lying properly 

between the purely functional and the fully concurrent. The ability of the lan-

guages in this class to accommodate (generalized) continuations would provide a 

more modular account of their expressive power. This would automatically entail 

the existence of encodings (CPS transforms) of various evaluation strategies for 

the A-calculus, with control operators for free. 

A related use of CPS as a unifying principle would be to take the existence of 

a CPS transform between two languages as a comparison of their expressiveness. 

We conjecture that a CPS discipline can be found not only in A-calculus encodings 

[Bou97], but also in Sangiorgi's translation of Higher Order ir-calculus back into 

the ir-calculus. 

We hope to explore these connections and extend the analysis of CPS as 

a particularly structured form of name-passing. Dually, given the popularity 

of graphical representations in concurrency, aspects of CPS could perhaps be 

elucidated by building on graphical presentations of, say, the ir-calculus. Other 

techniques from concurrency that could profitably be conferred on CPS include 
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contextual notions of equivalence and bisimulation. 

Among the uses of CPS in compiling, we may distinguish between optimisa-

tions and translations to more low-level constructs. 

The former do not change the character of the language: they re-write A-terms 

into other, more efficient, A-terms. The latter eliminate the A altogether in favour 

of jumps with arguments. 

In [FSDF93], it is argued that CPS is superfluous for optimisation purposes, 

as one can optimise while staying in the source language by so-called A-reductions 

that allow the same optimisations to be made as after a CPS transform. That 

would imply that CPS transforms, if considered as transforms from the A-calculus 

to itself, are of little use to compiling. That would shift the emphasis to the other 

aspect of CPS, which we have attempted to address here, namely breaking down 

the A's, as it were. 

10.2.4 The expressive power of callcc 

Section 6.7 consitutes preliminary evidence to the discriminating power of tt 

callcc. It seems possible that the equivalence induced on A-terms by the Plotkin 

CPS transform (M and N are equivalent if M = N) is similarly fine-grained to 

that given by Miler's ir-calculus encoding, which coincides with the Levy-Longo 

tree equality [5an94]. Specifically, the presence of first-class continuations allows 

to distinguish values from general computations. 

10.2.5 Internal languages 

Both the concreteness and ease of use of the CPS calculus and the more abstract 

viewpoint based on the self-adjointness are useful, not least because they comple-

ment each other. Their relationship would be clarified if the CPS calculus were, 

in a precise sense, the internal language of a 0--category. 

Similarly, one could hope for a fuller development of the flattened calculi as 

the internal languages for premonoidal categories. 

10.2.6 Robustness 

We have argued informally that the structure that we propose for first-class con-

tinuations is not something specific to the small fragment of programming lan-

guages that we actually studied and that it would still be present in a more 

realistic language with state, I/O and other effects. A connection with state has 

been sketched in section 7.4. 
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10.2.7 Refinement of the standard model 

As a first refinement of the standard model, we propose that some care should 

be taken in the choice of the result type R. Of course, literally any type in C 

could be taken as the result type, but it should be clear that the choice of the 

terminal object yields a trivial interpretation. Other choices, such as a NNO are 

more defensible and possibly sufficient for PCF-like languages [SF90]. 

As one of the fundamental properties of the CPS transform is its being poly -

morphic in the result type, we would argue that this should be reflected in the 

model. 

Realizability models have enough structure to allow for such a polymorphic 

result type. In the terminology of [FT951, we could take the result type R to be 
(G\ 

the "generic predomain" j. in a slice of the category of assemblies. (While this 
\CoJ 

is probably not the best account of a "generic" type is seems quite sufficient for 

our purposes here.) If we wanted to add recursion, we could simply take the lift 

of this object instead; that would just amount to its fibrewise lift. 

It appears that the abort operator A could not be well typed in this setting. 

No value produced by a program phrase could be polymorphic enough, as it were, 

to inhabit the result type. 

Another conjecture is that in this setting, the control-flow and the domain-

theoretic concepts of lifting should coincide, as on grounds of parametricity one 

would expect, for any base type A, that 

RA 
RA 1  

(The question arises: over how big a collection of types does R have to vary for 

this to hold?) 

10.2.8 Relation to polymorphism and semantics in general 

The difficulties faced when trying to accommodate continuations as morphisms 

with a domain but without a codomain, as it were, are in some ways similar to 

those when attempting to account for polymorphic functions as morphisms with-

out fixed domain and codomain. In each case the mathematical framework seems 

ill-equipped to deal with them, being based on (monomorphic, non-escaping) 

functions. 

There is also a more direct link to polymorphism in continuation semantics. If 

one does model continuations as functions, at least one should wish to do justice 

to the parametricity of the answer type and explore its ramifications. Examples 
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of the latter are the existence or non-existence of the abort operator and control 

delimiters and the issue of full abstraction without them. Felleisen and Sabry 

show that in their model, control operators are necessary for 'full abstraction 

[SF90]. 
The approach in this thesis could help the search for a better denotational 

account inasmuch as it points out what to look for, namely self- adj ointness, and 

what not (exponentials). One of the goals of the present approach was to give an 

account of continuation semantics without answers, so to speak. 
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