
Categorical Structure of Continuation
Passing Style

Hayo Thielecke

Doctor of Philosophy
University of Edinburgh

1997

Abstract

This thesis attempts to make precise the structure inherent in Continuation Pass-

ing Style (CPS).

We emphasize that CPS translates)-calculus into a very basic calculus that

does not have functions as primitive.

We give an abstract categorical presentation of continuation semantics by

taking the continuation type constructor -i (or cont in Standard ML of New

Jersey) as primitive. This constructor on types extends to a contravariant functor

on terms which is adjoint to itself on the left; restricted to the subcategory of

those programs that do not manipulate the current continuation, it is adjoint to

itself on the right.

The motivating example of such a category is built from (equivalence classes

of typing judgements for) continuation passing style (CPS) terms. The categor -

ical approach suggests a notion of effect-free term as well as some operators for

manipulating continuations. We use these for writing programs that illustrate

our categorical approach and refute some conjectures about control effects.

A call-by-value)-calculus with the control operator callcc can be inter-

preted. Arrow types are broken down into continuation types for argument/result-

continuations pairs, reflecting the fact that CPS compiles functions into a special

case of continuations. Variant translation are possible, among them "lazy" call-

by-name, which can be derived by way of argument thunking, and a genuinely

call-by-name transform. Specialising the semantics to the CPS term model allows

a rational reconstruction of various CPS transforms.

Acknowledgements

I would like to thank my supervisors, Stuart Anderson and John Power.

Thanks for discussions and comments to Olivier Danvy, Matthias Felleisen,

Andrzej Filinski, Michael Fourman, Masahito "Hassei" Hasegawa, John Hatcliff,

Peter O'Hearn, Alan Paxton, Andy Pitts, Jon Riecke, David N. Turner and Phil

Wadler.

Thanks to Glynn Winskel for inviting me to Aarhus for a week.

Diagrams were typeset with X-pic.

I am grateful to my parents for moral and financial support throughout. To

them this thesis is dedicated.

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

Table of Contents

List of Programs 	 4

Chapter 1 	Introduction 6

1.1 	An introduction to continuations in programming languages 	. 7

1.1.1 	An example program 9

1.1.2 	Upward continuations 14

1.1.3 	Continuation Passing Style 15

1.1.4 	CPS as name-passing 17

1.2 	Introducing the continuation functor 18

1.2.1 	The self- adj ointness of higher-order jumping 21

1.2.2 	Alternative control operators 24

1.3 	Related 	Work 26

1.4 	Outline 28

Chapter 2 	The CPS calculus 31

2.1 CPS 	calculus 31

2.2 Recursive CPS calculus 34

2.3 Operational semantics for CPS 35

2.3.1 	Observational congruence 35

2.4 Linear CPS calculus 36

2.4.1 	Linear unary CPS calculus 37

2.5 Constants 37

2.6 Translation from CPS calculus 38

2.7 Idioms and jargon for the CPS calculus 42

Chapter 3 CPS transforms 	 44

3.1 	A survey of CPS transforms45

3.2 A simplified notation for non-recursive CPS49

3.3 Soundness of the uncurrying call-by-name CPS transform 51

3.4 CPS transforms to the ,\- and 7r-calculi54

1

3.4.1 	Prompts and control-specific full abstraction 55

3.5 	Flattening transforms 57

3.5.1 	Flattening applications 58

3.5.2 	Flattening tuples 58

3.6 	A duality on CPS terms 59

3.7 	Two connections between call-by-value and call-by-name 62

3.8 	From flattening tuples to premonoidal categories 64

Chapter 4 ®--categories 	 67

4.1 Introduction: what structure do we need?67

4.2 Semantics of environments in a premonoidal category69

4.3 Continuation types as higher-order structure72

4.4 Some interdependencies of properties75

4.5 ,\-abstraction in a 0--category77

Chapter 5 The CPS term model 80

5.1 Building a category from CPS terms 80

5.1.1 	First-order structure 80

5.1.2 	Application as double negation elimination 81

5.1.3 	Thunking as double negation introduction 83

5.2 The ®-i term model 83

5.3 The indexed -i term model 91

5.4 Recursion in 	CPS 92

5.4.1 	Recursion from iteration 94

Chapter 6 	Effects in the presence of first-class continuations 95

6.1 Using the current continuation twice 96

6.1.1 	Writing twicecc compositionally 96

6.2 Copying and discarding 99

6.2.1 	twicecc is not thunkable 102

6.2.2 	Cancellable and copyable are orthogonal 102

6.2.3 	First-class control is not an idempotent effect 103

6.3 Centrality and effect-freeness 104

6.3.1 	twicecc is not central 107

6.4 Another non-copyability result 110

6.5 The failure of Laird's bootstrapping of force 114

6.6 Cross reference to preceding chapters 117

6.7 Discriminating)x.xx and)x.x(Ay.xy) under call by name 	. . 117

2

Chapter 7 	Categorical semantics in ®--categories 123

7.1 Call-by-value semantics 123

7.1.1 	The naturality of callcc 124

7.2 Plotkin call-by-name semantics and variants 124

7.3 Uncurrying call-by-name semantics 126

7.4 State and meta-continuation-passing 127

7.5 Categorical semantics for CPS calculus 128

7.5.1 	Continuation Grabbing Style semantics for CPS-calculus 128

7.5.2 	Back to Direct Style semantics for CPS-calculus 129

Chapter 8 Indexed -i-categories 	 134

	

8.1 	Environments as indices134

	

8.2 	Premonoidal categories136

	

8.3 	r,-categories139

8.4 Continuation semantics in indexed -'-categories142

8.5 Relating 0--categories and indexed -i-categories145

Chapter 9 	Towards a graphical representation of CPS 149

9.1 A graphical calculus 149

9.2 Duality, 	or inside out 150

9.3 The CPS monoid 151

9.4 Self- adj ointness, or upside down 152

9.5 A semantics for linear unary CPS calculus 154

9.6 Duality and degeneracy 155

Chapter 10 Conclusions and directions for further research 157

10.1 	Conclusions 157

10.2 	Directions for further work 157

10.2.1 Language design 157

10.2.2 Applications to programming 158

10.2.3 Relation to ir- and related calculi 159

10.2.4 The expressive power of callcc 160

10.2.5 Internal languages 160

10.2.6 Robustness 160

10.2.7 Refinement of the standard model 161

10.2.8 Relation to polymorphism and semantics in general 	 161

Bibliography 	 163

3

List of Programs

1.1 Two jumps in C 8

1.2 Two jumps in ML 8

1.3 Two jumps in Scheme 8

1.4 remberuptolast in ML 9

1.5 remberuptolast without consing in ML 10

1.6 remberuptolas-t without consing in Scheme 10

1.7 rernberuptolast with dragging a pointer across the list (In ML) 12

1.8 remberuptolast with dragging a pointer across the list (In Scheme) 12

1.9 remberuptolast (without consing) with ML exceptions 13

1.10 remberuptolast with explicit passing of a continuation parameter 13

1.11 remberuptolast with explicit passing of a continuation parameter 13

1.12 Categorical combinators for continuations in NJ-SML 19

1.13 Categorical combinators for continuations in Scheme 20

6.1 twicecc in continuation-grabbing style (NJ-SML) 97

6.2 twicecc in continuation-grabbing style (Scheme) 97

6.3 twicecc in compositional style (NJ-SML) 97

6.4 twicecc in compositional style (Scheme) 97

6.5 Effectfulness of twicecc. Copying a computation, copying its re-

sult and a context to distinguish them (NJ-SML) 100

6.6 Effectfulness of twicecc. Copying a computation, copying its re-

suit and a context to distinguish them (Scheme) 100

6.7 force is not copyable (NJ-SML) 101

6.8 force = call/cc is not copyable (Scheme) 101

6.9 force can reify by being precomposed (in ML) 105

6.10 force can reify by being precomposed (in Scheme) 106

6.11 twicecc is not central (shown using I/O) 108

6.12 twicecc is not central (In ML) 108

6.13 twicecc is not central (In Scheme) 109

6.14 argfc cannot be copied (in ML) 111

4

6.15 argf c cannot be copied (in Scheme) 	 . 112

6.16 argfc with local state (in ML) 113

6.17 argf c with local state (in Scheme) 113

6.18 Variant of callcc with void-returning continuations 114

6.19 Laird's bootstrap in ML 115

6.20 Laird's bootstrap in Scheme 115

6.21 Failure of Laird's bootstrap: A distinguishing context in ML . . . 116

6.22 Failure of Laird's bootstrap: A distinguishing context in Scheme . 116

6.23 Distinguishing Ax.xx and)x.x(.Ay.xy) under call by name 121

5

Chapter 1

Introduction

The aim of this thesis is to make explicit the structure underlying continuation

passing style, reifying it, so to speak, by making it less of a style and more of a

structure.

There are (as yet) few programming languages that "have" continuations in

the sense of possessing a language construct for giving unrestricted access to

continuations. In a wider sense, however, most programming languages "have"

continuations in some sense or another. In contemporary Computer Science,

continuations may appear in various settings 1 and under different guises, among

them at least the following:

o as a style of semantic definition in denotational semantics, giving meaning

to generalised jumps;

as a programming technique in mostly, or even purely, functional languages

as a programming construct in (mostly/impurely) functional languages

as a compiling technique

Many textbooks on denotational semantics, such as [Ten9l] and [5ch86], contain

some material on continuations in the context of imperative languages.

As a first-class continuation primitive is part of the official definition of Scheme

[Re91], textbooks on Scheme, such as [FF96] typically give some examples of its

use, the most advanced being perhaps [SF89].

The functional programming textbook [Hen87] gives a thorough introduction

to the use of continuations in program transformation and code generation (inter-

estingly, using a purely functional language without control operators which

'We have listed here only what can be considered mainstream in that it appeared in several
textbooks and is tought in undergraduate or at least MSc courses.

can be seen as evidence of the usefulness of continuations as a technique even

without language support.)

Continuations as an implementation technique are used in [FWH92] for a toy

interpreter and in [App92] for the New Jersey ML compiler.

1.1 An introduction to continuations in program-
ming languages

This section is intended to provide some background: the reader familiar with

continuations can safely skip it and jump to section 1.2 below.

The goto familiar from typical imperative (or "heritage") languages like C

corresponds to a conmand continuation [SW74]. The much more powerful 'jump

with arguments", which we will be concerned with, corresponds to expression

continuations. Here a value is passed, or "thrown" along with the transfer of

control, much like the arguments in a function call. These were written with the

special forms valof and resultis in [SW74]; this construct survives in typical

imperative languages only in the case when the block is a function body: in this

case the result of the function is thrown by the return statement.

Incidentally, the reason, in our view, that goto may justly be considered

"harmful" [Dij681 is that it is so weak. In particular, it cannot pass arguments and

can be compared to GOSUB (without arguments) as a cruder and less structured

counterpart of a genuine procedure call.

See figures 1.1, 1.2 and 1.3 on page 8 for examples of jumps with and without

arguments.

We are particularly interested in two aspects of continuations: their use in

giving semantics to control operators, and their use in compiling functions into

more primitive jumps with arguments.

We illustrate the use of the control operator callcc by discussing a simple

example, using both Scheme and (the New Jersey version of) ML in the hope

that the reader may be familiar with one of these.

For Scheme, first-class continuations are part of the language definition [Re91].

In ML they are not, but the New Jersey implementation (see the manual [NJ93])

adds first-class continuations to ML by means of the following signature:

type 'a cont

val callcc : ('ía cont -> 'la) -> 'la

val throw : 'a cont -> 'a -> 'b

7

char* f

return "Threw past the loop.\n";
while(1);

}

main()
{

goto skip;
while (1);
skip: printf("Jumped past the loop.\n");
printf(" °hs", fO);

}

Figure 1.1: Two jumps in C

fun loop x = loop x;

callcc(fn skip =>
loop(throw skip 0));

output(std_out, "Jumped past the loop.\n");

output (std_ out,
callcc(fn skip =>

loop(throw skip "Threw past the loop.\n")));

Figure 1.2: Two jumps in ML

(define (loop x) (loop x))

(begin
(call/cc(lambda (skip)

(loop (skip (list)))))
(write "Jumped past the loop."))

(write
(call/cc(lambda (skip)

(loop (skip "Threw past the loop.")))))

Figure 1.3: Two jumps in Scheme

fun remberuptolast a lat =
callcc(fn skip =>

let fun R [] =
I 	R (b::l) =

if b = a then throw skip (R 1) else b::(R 1)
in

R lat end);

Figure 1.4: remberuptolast in ML

1.1.1 An example program

As an example of the use of expression continuations in programming, we con-

sider the function rember-upto-last form the recent programming textbook The

Seasoned Schemer [FF96]:

The function rember-upto-last takes an atom a and a lat [list of
atoms] and removes all the atoms from the]at up to and including the
last occurrence of a. If there are no occurrences of a, rember-upto-last
returns the list.

First we transliterate 2 the function rember-up-to-last from the original

Scheme to ML (see figure 1.4 on page 9).

remberuptolast a lat removes everything up to the last occurrence of a

from the list lat. For instance:

- remberuptolast 42 [];

val it = [] : mt list

- remberuptolast 42 [1,2,3,4,5,6,7,8,9];

val it = [1,2,3,4,5,6,7,8,9] : mt list

- remberuptolast 42 [1,2,3,4,42,5,6,7,8,9];

val it = [5,6,7,8,9] : mt list

- remberuptolast 42 [1,2,3,4,42,5,6,7,42,8,9];

val it = [8,9] : mt list

- remberuptolast 42 [1,2,3,4,42,5,6,7,42,8,9,42];

val it = [] : mt list

'We pass between the different lexical conventions for identifiers in ML abd Scheme
(e.g.callcc and call/cc) without emphasising it. Similarly, in a more idealised setting we
write \ where one would have fn in ML and lambda in Scheme.

fun remberuptolast a lat =
callcc(fn skip =>

let fun R [] = 0
I R (b::l) =

(R 1;
if b = a then throw skip 1 else 0)

in
(R lat; lat) end);

Figure 1.5: remberuptolast without consing in ML

(define (rember-upto-last a lat) ; Look Ma no cons
(call/cc
(lambda (skip)

(letrec
(CR

(lambda (1)
(if (null? 1)

(list)
(begin

CR (cdr l))
(if (eq? a (car 1))

(skip (cdr 1))
(list)))))))

(begin (R lat) lat)))))

Figure 1.6: remberuptolast without consing in Scheme

10

The local helper function R in remberuptolast recurs over the list lat; every

time the element a is encountered the remainder of the list is made the overall re-

sult by being passed to the result continuation skip. Note that this is essentially

iteration and jumping, which becomes even clearer if we rewrite remberuptolast

so that it does not copy the list (figures 1.5 and 1.6 for remberuptolast without

consing). In this version, R does all its work by recurring and jumping, its re-

turn value being irrelevant. In that sense, it is highly non-functional, but rather

"jumperative" 3 . In fact, we can push the analogy with imperative programming

even further. The solution of traversing the list and throwing every time an a

in found is similar to the imperative solution of dragging a pointer across the

list, that is, updating a variable every time an a is found (figures 1.7 and 1.8).

In some sense, there is a duality here: a throw preempts later throws, while an

assignment undoes earlier assignments. Similarly, providing lat as a default (for

the case when no jump occurs) result at the very end of the argument of callcc

is analogous to initialising p to lat at the very beginning.

In this example, the jump with arguments provided by continuation invocation

could also be written using ML [Pau91], [MTH90] exceptions (which may be more

familiar to some readers): see figure 1.9. callcc(fn skip => ...) is roughly

analogous to declaring a local exception and and handling it by retaining the

value it passed; while while throwing a value to a continuation is analogous to

raising an exception with that value.

Exceptions, and their semantic differences compared with first-class continu-

ations, are beyond the scope of this thesis. If pushed too far, the analogy with

exceptions may actually be misleading.

Hence we consider another way of explicating the role of continuations in

the example: that is, by making them an explicit argument to a function. This

foreshadows the formal (continuation) semantics of callcc.

Figures 1.10 and 1.11 show how remberuptolast can be written by explicitly

passing a continuation parameter during the recursion of R. This yields a purely

functional program, as all occurrences of control operators have been expanded

out or compiled away, as it were.

Note how jumping (if an a is found in the list) in the programs with callcc

in figures 1.5 and 1.6 amounts to ignoring the continuation parameter k in the

programs with an explicit continuation parameter in figures 1.10 and 1.11.

3 to use a term coined by M-x dissociated-press in emacs
4 Experts would perhaps point out that the versions of rember-upto-last with explicit

continuations in figures 1.10 and 1.11 are not strictly the continuations counterparts of the ones
with callcc and that they correspond more closely to aborting whenever an a is found and

11

fun remberuptolast a lat =
let val p = ref lat in

let fun R [] = 0
I R (x::l) =

(if x = a then p := 1 else 0;
R 1)

in
R lat;

end
end;

Figure 1.7: remberuptolast with dragging a pointer across the list (In ML)

(define (rember-upto-last a lat)
(letrec

((p lat)
(R
(lambda (1)
(if (not (null? 1))

(begin
(if (eq? a (car 1))

(set! p (cdr 1)))
(R (cdr 1)))))))

(begin
(R lat)
PM

Figure 1.8: remberuptolast with dragging a pointer across the list (In Scheme)

12

fun remberuptolastexn a lat =
let exception skipexn of mt list in

let fun R [] = C)
I R (b::l) =

(R 1;
if b = a then raise skipexn 1 else 0)

in
(R lat; lat)

end
handle skipexn x => x
end;

Figure 1.9: remberuptolast (without consing) with ML exceptions

fun remberuptolast a lat =
let fun B. [] k = k 0

I R (b::l) k =
R
(fn 0 =>
if b = a then 1 else k 0)

in
R lat (fn C) => lat) end;

Figure 1.10: remberuptolast with explicit passing of a continuation parameter

(define (rember-upto-last a lat) ; Look Ma, no cons
(letrec

(CR
(lambda (1 k) ; B. has a continuation parameter k
(if (null? 1)

(k)
(B. (cdr 1)

(lambda C)
(if (eq? a (car 1))

(cdr 1)
(k))))))))

(B. lat (lambda 0 lat))))

Figure 1.11: remberuptolast with explicit passing of a continuation parameter

13

While this formulation is very succinct, it is hard to understand in intuitive

programming terms, in that what is intuitively a jump is expressed by modifying

the current continuation before passing it to the recursive call. Here we have

introduced continuations only in that small portion of the program that makes

use of them. In general, we would have to introduce them everywhere, lead-

ing to a virtually unreadable program full of anonymous A terms representing

continuations.

1.1.2 Upward continuations

The example of rember-upto-last in section 1.1.1 is perhaps not totally felici-

tous in that it only uses "downward" continuations (in the sense of [FWH92]: a

continuation can be passed "down"into a function call as an argument, but not

"up" from it as a result). Downward continuations do not really reveal the full

power of first-class continuations, as the latter comprise also the "upward" case.

The last two chapters of the textbook [SF89] are devoted to the use of continua-

tions; unfortunately heavy use is made of local state. While this combination of

first-class continuations with local state gives rise to a very useful programming

idiom (coroutines), it does not illustrate the power of continuations on their own,

without state. It is not totally clear whether, in the absence of local state to

encapsulate the current continuation [HFW86], [SF89], or at least a global queue

of suspended threads [BCL+96], one can obtain coroutines from continuations.

See also [Shi96].

Nevertheless, the following, somewhat Mickey Mouse, example of two corou-

tines from [SF89] can be written without using state. Instead we use a function

phi to manipulate the current continuation, about which we will say more in

section 1.2 below.

(define (phi f)

(lambda (h)

(call/cc (lambda (k) (h (f k))))))

(define (ping a)

(phi (lambda Cx) (write a) x)))

(((ping 'ping) (ping 'pong)) ((ping 'ping) (ping 'pong)))

The two functions printing ping and pong, respectively, call each other inces-

delimiting this within the definition of rember-upto-last.

14

santly, producing a string

pingpongpingpongpingpong...

In fact, an even more distilled construction of looping from a double self-

application with first-class continuations in the untyped setting of Scheme is wit-

nessed by the fact that

((call/cc call/cc) (call/cc call/cc))

loops.

The failure to consider upward continuations appears to be the cause of a

misapprehension that one sometimes encounters, holding that "there are no closed

terms of continuation type". It is easy to find examples refuting this, e.g. the

following:

- callcc(fn k => throw (callcc(fn h => throw k h)) 42);

val it = cant : mt cont cant

Below, we introduce a set of functions (1.12 on 19 and figure 1.13 on page 20

for ML and Scheme) with which we can write terms of continuation type more

succinctly, for instance

- thunk 42;

val it = cant : mt cant cont

as well as the following:

- funtocont (fn x : mt => x);

val it = cant : (mt * mt cant) cant

1.1.3 Continuation Passing Style

In the last version of remberuptolast (figures 1.10 and 1.11) the function F. takes

an explicit continuation argument instead of seizing the current continuation by

means of a callcc. More generally, a program with callcc can be translated into

one without, but such that everything takes an explicit continuation argument.

(This continuation argument is an ordinary function, not an element of some

special continuation type.) For a highly idealised programming language, namely

simply-typed)-calculus augmented by the constant callcc, this translation is

the CPS transform (adapted here from [DHM91], an extension of [P1o75]):

15

= Ak.kx

Ax.M =)k.k(Axh.Mh)

MN = Ak.M(Af.N(Ax.fxk))

callcc M = Ak.M (AN kk)

throw MN = Ak.M(Ak.Nk)

CPS transforms such as this may seem quite confusing if considered formalis-

tically as translations of)-calculi, in that there is no obvious sense in which they

are homomorphic or otherwise structure-preserving; certainly A is not translated

to A.

This becomes somewhat clearer if we think of a CPS transform as an idealised

compilation. For instance, the translation of a function Ax.M needs an explicit

return address h for the function body M along with its argument x; that explains

Axh.Mh. As we have a language with higher-order functions, the whole function

needs to be computed in the first place. Now function definitions evaluate to

themselves, or more accurately, the compiled Axh.Mh is immediately passed to

the overall return address k, i.e. k(Axh.Mh).

In a sense, no function in CPS ever returns; each will ultimately call some

continuation. So in order to make CPS work, only some mechanism for passing

arguments (without returning) is required - such as input prefixes in a process

calculus. What is crucial, though, is that the recipient address of such an input

can itself be passed as an argument. But that is the main feature of the ir-calculus

(where this is often called "mobility").

We can thus transliterate the CPS transform above, yielding a transform with

the ir-calculus as the target language, related to, though not quite identical with,

Miler's translations [PS93]. (The main reason that Milner's translation differs

from our is that it was originally designed for the monadic, not the polyadic,

variant of the 7r-calculus.) In addition, this transform also has clauses for callcc

and throw:

jxflk) = 	(x)

Ax.M(k) = (vl)(k(l) !1(xh).JM(h))

throw M N(k) = (vm)(JM(m) I !m(n).N(n))

ca11cc M(k) = (vm)(M(rn) I !m(1)J(kk))

MN(k) = (vm)(IVI(m) ! m(1).(vn)((JNj(n) ! n(a).l(ak)))

16

1.1.4 CPS as name-passing

We briefly comment on CPS as an idealised compilation, using Milner's it-calculus

as the target language.

Exponentials and)¼-abstraction are often taken as foundational for the se-

mantics of programming languages. Naively, though, a "function" call consists

of two jumps with arguments: first the caller jumps to the callee, passing it the

actual parameters (if any) and the return address; the callee jumps to the return

address, passing the result (if any).

Less naively, one could argue that a concept of reference, address or pointer

(here in particular: pointer to code) is more fundamental for actual computation

than the notion of function; the it-calculus is perhaps the most successful embod-

iment of this view. But it is chiefly the mobility aspect of the it-calculus that

matters here, concurrency being somewhat orthogonal.

Both continuation-passing style [Plo75, DHM91] and the it-calculus decom-

pose or "compile" function abstraction into such jumps with arguments. Recall

the clause for):

J)x.It/I(k) = (u1)((1) I ! 1(xh).lIVf(h))

Here the caller would have to jump to The address 1 with actual parameters for x

and h, while the callee, for, say M = a, would jump to h with argument a. For

simplicity, let us consider a function without arguments, i.e. a delayed term or

thunk—the control flow becomes clearer if the jumping is not interspersed with

arguments.

delayM(k) = (zi1)(](1) I !l(h),IMD(h)h)

Such delayed terms can be forced to evaluate themselves by sending them a re-

quest for data, that is, an address where these are to be sent.

force (delay M))(k) = (urn) (delayMD(rn) I rn(1)1(k))

So in particular, for M = a,

force (de laya)(k) = (urn) (lcielaya(m) I !rn(l).l(k))

= (urn) ((vl)(Th(1) ! 1(h)ii(a)) ! rn(l).l(k))

= (ul) (! 1(h).i(a) I 1(k))

= k(a)

= a(k)

Looking at the jumps i'ii(l), 1(k), k(a), we could observe that control first flows

outward, as the delayed expression evaluates to the thunk located at 1, then

17

inwards, as the force sends the thunk a request to evaluate itself, and then

outward again, if the forced thunk sends a. From the point of view of the delayed

expression, though, one could equally say that its surrounding evaluation context

is delayed—the thunk (!m(1).l(k)) located at m— and needs to be forced by the

m(1). The complementary forcings 1) and 1(k) cancel each other out. Somehow

the computation seems to be turned around, or even to be turned inside out

(twice, even). This appears to have inspired the coinage "pivots"[PS96J.

In our view, this is not an epiphenomenon, but something characteristic of

control flow in a mostly functional setting. In fact, we will base our account on a

categorical notion of turning inside out, that is duality in the sense of adjointness

of a functor to its own dual.

1.2 Introducing the continuation functor

We give a first exposition of the crucial concepts from a programming perspective.

All important examples, displayed in figures, are bilingual, in both ML and

Scheme. In the main text there is usually a certain bias towards ML, largely

because ML produces type information along with results.

The ML implementation used in the experiments was Standard ML of New

Jersey, Version 0.93. No ML implementation with both the new value polymor-

phism and first-class continuations was available at the time of writing; that is

why we have weak type variables ('la, 1 2b, ...) in programs with continuations

(see FHDM93I and 1NJ931). For Scheme, Bigloo (v1.6) and Gambit were used.

A by-product of a categorical semantics is a set of so-called categorical corn-

binators. For A-calculus, its categorical semantics in Cartesian closed categories

yields, for instance, the evaluation map and morphism pairing. These can be

seen as constituting a combinatory logic, with the added benefit of being more

semantically inspired than the Schönfinkel combinators S and K (see [FH88] for a

discussion). It is in fact easier to define the negation functor if we know that what

we are aiming for is an adjunction. Both the isomorphism of adjunction q and the

unit forceare easy to define, and in terms of these, we have -'f = q(f o force),as

in figures 1.12 and 1.13. Defined in one step, the negation functor is somewhat

harder to read, not least because of the nested callcc:

fun negate f =

fn h => callcc(fn k =>

throw h Cf (callcc(fn p =>

throw k p))));

In

fun force h = callcc(throw h);
force : 'la cont cont -> 'la;

fun phi f h = callcc((throw h) o f);
phi : (1 2a cont -> 'b) -> ('b cont -> 1 2a);

fun negate f = phi(f o force);
negate : ('la -> 'b) -> ('b cont -> 'la cont);

fun thunk a = callcc(fn k => throw (force k) a);
thunk : 'la -> 'la cont cont;

fun conttofun c a =
callcc(fn k => throw c (a,k));
conttofun : ('a * 1 2b cont) cont -> ('a -> 1 2b);

fun funtocont f =
callcc((fn (a,k) => throw k (f a)) o force);
funtocont : ('la -> 'lb) -> ('la * 'lb cont) cont;

fun delay f x = ((negate(negate f)) o thunk) x;
delay : (1 2a -> 1 2b) -> (1 2a -> 1 2b cont cont);

Figure 1.12: Categorical combinators for continuations in NJ-SML

negate : (1 2a -> 'b) -> ('b cont -> 1 2a cont);

The typing, such as it is, of continuations in Scheme consist of the single axiom

(call-with-current-continuation procedure?) 	#t

stating that what call-with-current-continuation passes to its argument is

a procedure.

It is essential here that continuations do not have to be unary, that is they

can take more than one argument - this makes it possible to identify functions

with a special case of continuations. In ML, this can be accommodated easily, as

a multi-argument function or continuation is one that takes a tuple of arguments.

Moreover, this is symmetric in that multiple return values amount to a single

return value that is a tuple.

Writing the same programs in Scheme is slightly awkward, because standard

"R4RS" (as specified by the Revised Report on the Algorithmic Language Scheme

19

(define compose
(letrec ((compose-list

(lambda (1)
(lambda (x)

(if (null? 1)
x
((car 1) ((compose-list (cdr 1)) x)))))))

(lambda 1
(compose-list 1))))

force (in our sense) = call/cc when applied to a continuation

(define (phi f)
(lambda (h)

(call/cc (compose h f))))

(define (negate f)
(phi (compose f call/cc)))

(define (cont-to-fun c)
(lambda (a)

(call/cc (lambda (k)
Cc (list a k))))))

(define (fun-to-cont f)
(call/cc
(compose
(lambda (ak)

((cadr ak) (f (car ak))))
call/cc)))

(define (thunk a)
(call/cc (lambda (k)

((call/cc k) a))))

Figure 1.13: Categorical combinators for continuations in Scheme

20

[Re91]), does not have multiple return values. In order to return multiple values,

one needs to return a single list.

Hence, unlike in ML, we cannot use even use the rudimentary pattern match-

ing available for lambda expressions in Scheme

(lambda (x . . . x) M)

Instead, we write only single-argument procedures whose argument is a list. The

individual arguments are extracted from this list using projections car, cadr,

caddr.....

In more modern implementations of Scheme incorporating multiple return

values as proposed in [Ree92], one could rewrite most of the Scheme programs

presented here more elegantly.

In Scheme, there is some possibility of confusion between the force as we

define it and the built-in procedure force in Scheme. In fact, both have nearly

the same functionality of forcing a thunk. The difference between them is that

thunk forced by the Scheme force is call-by-need, in that a second forcing will

not evaluate it again, whereas our force in terms of continuations only (without

any updating) conforms to the original call-by-name meaning of thunks [Ing61.

1.2.1 The self-adjointness of higher-order jumping

We give a detailed, but not formalised, argument in terms of what happens during

evaluation. (One could formalise this, either using a CPS transform, or the

operational semantics from [HDM93].)

We would like to show that the structure that we wish to analyse is due to

the intended meaning, independent of any particular formalisation.

Let callcc and throw be abbreviated as C and T, respectively.

From a programming perspective, the self- adj ointness is closely related to a

style of using continuations that Sabry calls Continuation Grabbing Style [Sab96].

Its characteristic idiom is the following pattern of use of callcc:

\x.N) (C(Ak.M))

where both N and M jump out of their context by ultimately throwing. We say

that the callcc binds k to the continuation .Ax.N.

force allows the argument of a continuation to turn the tables on its contin-

uation.

Th(force k) = T k h

21

force = Ak.C(Ap.Tkp)

Th(forcek)

= Th(C(.Ap.Tkp))

T h makes h the continuation of its argument. T k h

= Ah.C(Ak.T h((Ax.x)force k))

= \h.C(Ak.Th((Ax.x)(C(Ap.Tkp))))

= Ah.C(Ak.Th(C(Ap.Tkp)))

=)h.C(.Ak.Tkh)

-if o -ig

= (Ah 1 .C(.\k 1 .T h 1 f (C\p i .T k 1 pi))))(Ah 2 .C(Ak 2 .T h 2 g (C(Ap 2 .T k 2 P2))))

=)h2 .(Ah 1 .C(.Ak 1 .T h1 f (C()p i .T k 1 pi))))(C(Ak 2 .T h 2 g (C(Ap 2 .T k2 P2))))

(.Ah 1 ) is a A-expression, so its argument is evaluated next. The callcc binds

the k 2 to Ah 1 and T g makes the argument position of g the continuation of

the following term; this seizes its current continuation and binds it to P2, which is

then thrown to k 2 . Because k 2 was bound to)h 1 it follows that h 1 becomes

P2• The C(Ak 1 ) seizes the overall continuation and binds k 1 to it. Th 1 makes

h 1 the continuation for f. Hence if f returns a result, this will be fed to h 2 and

thus to g. The argument position of f is seized by the C(Ap i ), and bound to

P' and then thrown to k 1 .

What is important here is that the throwing in the middle amounts just to a

function composition of f and g, so the whole term is equivalent to

Ah.C(Ak.Th(g o f)(C(Ap.Tkp)))

which is -'(g o f).

For example

force -i-iA 	A

force
---B ---->- B

-.force
-

' "N 1 f0.ce

22

- 1+callcc(fn k => 10 + throw ((force o (negate force)) k) 2);

val it = 3 : mt

force = .Ah.C(Ak.Thk)

-if = .Ah.C(Ak.Th(f(forcek)))

= Ah.C(Ak.T h (1 (C(Ap.T kp))))

force o -'force

= (Ah 1 .c(Ak 1 .Th 1 k 1))

o(Th 2 .C(Ak2 .T h2 (force (C(Ap.T k 2 p)))))

= (Ah 1 .c(Ak 1 .Th i k 1))

o(.Ah 2 .C(Ak 2 .T h 2 ((Ah 3 .C(Ak 3 .T h3 k3)) (C(Ap.T k 2 p)))))

= Ah 2 .(Ah 1 .C(Ak 1 .T h 1 k 1))(c(Ak2 .T h2 ((Ah3 .c(Ak3 .T h3 k 3)) (C(Ap.T k 2 p)))))

If we try to formulate the triangular identity in prose, we would arrive at the

following narrative about jumping:

Let us assume that force o -'force gets evaluated. h2 becomes the current

argument; let us call the overall continuation of the whole expression k. We would

like to show that all that happens is that, in some circuitous manner, the current

argument h2 is passed to the current continuation k.

First of all, the term in the operator position is evaluated; as it is a A-

expression)h 1), its argument is evaluated next. This is has C in the op-

erator expression: evaluating C(Ak 2 ) it binds k 1 to Ah 1Then the throw

to h2 is executed, making h2 the continuation of the subsequent term. This is an

application, with a A-expression (A.k 3 ) in the operator position, so its argu-

ment is evaluated next. Again, executing the C(Ap) binds p to Ah 3, before

throwing it to k 2 . Now k 2 was bound to Ah 1 , so h 1 becomes p. The body of the

A-expression then executes the callcc in C(Ak 1 ), which binds k 1 to the cur-

rent continuation, which at this point is the overall continuation k. This is then

thrown to h 1 . This having been bound to p, which in turn points to A.h 3 ..., h3

becomes k. The body of the A-expression following Ah 3 is then evaluated; this is

the fourth and last callcc. This C(Ak 3 ) binds k 3 to the current continuation,

which, due to the surrounding T h2 , is just h2 . Finally, this is thrown to k3 , which

is to say to the overall continuation k.

23

Now we turn to the naturality.

f of orce

= Th.f(c(Ak.Thk))

The thunk h is forced and the result supplied to f as its argument.

force 0 -'-if

= (Ah 1 .c(\k 1 .Th 1 k 1))

(Ah 2 .C(\k 2 .T h 2 (7h3 .C(\k 3 .T h3 (f (force k 3))) (force k2)))

= (Ah1 .c(Ak 1 .Th 1 k 1))

(Ah 2 .c(Ak 2 .T h 2 ft.\h 3 .c(Ak 3 .T h 3 (f (C(Ap 3 .T k 3 O3))))) (Cp2 .T k2 P2)))))

=)h2 .(.\h 1 .C(Ak 1 .Th 1 k 1))

(c(Ak 2 .T h 2 ((Ah 3 .c(Ak 3 .T h 3 (f (C(Ap 3 .T k 3 D3))))) (C)ip2 .T k2 P2)))))

h2 is the overall argument. The operator position is \h2.
.. .); hence the argument

is evaluated. This is a callcc, which binds k2 to)h1 The T h2 is executed,

making h2 the continuation of the following term. The operator is (\k 3
. . . .),

so

the argument is evaluated. This is C(Ap 2 ), which binds P2 to)k 3 The

Tk 2 is executed; because k 2 was bound to Ah 1, it follows that h 1 becomes P2 -

The body of)h 1 is evaluated; C(Ak 1 ) binds k 1 to the overall continuation

k. This is then passed to h1 . Because h 1 was bound to p and p to)h3, this

means that h3 becomes k. The C(Ak 3 ) binds k3 to the current continuation

at this point. Because of the surrounding T h2 this is h2 .

Hence the whole term is equivalent to

Ah 2 .f(,\p 3 .T h 2 P3)

Not only do first-class continuations give rise to an adjunction; this is also a

particularly simple kind of adjunction. Whereas one would normally have two

functors, two naturality squares (one each for unit and counit) and two triangular

identities comprising an adjunction (as in a Cartesian closed category, say), we

have one of each. (This is fair enough somehow, in that a continuation is half a

function.)

1.2.2 Alternative control operators

We explain that our categorical combinators give a complete set of control oper-

ators, and hence an alternative to callcc and throw.

24

In the previous section, we focussed on the functor and the unit. But an

adjunction can equally well be expressed by the isomorphisms of adjunction; we

now explain how this can be seen as a new control operator.

phi together with a coercion function from functions to continuations is a

complete set of control operators, like callcc together with its coercion function

throw (coercing -'-r to T -+ a).

callcc does two conceptually quite separate things with the current continu-

ation: first it copies it, then it makes one of the copies available to its argument

as an ordinary function argument. The other copy is given as the current contin-

uation to the argument of callcc.

One could separate these; in particular Felleisen's control operator C does not

copy the continuation. The continuation is given as an argument to the argument

of C, but the current continuation is not supplied to it.

Like C, phi considered as a control operator does not copy the continuation,

without the need to consider terms that can do without the current continuation.

For comparison, we list the CPS semantics of

. callcc with ML-style typing;

. a variant call/cc closer to that of Scheme, in that the continuation is

wrapped into a procedure;

the C-operator, which is like call/cc, but does not copy the continuation

it seizes;

• 0, or phi in ASCII, which does not copy the continuation either, but re-

quires a second argument to supply the continuation for its first.

callcc M =)k.M(Af.fkk)

call/cc M = Ak.M(Af.f(Axk'.kx)k)

CM =)tk.M(Af.f(.Axk'.kx)(Ax.x))

çbMN = Ak.M(Af.N(An.fkn))

For comparison: callcc(Ak.M) binds the current continuation, which nonetheless

is also the continuation for M, to k; C(Ak.M) binds the current continuation to

k, the price for which is that M does not get a current continuation; q5(\k.M) h

binds the current continuation to k and supplies h as the continuation for M.

25

None of these is any more generic than the others, as they are all interdefin-

able 1 , but 0 is perhaps special in that it emphasises a certain symmetry: both

callcc and throw are special instances of it.

In the typing of continuations in ML, callcc needs its companion throw,

which is just a coercion from continuations to functions.

If one is willing to identify continuations with certain procedures those that

ignore their result continuation), as in Scheme, then callcc on its own is enough.

If we are willing to make another identification, reducing functions to continu-

ations, rather than embedding continuations into functions, then phi on its own,

without coercions, is enough. In continuation semantics, a function call consists

of passing both an argument and a return continuation to a function. A function,

then, is just something that expects these two: in other words, a continuation for

an argument/result continuation pair.

Hence, if o -+ r were an abbreviation for -'(o * -ir), phi by itself would be

sufficient. We can recover callcc and force from phi as follows.

fun throw2 a = phi(fn h => a);

throw2 : 'a -> 'a cont -> 1 2b;

fun callcc2 f = (phi(fn k => (k,k))) (funtocont f);

callcc2 : ('la cont -> 'ía) -> 'ía;

The unit force and the negation functor can be defined similarly in terms of phi.

val force2 = phi(fn x => x);

force2 : 'la cont cont -> 'la;

fun negate2 f = phi(f o force2);

negate2 : ('ía -> 'b) -> 'b cont -> 'la cont;

Axiomatising, and calculating with, phi, force and negate would then be

guided by the standard equational laws for adjunctions.

1.3 Related Work

Variants of the continuation functor, though not qua functor, have made appear-

ances in the literature, e.g. in [Hof94]. The following from [Shi96] also appears to

be related.

We gloss over the issue of the aborting implicit in C.

26

(compose-cont k f) 	(lambda (v) (f v k))

By the standards of Computer Science, and particularly among advanced pro-

gramming language concepts, continuations are of great antiquity: the term "con-

tinuation" was coined in [5W74]; Continuation Passing Style appears implicitly

in [Fis72] (final version in [Fis931) and explicitly in [Ste781. (For a history see

[Rey93].)

They are also (explicitly or implictly) an almost ubiquitous concept. Thus the

potential background to the present thesis is vast. In addition to the literature on

continuations proper e.g. [P1o75, FFKD86, SF90, HDM93], work on the ir-calculus

([Mi191] and [PS93]; explicitly in [Bou971) and Scheme [Ste77, Ste78, Ste76] also

has some relevance.

A" deep" connection between continuations and classical logic in sometimes

claimed, e.g. [Gri90], [RS941. This seems orthogonal to our approach. Or we

could argue that first-class continuations have plenty of interesting structure in

their own right, so that there is no pressing need to establish connections to logic

in order to elucidate them.

There is, however, a much smaller area of work that is of direct relevance here.

The first attempt at a categorical continuation semantics was Filinski's pioneering

[Fil89]. With the benefit of hindsight, [Fi1921 is in its emphasis on linearity an

aberration. Filinski later chose to regard continuations not as primitive but as a

special instance of monads [Fil96]. Similar in its use of the monadic metalanguage

to provide a systematic presentation and classification is Danvy and Hatcliff's

[DH94]. Much can be done in that setting, but decomposing the monad into

two instances of the continuation functor affords a more fine-grained analysis -

including, crucially, the control operators and an abstract account of thunking

[HD95].

Finally, one of the most important influences was the typing of first-class con-

tinuations in Standard ML of New Jersey, with the continuation type as primitive

[HDM93]. (See also the conference version [DHM91], where a CPS semantics is

given.) This type discipline is a natural starting point for a (categorical) seman-

tics: looking for universal properties of the continuation type constructor, one is

led to self-adjointness.

Incidentally, it was primarily for reasons of polymorphic typing that the con-

tinuation type was made primitive in Standard ML of New Jersey [HDM93]

(whereas the more minimalist, and untyped, Scheme simply conflates continu-

ations and procedures). We should like to regard this as a fortunate preadaption

(in the Darwinian sense) on the part of ML.

27

To summarise, what is perhaps amazing about Continuation Passing Style is

how far one can get with three little equations

= Ak.kx

Ax.M =)k.k(Axk.Mk)

MN =)k.M(Am.N(\ri.mnk))

These from [P1075], together with two more if we include callcc and throw

[DHM91], encapsulate much of the backdrop to this thesis. To distill things

further, we could say that the essence of the transformation is really in the clause

for Ax.M, that is, what happens to a function. Much of the effort herein is

devoted to trying to understand what

=)k.k(Azk.Mk)

really means, without taking the)'s on the right too literally, but rather adopting

the view point of "..\ the ultimate got o" [Ste77].

1.4 Outline

The aspect of CPS that is particularly emphasized in this thesis is that it breaks

down function types into continuations.

This view of function calls as "jump with arguments" [Ste78, SS761 is not low-

level and implementation specific, but should be taken seriously in semantics.

We also develop a calculus in support of this view. The categorical account

should be seen as complementary, not as an alternative, to it. The bureaucracy

inherent in names and their scope is particularly virulent in a name-passing cal-

culus, and although the CPS calculus is in some sense like an internal language,

even conceptually primitive operations can have quite complicated representa-

tions (for instance thunk and pair). This makes the more high-level, variable free,

perspective of a categorical description a valuable addition.

Focussing on the category of computations also facilitates experimentation,

in that we can write programs in real world languages, without some monadic

interpreter, as a bag on the side of Haskell, say.

In such experiments, or validations of concepts, the categorical semantics sug-

gests building blocks (for instance o for functions, map for lists [Bac781), which

could be regarded as "categorical combinators", like eval for the)¼-calculus.

In our case, the use of these categorical combinators lets us avoid spaghetti

code, like nested occurrences callcc.

Just as we try to be faithful to those features of CPS that are in evidence,

such as breaking down of functions types, we avoid introducing anything that is

not naturally part of it. A case in point are coproducts, in particular, the empty

coproduct 0 and the identification of continuations with functions A -+ 0.

Parts of this thesis have appeared in IThi96al IThi97I; some of it is joint work

[PT97], comprising chapter 8 here.

Chapter 2 The target language of the CPS transforms is presented as a calculus

in its own right, which we call the CPS calculus. This calculus is very simple

and quite low-level: only variables may be passed as arguments, moreover an

application is more like a jump with arguments than a A-calculus application

in that it forgets its calling context. Compared to A-calculus, the CPS

calculus could be said to be somewhere in between the A-calculus itself

and explicit substitutions. Some variants are also considered, mostly for

theoretical reasons.

Chapter 3 is a review and discussion of various CPS transforms that have ap-

peared in the literature. Call-by-value is the basic case, various other calling

mechanisms being derivable by argument thunking.

Chapter 4 The categorical account of the structure underlying continuation

semantics is developed. Its fundamental structure is what we call self-

adjointness, i.e. a functor adjoint to its own dual in the two possible senses,

i.e. on the left and on the right. Environments are modelled by means

of premonoidal structure. This comes equipped with a notion of central

morphism.

Chapter 5 A term model is constructed as an instance of the categorical frame-

work in chapter 4. This is a CPS analogue of the construction of a Cartesian

closed category from simply-typed A-calculus. In the setting of the term

model, the syntactic form of CPS terms can be related to the semantic

properties of the morphisms they represent.

Chapter 6 is an excursion, inasmuch as it illustrates some issues concerning

(semantic) notions of effect-freeness by means of concrete examples and

counter-examples. Specifically, we demonstrate that a term being can-

cellable (which has also been called total) is not sufficient for it to be free of

effects, whereas it being central is. At the same time, it is a first attempt

at showing how the categorical structure of continuations can help to write

29

programs, as we build on the functions defined in section 1.2. Thus it com-

plements chapter 5, using the structure from chapter 4 at the level of the

source language of CPS transforms.

Chapter 7 The categorical counterpart of the CPS transforms is given by cate-

gorical semantics. Parts of this chapter parallel chapter 3, giving a rational

reconstruction of CPS transforms. Among the categorical structures intro-

duced in Chapter 4, the self-adjointness on the left is shown to underlie

both the semantics of control operators and the thunk/force-mechanism

for variant calling strategies.

Chapter 8 A different categorical perspective on the self- adj ointness is provided

by studying it in the framework of indexed categories; this shows the fun-

damental structure for continuations to be independent of the way envi-

ronments are modelled. Initially, in early drafts, there were two separate

formulations of the categorical continuation semantics presented in this the-

sis; these were then shown to be essentially equivalent in joint work with

John Power.

Chapter 9 We present some (preliminary) material on graphical representations

capturing some aspects of CPS. The formal link is again established by

self-adjointness - which can be visualised in this setting as turning upside

down. Some issues concerning the relation of CPS to duality are raised.

Chapter 10 concludes and points towards directions for further work, among

them some loose ends from the previous chapters as well as some more

ambitious proposals giving continuations a fundamental rOle.

The reader interested chiefly in the programming perspective may find it useful

to concentrate on section 1.2 and Chapter 6. The latter can be understood

independently of most of the preceeding chapters. It is quite long, because many

programs are included, but also because the counterexamples presented there,

while initially intended to show only that a certain subcategory does not admit

a (canonical) product, proved quite fruitful in refuting many naive assumption

about continuations.

Some knowledge of category theory would probably be helpful, but only very

little is really required. The various equivalent characterisations of adjunctions

(found in any category theory textbook, e.g. EMac7lJ) would perhaps be the most

useful thing to keep in mind.

30

Chapter 2

The CPS calculus

We consider the target language of CPS transforms as a calculus in its own right

(similar to the intermediate language of the compiler in [App92]), which we call

the CPS calculus.

The CPS calculus was first used as a common idiom for the A- and the ir-

calculus in [Thi96b]. It was then turned into a calculus in its own right in the

course of initial discussions with Phil Wadler and David N. Turner.

Notational preliminaries

We let lowercase letters x, y, n, m, k, 1,... range over variables (names) and up-

percase letters M, N,... range over terms (in various calculi). Y, :V ... range over

sequences x 1 . . . x2 of names. Commas in sequences are often omitted. When used

as indices, lowercase letters range over natural numbers, e.g. x 1 . . . x.

We write M[x N] for the capture-avoiding substitution of N for x in

M. Similarly, if ± =x, . . . x 3 and il = Yi . . . y3 , we write M[i-p yJ for the

simultaneous substitution of yi for x (i = 1, . . . , j) in M.

We use the traditional semantics brackets E[-]] for (categorical) semantics and

the slightly different parentheses for transformations that can be seen as

somewhat intermediate between a proper semantics and a mere translation (a

matter of degree, not principle).

2.1 CPS calculus

The raw terms of the CPS calculus are given by the following BNF:

M::= x() I M{x()=M}

We call a term of the form k() a jump and a term of the form M{n(i)=N} a

binding. As a first hint at the intended meaning, k(±) is a jump to the continua-

31

tion k with actual parameters Y, while M{n(x)=N} binds the continuation with

body N and formal parameters Y to n in M.

2.1.1 Remark While succinct, the presentation of the syntax is strictly speaking

an abuse of notation, common for A-calculi, in that the same symbol is used

for a syntactic category and the typical metavariable ranging over it. A more

technically orthodox BNF could be given as follows.

Term ::= Var "(" Var* pp)fl

Term "{" Var "(" Var*)= Term
 IT,

Every CPS term can be written as a jump followed by a sequence of bindings,

that is, a term of the following form

k(){p 1 (çi)=M1 }. ..

Hence the BNF could be written in a somewhat cluttered form, like this:

M::= x(){x()=M}... {x()=M}

The set of free variables FV(M) of a CPS term M is defined as follows.

FV(x(yl ... yk)) = {x,yl,...,yk}

FV(M{n(y i . . . y,)=N}) = (FV(M) \ {n}) U (FV(N) \ {y,. . . , yk})

In M{n(x)=N} the scope of n extends to the left, while that of the x 2 extends

to the right. Therefore we have left and right a-conversions.

M{n()=N} = M{n(y?)=N[—* l} (aR)
M{n()=N} = M[n '—p n']{n'(f)=N} (aL)

We usually gloss over the a-conversion by identifying terms up to renaming of

bound variables.

The axioms of CPS cal

L{m()=M}{n(y)=N}

k(yT){n(z)=N}
n(){n(z)=N}

M{n()=n' () }

zulus are as follows.

= L{n()=N}{m()=M{n()=N}} (DIsTR)
mn m,FV(N)

= k(), nFV(k()) 	 (GC)
= N[- 	 (imp)
= M[nF-+n'] 	 (ETA)

The (JMP) law is in some sense what drives the computation. By contrast,

(GC) and (DIsTR) can be seen as "structural" laws like those of the ir-calculus.

Most of these laws appear in Appel's [App92]. See also [Ste78].

32

We will be concerned primarily with simply-typed CPS terms. The only type

constructor is the negation type -i(_). The BNF for (simple) types for the CPS

calculus is as follows.

T::= - (Ti ...Y)Ib

where b ranges over base types.

Terms are then typed according to these two rules:

F,ri:-'rF-M F,:F-N

	

F, k : -'i, i7: F F- k(y) 	F F- M{n(y)=N}

Typing judgements in CPS are one-sided. Whereas in ,\-calculus a judgement

F F- A M : r (where we have decorated the Urteilsstrich I- with a) to emphasise

that this is a)-calculus judgement) states that, in the type environment F, the

term M has the type r, a CPS typing judgement F F- M states that, in the type

environment F the CPS term is consistent. Similar type systems exist for process

calculi, e.g. [Tur95]. For example, x : r F- A x : r states that under the assumption

that x has type r, x has type T. By contrast x : r, k : -,T F- k(x), states that,

under the assumption that x has type r and k has type -IT, passing x to T "does

not go wrong".

Alternatively, one could compare a CPS term to a command in languages

like Idealized Algol, in that it is run for effect, not value.' In that sense, a CPS

judgement x1,.. . , x, F- M is analogous to M being a command, as in

var[ri],. . . ,x : var[r] F- M : comm

We could call this "consistency" in that it implies that all internal communi-

cations channels, so to speak, are used in a consistent manner. Logically it would

appear closer to inconsistency, inasmuch as F F- M could be read as "M witnesses

that F entails a contradiction", such as in the example above where F contained

both the assumptions that T and not r. The typing rule for the binding construct

could then be read as stating that if both "F and 1 " and "F and not " entail a

contradiction, then the contradiction must be due to F alone.

In addition to these rules, we assume permutation, contraction and weakening

of typing environments unless explicitly stated otherwise.

X(i) : T(i), . . . , X(,) : 	F- M
	r is a permutation of {1,.. . , n}

F F- M
	

F,x: ,y : F- M

	

F,x : T F- M
	

F,x : 'f F- M[y i-+ x]

'This was pointed out to me by Peter O'Hearn.

33

One could visualize a CPS term as representing the state of a (stackless,

heap-allocating) abstract machine.

qpi{ fli 	 = 	
... In. (m)=Nm }

IF 	actuals 	address formals 	code

2.2 Recursive CPS calculus

All that is needed in order to make the calculus recursive is to change the visibility

of names, making the address of a binding visible within its body, so that in

M{n()=N}, N may refer to itself under n.

We use a slightly different notation for the binding construct, "" instead of

"=", to indicate the possibility of recursion.

M::= x() M{x(±)=M}

Again, the BNF could be rendered in a more orthodox fashion:

Term ::= Var II(U Var* II),,

Term h1{fl Var II(H Var*
)=I Term "}"

For the recursive CPS calculus, we modify the typing as follows.

F,n:-'F-M F,f:,n:-viF-N
F I- M{n(f)'=N}
	 Iyc11u 1ubu1e

As we have broadened the scope of it, we need to modify the left a-conversion

correspondingly.

M{n(y=N} 	M[n '- n'J{n'(=N[n '- n']}

The definition of free variables needs to be modified similarly.

FV(x(yl ... yk)) = {x,yl,...,yk}

FV(M{n(y i . . . y=N}) = (FV(M) \ {n}) U (FV(N) \ {n, jj,.. . , Yk})

The set of bound variables is defined as follows.

BV(x(y i . . . Ilk)) = 0

BV(M{n(y i . . . y jj=N}) = BV(M) U BV(N) U {n, yr,. . . , yk})

The axioms of the recursive CPS-calculus are as follows.

L{m(=M}{n(=N} = L{n(N}{m()4=M{n()N}} (DIsTR)
mn m,FV(N)

= k(), n V FV(k()) 	 (GC)
= N[2- yJ{n(z=N} 	 (REcJMP)

M{n(=n'()} = M[ni-n'] 	 (REcETA)
n =A n'

34

Notice that the modification of the closure typing law makes the unrestricted

ETA law unsound. Consider

n(a){x(x)=n(x)} = n(a)[n '-+ n] = n(a).

But we know that n(a){x(x)=n(x)} loops, which should not be identified with

the terminating n(a). Hence the side condition on variables precluding the loop-

ing.

2.3 Operational semantics for CPS

We consider jumping as the only behaviour of CPS terms. The jumping axiom is

accompanied by the distributive law, which can be seen as a structural congruence

(in the sense of Milner) or "heating" (in the chemical metaphors of Boudol), in

that its purpose is to bring together the component parts of a (jumping) redex.

2.3.1 Definition We define oriented versions of the axioms DISTR and JUMP as

follows (avoiding name capture):

L{rn()=M}{n(y)=N} - L{n(y)=N}{m()=M{n(yi)=N}} ,n54m
n(y){n(z)=N} - N[-

2.3.1 Observational congruence

While derivability from the CPS axiom is the least equality we would wish to im-

pose on CPS terms, a notion of observational equivalence is arguably the greatest

such notion we could consider. (Here least and greatest are to be understood in

the sense of set-theoretic inclusion of relations, i.e. the least equality equates the

fewest terms.)

We define observational equivalence for CPS. We choose at our notion of

observation the "external" jump that a term may perform after it has performed

some internal jumps. For instance, in a jump of the form k(), we can observe

(the occurrence of a a jump to) k. More generally, a free variable in the leftmost

position can be observed.

2.3.2 Definition Let M .4. k if M ----* k(x){p i (yii)=Mi } . . . {p(ç)=M}

and

Let M N if for all contexts C and names k, C[M] .4. k.iff C[NJ 4. k

The axioms of the equational theory of the CPS calculus become laws in the

operational congruence.

35

2.3.3 Proposition

L{m(f)=M}{n(y7)=N}

k(1{n(z)=N}
n(y)fn(2)=N}

M{n()=n'()}

L{n(y)=N}{m()=M{n(y)=N} } (Dis'rit)
mn m,fFV(N)
k(), n V FV(k(y)) 	 (GC)
N[ii-+ yj 	 (imp)
M[ni-+n'] 	 (ETA)

This follows from preliminary work by Massimo Merro on a restricted version of

the ir-calculus [Davide Sangiorgi and Massimo Merro, personal communication];

the details may appear elsewhere.

2.4 Linear CPS calculus

We consider a linear version of the calculus, as linearity will sometimes allow a

less complicated account.

In the linear CPS calculus the Garbage Collection and the Distributivity

axioms do not make sense. For a term M{n(y)=N}, GC is applicable if n
does not occur in M, while DISTR allows one to distribute the binding for ii to

multiple occurrences. Neither of these cases is well-typed in the linear calculus.

So instead we have two separate axioms allowing us to "float" a binding into a

term L{M(x)_—M}, depending upon whether n occurs in the left subterm (L)
or the right one (M). The linear calculus is still a fragment of the general CPS

calculus, as each application of the floating laws can be simulated by distributing

and garbage collection.

2.4.1 Definition The axioms of the linear CPS calculus are as follows.

n(){n(2)=N} =
M{n()=n'()} =

L{m()=M}{n()=N} =

L{m()=M}{n()=N} =

N[(JMP)

(ETA)

L{n()=N}{m()=M} (FLOAT-L)
ifm/zn,n V FV(M)
L{m()=M{n(j)=N}} (FLOAT-R)

if mn,n V FV(L)

The main point of restrictions like linearity is that they allow translations

from CPS to less powerful calculi: the linear CPS calculus can be translated into

Miler's action structure for the or-calculus IMi1931. Let k(i)t = ()[()]Ø. If
Mt = (n)S() and Nt = ()TØ, then let

(M{n()=N})t = ()[vn]S"[n()]T()

36

2.4.1 Linear unary CPS calculus

But we are more interested in restricting the linear CPS calculus even further.

The subset of CPS calculus in which only a single argument is allowed in jumps

k(x) and bindings M{n(x)=N} is called unary, as opposed to polyadic. The

BNF for the unary subset of the CPS calculus is this:

M::= x(x) I M{x(x)=M}

For the fragment of CPS calculus that is both linear and unary, we can give

a simplified presentation of the typing rules:

	

K(X)
	xk F- x(k)

	

xnl- M ykF- N
	

mkF-M yxl-N

	

xk I- M{n(y)=N}
	

xk I- M{n(y)N}

2.4.2 Definition The axioms of the linear unary CPS calculus are as follows.

n(y){n(z)=N}

L{m()=M}{n(y)=N}

L{m()=M}{n(y)=N}

= N[z i-+ y] 	 (JMP)

= M[n-+ri'] 	 (ETA)

= L{n(y)=N}{m(x)=M} (FLOAT-L)
if mn,n V FV(M)

= L{m()=M{n(y)=N}} (FLOAT-R)
ifm On, n V FV(L)

2.4.3 Remark In a binding expression M{n()=N}, the bindings of N and

are conceptually quite distinct: one could try to reflect this in the calculus by

letting them bind variables from different zones of the type environment.

	

F;,L F- M 	F,;LF- M

	

F,;LF- M 	F;,tF- M

F;,F-N
F; f, k F- k() 	F; A F- M{m()=N}

2.5 Constants

Although they play no role in the sequel, we sketch how PCF-style constants for

arithmetic and conditionals could be added to the CPS calculus. Constants, like

everything in CPS, take a continuation parameter.

F,n: int,f : -i--if,g: -,--r,k : - F- if zero('n+lTfgk) 	F,k: -'mt F- O(/c

	

F, n: int, k: -'mt F- succ(mn k) 	F, n: int, k : -'it F- pred('n k)

37

O(k) 	 =
succ (rn k) 	= k(rn+1)
pred('nk) 	= k(rn_1)
if zero (ro7gk) 	= f(k)
if zero(mn+l7gk) = g(k)
diverge (k) 	= pØ{pØ=pØ}

2.6 Translation from CPS calculus

If we think in terms of cr-equivalence classes of terms, then the non-recursive CPS

calculus is evidently a subset of the recursive one, as we can embed terms of the

former in the latter

M{n(±)=N} '- M{n(=N}

provided we cr-convert in case ii is free in N to avoid its name-capturing in

M{n(=N}.

The recursive CPS calculus is in turn a fragment of Appel's intermediate

language, the main difference being that Appel's FIX constructor allows mutual

recursion.

CPS-calculus Appel's datatype cexp
X(y1...y 3)

}VI{n(x 1 . . . x3)--N}
APP(VAR x, [VAR y 1 ,...,VAR y3])
FIX([(n, [x 1 ,. . .,x 3] ,N)] ,M)

The binding of continuations in CPS can be implemented not only by "passing"

(using the)-calculus), but equally by "sending" (7-calculus) or even "grabbing"

(using callcc to seize the current continuation [Sab96]).

First, the (recursive) CPS calculus can be translated into simply-typed)-

calculus with a fixpoint combinator.

k(x i ... x)° = kx 1 . . .

(M{n()4=N})° = (An.M°)(jrn.A.N°)

Here ji is a fixpoint-finder in the simply-typed)-calculus satisfying px.M =

M[x '-+ 4ux.MJ and subject to the following typing

F,f :rI- M:

F H ,uf.M : r

2.6.1 Proposition The translation (_)° is sound.

PROOF

(n() {n(y) =N})°

= 	\n.n)(rn.Ag7.N°)

= (\n.n ((AN °)[n '—* ,un.T.N°)

= (.N°[n }-+

= N°[n i-* rn..N°][- Y J
= N'[W ~-4 YJ[n '-+ /in. AV.

= (An.N°[?7'-+])(pn.Aj.N°)

= (\n.N[ffi-+]°)(n.i.N°)

= (N[77i-+]{n(y=N})°

Let n n'.

= (.An.M°)(tn.A.n')

= (An.M°)(().n')[ri '-

= (\n.M°)(A.n'±)

= (\n.M°)n'

= 	i-+ n']

= (M[ni-+n'])°

= (\1.(An.M°)(jn..N°))(t1.Aff.L°)

= (An.M°)(anit±.N°))[l i-* a1ii.L0]

= ((An.M°)[1 -+ p1..L 0])((nit.N0)[1 i-+ bi1..L°])

= (((A1. °)(p.1.A.L°)) (((A1.N°)(,1.ç.L°))

For the non-recursive fragment of CPS calculus, one can simplify the trans-

lation to)-calculus, not requiring the fixpoint combinator.

2.6.2 Definition

I\
7/

Xl...Xn / 	
— jf

M{n(x i . ..x)=N}° = 	\n.M°)(,\(x 1 ,.. .,x).N°)

39

2.6.3 Remark Alternatively, we could use simply-typed)-calculus by undurry-

ing the translation.

k(x i . . . 	= kx1 ...

M{ri(x i . . . 	= (An.M°)(..\x i . . . x,.N°)

2.6.4 Definition CPS calculus can be translated into the it-calculus as follows.

(Note that continuation binding is essentially Sangiorgi's "local environment" id-

iom for the it-calculus [PS961.)

k(x i . . . 	= 	(x 1 . . . x 2)

M{n(x j ... 	= (vn)(M I !n(x i . . . x).N)

2.6.5 Remark In the most general it-calculus, the CPS laws are not sound.

CPS gives rise to it-calculus terms of a very restricted from: there are constraints

both one the occurrence of names and on the shape of terms.

On the one hand, all names are used as continuations. A precise formulation

of what constitutes a continuation type discipline in the it-calculus seems to be an

open problem, although a necessary (but not sufficient) constraint could be given

in terms of the input/output type discipline developed in [PS96]. All names are

"write-only" in that a name that has been received may be used by the receiver

only for output, but not for input (it may also be passed as an argument).

Furthermore, all names are w-receptive in the sense of [San97].

The terms in the image of the translation from the CPS calculus to the it-

calculus are of a the following form, in which restriction, parallel composition,

replication and input prefix occur only in an idiom and never by themselves. All

outputs are asynchronous.

P,Q::=(x1 ... x) I (vq)(P!q(y i ... y).Q)

This restricted form automatically rules out usages of names like n(k).k(x).

A variant of the it-calculus that is more permissive than CPS, but still restri-

tive enough to be "well-behaved" with regard to it is the calculus fl;.

2.6.6 Definition The fragment fJ of the it-calculus is given by the following

BNF. 	
::= PP I a().P I !a().P I (va)PJä()

where in a(x i . . . x).P none of the x 2 appears in input position (as in x 2 (g).Q)

within P.

¶

We consider terms of H equivalent up to barbed congruence IACS96I, written

bc•

Hence received names can be only passed around or used for output. This

together with the fact that output is asynchronous, appears to be enough to

ensure a sufficiently continuation-like behaviour. More formally, we report the

following result, due to Massimo Merro:

2.6.7 Proposition The translation given in definition 2.6.4 above from CPS

calculus to fJ/ bc is sound. For CPS terms M and N, M = N implies M bc

N.

Another translation of CPS calculus is given by a "continuation-grabbing style"

transformation similar to that in [Sab961, which transforms CPS terms back into

idealised NJ-SML.

2.6.8 Definition The Continuation Grabbing Transform (_) is defined as fol-

lows.

M{n(x i . . .x3)=N} 	(A(x i , . .. ,x3).N)(ca11cc \n .Mt))

throw k(x i ,...,x)

On types, this translation is given by the identity.

2.6.9 Remark If F F- M, then F F- M : 3, where 0 is a fresh type variable.

PROOF For terms of the form k(x i . . . x3), this is trivial. Consider F F- M{n(x)=N}.

Then

F,n:-'F-M and F,:F-N

By the induction hypothesis,

F,n:-F-M:/3 and

Instantiating 3 to F we have F, n: -' F- M : and therefore F F- Ay. Mt : -' —>

F. Because F- callcc : (-a —~ a) -4 a, we have F I- ca11cc(A..M) : T . Now

F F- AY. Nt : F -4 3, so

F I- (AY. N I) (c al 1 c c (AY. M l)) : 0.

70

41

2.7 Idioms and jargon for the CPS calculus

We sometimes use jargon, mainly from programming language theory, together

with some loan words from the u --calculus literature, for talking about CPS. This

is not done for obfuscation, but to make the presentation more intuitive for the

reader, who we assume is likely to be familiar with most of these terms. As a

preparation for chapter 3, we give a brief discussion. The purpose is not to give

terminology for different parts of a CPS term (hardly necessary, since the calculus

is so simple), but to certain idioms and points of view on terms.

Like the ur-calculus, the CPS calculus is a "name-passing" calculus: the only

entities that may be substituted for variables are other variables (also called

"names"):

n(y){n(z)=N} = N[-

Because of this name-paaing, a notational shortcut we shall perpetrate is the

simulation of substitution by o-conversion. We rename the bound parameters

before contracting a redex.

a(b) {a(z)=x(c) }

= a(b){a(b)=b(c)}

= b(c)

This saves us from having to write substitutions.

a(b){a(x)=x(c)}

= x(c)[xF-+b]

= b(c)

A characteristic feature of (reductions in) the CPS calculus is a kind of

leapfrogging of bindings like this:

k(f) {f(xk)=M} {k(f)=N{n(x)=f (xk) }}

= N{ri(x)=f(xk)}{f(xk=M}

= N{ri(x)=M}

The same term may mean quite different things, depending on what we regard

as the current continuation. (One of the themes of the the categorical framework

is a development of this fact: one of the most basic operations is precisely this

switch of current continuation.) In the CPS calculus, there is no notion of a

42

current continuation as such; all continuations are equal. Nevertheless, when

reading a term in a structured fashion, it is often essential to single out one of

possibly many names as the current continuation. We consider two ways of doing

this. One is always to look at judgements rather than raw terms; the other,

more informal and ad hoc, is to use the same name, typically k, for the current

continuation everywhere.

The translation of)-terms gives the spirit of (nearly all) CPS transforms.

Ax.M = k(f){f(xk)=M}

Here we call f a pivot. This concept seems absent from the usual CPS terminol-

ogy, probably because CPS is not normally presented as name-passing. So we

borrowed it from Pierce and Sangiorgi FPS931; they write about the translation

of a)-calculus term MN into the ir-calculus:

The core of the protocol [..] is the action on an internal channel v,
by which the abstraction M comes to know its arguments. We call v
a pivot. (In the lazy)-calculus encoding, the role of the pivot names
was played by the argument port names.)

Warning: Milner's call-by-value u-calculus transformations have an additional

level of indirection not present in CPS. So our usage of pivot is not completely

the same as that of Sangiorgi and Pierce.

[Ing6l] defines

A thunk is a piece of coding that provides an address. When executed,
it leaves in some standard location (memory, accumulator, or index
register, for example) the address of the variable with which it is
associated.

In the present setting, a thunk is a term of the form k(q){q(p)=M}. k(q){q(p)=M}

returns to its current continuation a "private" name q along which it is ready to

receive a continuation p for M; M may then evaluate and return a result to p.

Complementary to thunking, a forcing is a jump with the current continuation

as the actual parameter.

Chapter 3

CPS transforms

The main purpose of this chapter is to review, and present in a unified notation,

the various CPS transforms that have appeared in the literature (the seminal

papers are [P1o75] and [DHM91I for callcc; a unified account is in [DH94]. See

also [Fi1961.)

There is a large literature on the typing of CPS transforms, beginning with

[MW85], later with [Gri90] and in particular Murthy, e.g.. [Mur91]

The paradigmatic language that we consider as the source language for CPS

transforms is a simply-typed A-calculus, usually (but not in all cases) augmented

by the control operators callcc and throw. The BNF for raw terms is this:

M ::=x I Ax.M 1MM I callccM I throw

We call this language A+callcc; it is essentially the same as that in [DHM91].

To prevent misunderstanding, one should perhaps emphasise that this calculus

is a (standard) idealisation of call-by-value programming languages like Scheme

or ML and semantically very different from the simply-typed A-calculus whose

models are Cartesian closed categories, see [LS86].

We do not give an operational semantics here, as we regard the CPS trans-

forms as its proper semantics, but the intended meaning of the calculus is that

it should be a call-by-value calculus in the sense of fPlo751, where 0 and ij laws

appy only in a restricted sense.

(Ax.M)V = M[xH+V] 	 (/30
Ay.Vy = V 	 (m')

where y is not free in M

Here V ranges over values, i.e. terms of the form V ::= x I Ax.M.

The typing for first-class continuations in Standard ML of New Jersey in

[DHM911 is given by that of simply-typed A-calculus and the two rules for the

continuation primitives callcc and throw.

44

F, x: a F M:

F,x:rFx:r 	FF)x.M:a-+
FFM:a— r FI- N:a

F F MN: y
F F- M: -'r -* r 	F I- M -IT FFN:r

FFcallccM:r 	FE- throwMN:o

3.1 A survey of CPS transforms

From our point of view, the canonical CPS transform is the one from [DHM91].

3.1.1 Definition The call-by-value transform qj for)+ca11cc is defined as

follows.

cxL(k)

\x.M (k)

MN(k)

Jthrow M ND(k)

ca11cc M(k)

k(x)

= k(f){f(xh)=M(h)}

=

=
= JM(m){m(f)=f(kk)}

=

= 	(la - r)

= 	. ., l'i-n

This is almost the same as the transform used by Appel in his ML compiler [App92].

We recall here what he calls the naive version, which does not deal with exception

handlers.

3.1.2 Definition We write x i-+ ... for meta-level abstraction, i.e. ordinary

function abstraction, not construction of a)-term, and c(x) for the corresponding

meta-level application. The following is Appel's CPS transform (with the naive

version of callcc) [App92, ch. 51.

44 (c)

Al ,\x.M(c)

AjMN(c)

Aca11cc M(e)

Athrow M(c)

Lambda - (Name - CPS) -* CPS

C(X)

c(f){f(xk)=AM(z '-* k(z))}

AlM(m -* .4N(n '-+ m(nk))){k(x)=c(x)}

AM(m - m(kk)){k(x)=c(x)}

AaM(m '- c(f){f(xh)=m(x)})

45

Appel's transform performs a certain amount of administrative reductions. Up

to provable equality of the CPS calculus, the transform A ~ _D is the same as

3.1.3 Proposition

AM(c)) = lM(k){k(x)=c(x)}

Hence AM(z '-+ k(z)) = lM(k)

The call-by-value transform satisfies only the 3v law, not the full 0 law.

Plotkin's call-by-name transform satisfies the full 3-law. However, despite

being traditionally called "call-by-name", the transform does not satisfy the full

71-law.

This is because it is "lazy" in the sense that A-abstraction delays the evaluation

of the body (sometimes called "protecting by a A [P1075])". We could qualify "call-

by-name" with "lazy" to distinguish this transform from alternatives, not afflicted

by laziness, that satisfy the full 71 law. Unfortunately, the term "lazy" is sometimes

used to mean call-by-need in the sense of memoisation of arguments.

3.1.4 Definition The Plotkin call-by-name CPS transform [Plo75] is defined as

follows.

72'JxD(k) = x(k)

1Ax.MD(k) = k(f){f(xh)=PaM(h)}

PIMN (k) = PMl (m){m(f)f (nk) {n(h)=PN (h)}}

=

Px1 :ri ,...,x 	=

3.1.5 Remark Note that the argument N in an application MN is not forced,

but only located at n. While this may look simpler than the corresponding clause

for call-by-value, we can nonetheless regard it as a special case of it.

PJMN (k) = PJM (m){m(f)=f(nk){n(h)=PJN(h)}}

= PJM (rn){m(f).=q(n){n(h)< =1PJN (h)}{q(n)=f(nk)}}

Written this way, the application follows the same pattern as for call-by-value,

PJM(m){m(f). . . {q(n)=f(nk)}}

except that the term in the argument position, represented by ..., is not just

PNl(h), but PaNl(h) wrapped into a thunk:

q(n){n(h)=ThJN (h)}

we

Note that the whole computation is wrapped into the thunk, so that PND(h) is

not evaluated at this point. Alternatively, one could evaluate it, and wrap the

result (if any) into a thunk:

9ND (h){h(x)=q(n){n(h)4=h(x)}}

This would give a variant CPS transform 	agreeing with flj except the

clause for application, in which the result, not the computation, is thunked:

PMN(k)

= P'M (rn){m(f)=P'N (h){h(x)q(n){n(h)=h(x)}}{q(n)=f(nk)}}

= P'M (m){m(f)=P' N(h){h(x)=f (nk) {n(h)=h(x)}}}

Hence, to reiterate a point made in [DH941, the typing of call-by-name does not

imply call-by-name behaviour.

The Plotkin call-by-name transform can be seen as a modification of the call-

by-value transform, given by delaying the argument in an application and forcing

variables. According to this view, it is merely one of a number of possible varia-

tions arising from different choices about the point in the computation at which

arguments are to be evaluated. Two other such variations, called the Reynolds

and modified Reynolds CPS transform, are presented in [DH94].

3.1.6 Definition The Reynolds call-by-value CPS transform [DH941 is defined

as follows.

R,4(k) = x(k)

RJ.\x.M (k) = k(f){f(nh)=n(h'){h'(a)=1ZM (h){x(h")=h"(a)}}}

7ZIMN (k) = 7?MD (in) {m(f)=f (nk) {n(h)=7Z(JN) (h) }}

3.1.7 Definition The modified Reynolds call-by-value CPS transform [DH94] is

defined as follows.

7'x(k) = k(x)

7Z'lAx.M(k) = k(f){f(nh)=n(h'){h'(x)= 7?,'1MD (h)}}

1?,' MN (k) = R'M (m) {m(f)=f (nk) {n(h)=WN (h) j}

The reason why the call-by-name CPS transform does not satisfy the i-law

is, roughly speaking, that) "protects" an application from being evaluated in the

evaluation strategy codified by it. Hence in)x.MNx, the application is protected,

whereas in MN, M is evaluated.

47

There are two possible ways one could try to address this discrepancy: either

one could try to reduce under the .A in the case of)x.MNx; or one could avoid

evaluating the M in MN.

Murthy defines what he calls a "truly" call-by-name CPS transform, which

can be seen as reducing under A.

3.1.8 Definition The Murthy call-by-name CPS transform [Mur92] is defined

as follows.

MJx(k) = x(k)

M\x.Mflk) = MM(m){rn(b)=k(f){f(ak)=k(b)}}{x(h)=k(f){f(ak)=a(h)}}

M lMN(k) = M 	(m) {m(f)=f (mk) {n(h)=M 1ND (h) }}

Unfortunately, to be as well-behaved as claimed, this transform requires a

different notion of equality than provability by the CPS axioms. So in the present

setting, we can not really make much use of it. What seems fascinating about

this transform, though, is that returning the result and accessing the argument

are in some sense two separate processes. Only when the argument is needed is a

request sent to the calling context. This could mean that Murthy's transform is

especially suitable for a concurrent scenario. The appropriate notion of equality

for this transform may be the observational congruence from definition 2.3.2.

The other, in some sense dual, possibility to make Ax.MNx indistinguishable

from MN, we have indicated, is to not to force the evaluation of M in an appli-

cation MN. This is essentially what the uncurrying call-by-name CPS transform

does.

3.1.9 Definition The uncurrying call-by-name CPS transform is defined as fol-

lows.

\/Jx(k) = k(x)

= k(f) {f(xh) =\fM (m) {m(g)=g(7h) }}
M ~MNO = AuIM (rn){m(f)=.AfJNj (n) {n(a) =k(g){g(çk) =f (a17k) }}}

T -~ b

Afx 1 : r1 ,. . . ,x : rj)

=

= Efr11,. ..,.A/frj

This transform is related to Filinski's call-by-name transform in [Fi196] in

that it doubly negates base types. In its name-passing presentation it appears

to be new. There may be a connection to graph reduction here, inasmuch as an

4

application with the result not being of base type does essentially nothing, other

than consing the given argument onto the argument list. A comparison with the

G-machine constructing an application graph [FH88] seems possible here.

3.2 A simplified notation for non-recursive CPS

For the non-recursive CPS calculus, we can present the CPS transforms in a

shorthand style in which the CPS transform (M, M and M) of a term contains

a free variable k for the current continuation. (This notational trick appears to

be due to Phil Wadler; see [SW961.)

This may seem utterly confusing at first, to the extent that just about every -

thing appears to be called k. But as the CPS calculus is a low-level name-passing

calculus, it is virtually intractable without some technique for simplifying nota-

tion. Given that CPS terms admit a very "imperative" reading, one could add

a more computational justification for always calling the current continuation k,

in that we could think of k as always being the same register (current continua-

tion pointer), but at different times during the computation. In that sense, the

fact that the variable k can be recycled endlessly reflects the fact that the non-

recursive CPS calculus can only express forward jumps. One can destructively

update the current continuation pointer, as one can never jump back to it.

3.2.1 Definition The call-by-value with callcc CPS transform in the short-

hand notation () is defined as follows.

= k(x)

Ax.M = k(f){f(xk)=M}

MN = M{k(f)=N{k(a)=f(ak)}}

callcc M = M{k(f)=f(kk)}

throw M N = M{k(k)=N}

(M, N) = M{k(m)=N{k(n)=k(mm)}}

=

For the Plotkin call-by-name semantics, the semantics of the control operators

is somewhat tentative, as their intended meaning is not as clear as for call-by-

value. The absence of implementations of call-by-name languages with control

operators makes it hard to give pragmatic evidence as to what the definition of

callcc should look like. Nonetheless, if we view the Plotkin call-by-name CPS

transform as esssentially the same as call-by-name modulo thunking of function

arguments, we can argue that call-by-name callcc should be as in call-by-value,

with the only modification that the current continuation, once it has been seized,

is wrapped into a thunk. This allows us to keep the same typing rule for callcc.

3.2.2 Definition The Plotkin call-by-name CPS transform in the shorthand

notation () is defined as follows.

X

.Ax.M

MN

callcc M

throw M N

a -* 7-

x(k)

k(f) {f(xk)=M}

M{k (f) =1 (nk) {n(k)=N} }

M{k(f)=f(gk){g(p)=p(k)}}

M{k(k)=N}

—i(-1--1cr—r)

3.2.3 Definition The uncurrying call-by-name CPS transform in the shorthand

notation () is defined as follows.

x = k(x)

Ax-.M = k(f){f(x7k)=M{k(g)=g(k)}}

MN = M{k(f)=N{k(a)=k(g){g(7k)=f(a77k)}}}

callcc M = k(f){f(yTh)=M{k(f)=f(gyth){g(q)=q(yh)}}}

throw M N = k(f){f(çh)=M{k(k)=N}}

7-i —*... —* r —+ b = 	(ri... r, -'b)

One difference to CPS transforms using the)-calculus as the target language

is that there is no way to define the abort operator by using the)x.x as an

aborting continuation (as in [FFKD86]). But we can define Danvy and Filinski's

meta-continuation passing style [DF92].

3.2.4 Definition For A-calculus together with callcc, throw, the abort opera-

tor A and the control delimiter #, i.e. the following language

M ::=xl) x.MIMMIca 11ccMIthrowMIAMl#M

the Danvy/Filinski metacontinuation transform () is given as follows.

= k(xc)

.Ax.M = k(fc){f(xkc)=M}

50

MN = M{k(fc)=N{k(ac)=f(akc)}}

callcc M = M{k(fc)=f(kkc)}

throw M N = M{k(kc)=N}

#M = M{k(xc)—c(x)}{c(x)=k(xc)}

AM = M{k(xc)=c(x)}

The semantics of the composable continuation construct S is given as follows.

S M - M{k(fc)=f (gkc) {k(xc)=c(x) }{g(yk'c')=k(yc) {c(w)=k'(yc') }}}

3.3 Soundness of the uncurrying call-by-name CPS
transform

The transform () is genuinely call-by-name in that it satisfies both the unre-

stricted 8- and i'-laws. We show this for the non-recursive CPS calculus. Using

the shorthand with the current continuation always being called k, we can keep

track of what is happening without being swamped by too many distinct variables.

The crucial property of the uncurrying call-by-name CPS transform is that

the transform of all)¼-terms is thunkable. For the call-by-value CPS transform,

by contrast, this would hold only for the transform of values.

3.3.1 Lemma Let L be a ,\-term. Then its uncurrying call-by-name transform

L satisfies:

L = k(q){q(z')=L{k(p)=p(2)}}

PROOF By induction on L. Let L = x.

k(q){q(2)=x{k(p)=p(z')}}

= k(q){q(2)=k(x){k(p)=p(z)}}

= k(q){q(z)=x(z)}

= k(x)

= x

Suppose L =)x.M and let the induction hypothesis hold for M.

k(q) {q(2')=)tx.M{k(p)=p(z) }}

= k(q){q(z)=k(f){f(x7k)=M{k(g)=g(7k)}}{k(p)=p(E)}}

= k(q){q(z)=f(z){f(x7k)=M{k(g)=g(y7k)}}}

= k(q){q(x ysk)=f(xk){f(xgk)=M{k(g)=g(ffk)}}}

51

= k(q){q(xçk)=M{k(g)=g(7k)}}

= Ax.M

Suppose L = MN with M and N satisfying the induction hypothesis.

k(q) {q(2)=MN{k(p)=p(z) }}

= 	k(q){q(z)=M{k(f)=N{k(x)=k(g){g(7k)=f(xy7k)}}}{k(y)=p(z)}}

= 	k(q){q(E)=M{k(f)=N{k(x)=g(E){g(k)=f(xgk)}}}}

= 	k(q){q(7k)=M{k(f)=N{k(x)=f(x77k)}}}

= 	k(q){q(7k)=M{k(f)=k(x){x(z)=N{k(j=p(2)}}{k(x)=f(x7k)}}}

= 	k(q){q(k)=M{k(f)=f(x7k){x(z)=N{k(j)=p(2)}}}}

k(q){q(y7k)=M{k(f)=f(x7k)}}{x(z)=N{k(p)=p(z)}}

= 	k(x){x(i)=N{k(p)=p(z)}}{k(x)=k(q){q(17k)=M{k(f)=f(xy7k)}}}

= 	LL{k(x)=k(q){q(7k)=M{k(f)=f(xk)}}}

= 	N{k(x)=k(q){q(gk)=f(x17k)}{f(xçk)=M{k(f)=f(xçk)}}}

= 	k(f){f(x7k)=M{k(f)=f(xfjk)}}{k(f)=N{k(x)=k(q){q(k)=f(x7k)}}}

= 	M{k(f)=N{k(x)=k(q){q(çk)=f(zk)}}}

=MN

EJ

As a preparation for the soundness of 0-reduction, we need to establish how,

under the transform (), substitution in the source language, A-calculus, relates

to a binding in the target, CPS calculus. Because of lemma 3.3.1, we have two

equivalent views on what a substitution M[x i-+ N] means: we can see it as M,

expecting the argument x, becoming the current continuation for N; or we can

see it as M having access, via the pointer x, to the resource N, expecting its

current continuation as its argument. In that sense, the undurrying call-by-name

transform provides a "pure" semantics for simply-typed)-calculus: the denotation

(transform) of everything is as good as a value.

3.3.2 Lemma

M[x i- N] = N{k(x)=M}

PROOF By lemma 3.3.1, this is equivalent to

M[x '-* N] = k(x){x(p)=N{k(p)=p(z)}}{k(x)=M}

= jyj{x(z)=N{k(p)=p(z)}}

52

If M = x, then

M{x(z)=N{k(p)=p(z)}} = k(x){x(z)=N{k(p)=p(2)}} = N

If M = y x, then

M{z(z)=N{k(p)=p(z)}} = k(y){x(z')=N{k(p)=p(z)}} = y

The remaining cases follow by induction using the fact that the binding for x

distributes - except for the case when the scope of x has a hole because x is

)¼-bound:

(Ax.M)[x i-+ N]

= k(f){f(xk)=M{k(g)=g(k)}}{x(z)=N{k(p)=p(z)}}

= k(f){f(xk)=M{k(g)=g(k)}}

because x is not free in k(f){f(xyTk)_—M{k(g)=g(yik)}}. 	 D

The 7-1aw is sound for ()just as 77v is sound for 	.

3.3.3 Proposition (77 for)

Ax.Mx =

where x V FV(M).

PROOF

)tx.Mx

= k(f){f(x7k) =Mx {k(g)=g(7k)}}

= k(f){f(x7k)=M{k(f)=k(g){g(7k)=f(xçk)}{k(g)=g(k)}}}

= k(f){f(xçk)=M{k(f)=f(xgk)}}

= M 	by lemma 3.3.1

I'

3.3.4 Proposition (0 for)

(\x.M)N = M[x '-* N]

(vrJflN

= k(f){f(xy7k)=M{k(g)=g(k)}}{k(f)=N{k(x)=k(g){g(çk)=f(xçk)}}}

53

= N{k(x)=k(g) {g(yik) -f (xytk) }} {f (x7k)=M{k(g)=g(7k) }}

= N{k(x)=k(g){g(yTk)=M{k(g)=k(g)}} } 	by lemma 3.3.1

= N{k(x)=M} 	by lemma 3.3.2

= MIx — N]

D

The above generalises to the recursive CPS calculus, so we have the following.

3.3.5 Lemma

JfM (in) = k(q) {q(z=i\f (]ML) (m) {m(p)=p(z) }}

3.3.6 Lemma

i'.TIM[x '-+ N](m) =

3.3.7 Proposition

Af1Ax.Mx(k) = flML(k)

where x V FV(M).

3.3.8 Proposition

A1 (Ax.M)Ni(k) = J./lM[x— N}j(k)

3.4 CPS transforms to the A- and 7-calculi

The CPS transforms with the CPS calculus as the target language can be spe-

cialised if we compose them with one of the translations of CPS calculus into

other calculi.

For the A-calculus, we recover the usual presentation of CPS transforms with

the A-calculus as the target language.

It has been noted by several people, such as [Bou97] and also [Thi96b], that

translations from the A- to the w-calculus (see [Tur95] for a survey of them,

together with a CPS-like typing) can be seen as CPS transforms.

3.4.1 Remark With the the A-calculus as the target language, the call-by-value

CPS transform is the following:

= Ak.kx

jAx.M = Ak.k(A(x, h).JMh)

Jthrow M Nf = Ak.MND

ca11cc M = Ak.lM(Am.m(k, k))

IMND = Ak.(M (Am.N (An.m(n, k))))

54

3.4.2 Remark With the the A-calculus as the target language, the Plotkin call-

by-name CPS transform is the following:

Lqxo = ,\k.xk

£Ax.M = Ak.k(A(x,h).LJMh)

£(JMNj = Ak.(LaM(Am.m(iN, k)))

3.4.3 Remark With the the it-calculus as the target language, the call-by-value

CPS transform is the following:

tx(k) = 	(x)

lAx.Ik1(k) = 	(vl)(k(1) I ! 1(xh).aIV[(h))

It'IN(k) = 	(vm)(IVI(rn) 	! m(1).(vn)((jN(n) 	! n(a).1(ak)))

throw M N(k) = 	(zim)(M(m) I !m(n).JNj(ri)

lcallcc M(k) = 	(vm)(M(m) 	!m(1).l(kk))

where k, 1, m, n are fresh.

3.4.4 Remark With the the it-calculus as the target language, the (lazy) call-

by-name CPS transform is the following:

£Jx(k) = 	(k)

£lAx.M(k) = (u1)(](1) !1(xh).LJM(h)

£IttN(k) = (vm)(LIVI(m) ! m(1).(vn)(! n(h).CN(h) l(nk)))

3.4.1 Prompts and control-specific full abstraction

We would agree with [App92] that the intended meaning of (throw-ing to) a

continuation is a "jump with arguments". But the CPS transform into the A-

calculus allows the definition of control operators that are rather unlike jumps,

such as Felleisen's abort operator A, definable as

AML = Ak.(1JM(.Ax.x))

By ignoring the continuation k, AM discards the surrounding evaluation context

and jumps to the top level. But this is not the same as a jump by throw-ing to

55

some continuation previously reified by a callcc, as the destination of the jump

changes when the phrase AM is enclosed in a bigger program.

Stranger still from the point of view that continuations are like jumps, Felleisen's

prompt or control delimiter, definable as

=)tk.k(M(Ax.x))

can intercept jumps out of M.

We would argue that there is a fundamental difference between callcc and

throw on the one hand and A and % on the other, certainly from a naive and

probably from an implementation point of view. callcc is often described as

labelling a control state, much as one can label a command in low-level imperative

languages. throw is then analogous to JMP or goto in that it jumps to such a

label. But whereas the label bindings introduced by callcc can be statically

determined from the program text, A refers dynamically to the top level. The

prompt %, from this point of view, destructively updates all the references from

within its argument to labels on the outside.

Whereas the definition of A for CPS into the A-calculus looks innocuous, its

very behaviour seems odd for it-calculus semantics. A is characterised by its

discarding of the surrounding evaluation context E[]' that is JE[AM] = M.
But consider for instance E[] = (Ax.y)[]. Consider

'1(Ax.y)(AM)Ll(k) = (vn)(! l(xk)i(y) I AM(n) I! n(a)1(ak)).

Here OAMO has no access at all to k. It is hard to see how this could ever be

equal to (k). This would appear to be simply a violation of the visibility of

names, reflecting the fact that the reference to the top level k that AM needs to

escape is essentially dynamic, whereas ircaIculus names are statically scoped.

Given that Sitaram and Felleisen [SF90] have shown that the prompt is nec-

essary for the full-abstraction of standard CPS, it would be interesting to see

whether the it-calculus semantics is a fully abstract translation. Continuation se-

mantics in the it-calculus provides a different angle than the standard CPS model

on the relative status of various control constructs. In the usual CPS semantics,

direct style does not allow for control operators; and as soon as the interpretation

is "bumped up" in the functional hierarchy by the CPS transform, the prompt is

introduced along with callcc and throw. Felleisen and Sitaram [SF90] argue on

the basis of this for the naturality of the prompt. In the it-calculus semantics, by

contrast, the control operators already exist in the structure necessary to support

the A-calculus; and the prompt could be introduced only in a very imperative

manner, by destructively updating the continuation of its subterm.

56

3.4.5 Remark We point out a connection between Miler's original encoding

of the A- in the ir-calculus and a recently discovered CPS transform [HS971 for

the AM-calculus [Par92]. In each case, functions are not fully CPS transformed.

Rather, a construct in the target language not properly inside the CPS discipline

is used for the translation of functions. For the ir-calculus, the parameter of

the translation is used for input, whereas in CPS it would only ever be used for

asynchronous output. Recall Milner's original transform [Mil9l] from the A- to

the 7r-calculus (which he calls "encoding of the lazy A-calculus"):

£Jx(k) =

£jAx.M(k) = k(xh).LMD(h)

LjMN(k) = (vm)(E,JMD(m) I (vn)((nk) I !n(h).JN(h)))

The Hofmann- Streicher CPS transform () from the Aft-calculus is defined as

follows.

= Ak.xk

Ax.M = A(x,k).Mk

MN = Ak.M(N,k)

= Aa.M()

[a]M = A0.Ma

O+T =

F,X.T = F, x:

Here r abbreviates r -+ o. The typing invariant of () is: if F F- M : T , then

F F- M : -'f. (CPS transforms are usually more comprehensible if one does not

77-reduce them.) From our point of view, such transforms are somewhat vexing,

in that they introduce continuations in some places, but do not appear to break

down function types into continuations in quite the same way that the canonical

CPS transforms do. It is not clear whether they can be accommodated in our

semantic framework.

3.5 Flattening transforms

We review flattening transforms, known to be a first step towards CPS; see

[LD93], although our account is somewhat different.

57

A first-order analogue of flattening for tuples leads us to a motivation for pre-

monoidal categories: we derive them from the computationally natural principle

of naming all intermediate results.

3.5.1 Flattening applications

We recall from [LD931 that CPS transforms can be staged by first translating into

a flattened form (called Core Direct Style in [LD931); here we use a let-language

similar to that in [DH94].

3.5.1 Definition (Flattening transform for A-terms)

=
(Ax M)' de =f

Ax.M
del

(M N) = let f = M' in let a = NL in fa

3.5.2 Definition The CPS transforms for fiat A-terms are defined as follows.

T = k(x)

Ax. M = k(f){f(xk)=M}

fa = f(ak)

let x = N in M = N{k(x)=M}

X = x(k)

Ax.M = k(f){f(xk)=M}

fa= f(k){k(f)=f(ak)}

let x=NinM = M{x(k)=N}

3.5.3 Proposition The call-by-value and the lazy call-by-name CPS transforms

factor over flattening.

M=M M=M

3.5.2 Flattening tuples

In the above, the only compound expressions (or serious terms) were combinations

M N. What the flattening transform achieved was to compile A-calculus into a

de-sugared form in which the only combined expressions were those made up of

variables, f a.

We will now consider a first-order analogue of this, focussing on products

instead of function spaces. We de-sugar (flatten) tuple expressions (M, N) in the

same way as was done for applications M N. The target language shares some

features with Moggi's metalanguage [Mog89], most notably in the distinction

between values and computations, but without any reference to monads.

In this setting, we have a very restricted notion of value: tuples of variables.

More complex entities cannot themselves be entries in a tuple; instead, all inter-

mediate results are named and only the names can appear in tuples. Values are

given by the following BNF:

V::=Q 1 X (VV)

Computations are values or let-expressions

M::= V I let x = M in M

in general, though, M will range over other things in addition to the above, e.g.

computations with side-effects.

3.5.4 Definition The typing of the flattened tuple language is given by the

following rules.

x:rI- x:r
	['I-U:cx AF- V:T

where U and V are values

FHN:a z,x:uHM:T 	FF-N:a x:a,/HM:r
L,FE- let x=NinM:r 	F,LF- let x=NinM:r

3.5.5 Definition The tuple flattening transform is defined as follows.

def
X = x

(M, N)' 	let a = MLI in let b = N in (a, b)

3.6 A duality on CPS terms

We recall the call-by-value and (lazy) call-by-name CPS transforms.

= k(x)

Ax.M = k(f){f(xk)=M}

MN = M{k(f)=N{k(x)=f(xk)}}

X = x(k)

Ax.M= k(f){f(xk)=M}

MN = M{k(f)=f(xk){x(k)=N}}

59

It is striking that the translations of a free variable x under the two transforms

are dual to each other in the sense that each arises from the other by swapping

operator and argument. The same duality is evident in the translations of the

argument N in an application MN; this is N{k(x)= . .. } for call-by-value and

{x(k)=N} for call-by-name.

As long as continuations are unary, it is easy to define a transform that

swaps operator and argument everywhere. This does not make sense for gen-

eral, polyadic, continuations, as one cannot have a tuple in the operator position.

But inasmuch as replacing k(x) with x(k) amounts to replacing x with a thunk, we

can define a transformation for non-unary continuations f() in the same spirit,

by thunking them, giving f(q){q(p)=p()}. To compensate for this thunking, the

bindings for non-unary continuations . . . {f()=. . .} need to be translated with

an additional forcing q(p), giving . . . {f(q)=q(p){p(i)=. . .

3.6.1 Definition For a CPS term M, let its dual M' be defined inductively as

follows:

def k (x) 	= x(k)

	

M{n(x)=N}' 	N'{x(n)=M'}

	

-mI 	def
f(yi 	= f(q){q(p)=p(y)}

	

M{f()=N}' 	M'{f(q)=q(p){p(yi)=N'}}

for 7 7~ x; that is, W ranges over sequences other than those of unit length.

The duality between call-by-name and call-by-value is particularly vivid when

we transform terms after they have been flattened.

3.6.2 Proposition For a CPS term M, M-- = M

PROOF By induction on M. The cases k(x) and M{n(x)=N} are trivial. For

the remaining two cases, we have

LJ
1W)

=
f(q){q(p)=pW)}L

=
p)L{p(q)=q(f)}

= p(q){q(f)=fW)}{p(q)=q(f)}

=1W)

M{fW)=N}

1;"]

= Mi ff (q)=q(p){p(y)=N'}}'

= p(q) {p(q)=q(f) {f(y)=N"}}{q(f)=M"}

= q(f){f(y)=N"}{q(f)=M"}

= M"{f(7)=N"}

M{f(y1)=N} 	by the induction hypothesis

EJ

This is a duality between call-by-value and call-by-name in the sense that it

connects the corresponding CPS transforms.

3.6.3 Proposition For a A-term M not containing control operators,

M'=M and M'=M

PROOF By induction on M. For M =

-J_ x =k(x) I =x(k)=x

And conversely. Let the induction hypothesis hold for M and N.

MN'

= N{k(x)=M{k(f)=f(xk)}}'

= f(xk)'{f(k)=M'}{x(k)=N'}

= f(q) {q(p)=p(xk)}{f(k)=M'}{x(k)=N'}

= M'{k(p)=p(xk)}{x(k)=N'}

= M{k(p)=p(xk)}{x(k)=N}

=MN

MN'

= M{k(f)=f(xk){x(k)=N}}'

= N'{k(x)=f(q){q(p)=p(xk)}}{f(k)=M'}

= N'{k(x)=M'{k(p)=p(xk)}}

= N{k(x)=M{k(p)=p(xk)}}

=MN

Ax.M
I

= k(f){f(xk)=M}'

61

= f(k){f(q)=q(p){p(xk)=M'}}

= f(k){f(q)=q(p){p(xk)=M}}

= k(p){p(xk)=M}

= Ax.M

\'r 1%,f

= k(f){f(xk)=M}'

= f(k){f(q)=q(p){p(xk)=M'}}

= k(p){p(xk)=M'}

= k(p){p(xk)=M}

A:j5.IV.L

0

However, the duality does not in general respect equality, that is there are

M1 and M2 with M1 = M2 (provable equality), but not M1 ' = M2 1 . Even for

terms arising as CPS transform of)-terms, equality is not preserved in general.

Consider (x.y) (fg).

(\x.y)(fg) = f(gx){k(x)=k(y)}

(,\x.y)(fg) = y(k){k(x)=f(gx)} = k(y)

Clearly, the Garbage Collection axiom is the culprit here, so perhaps restricting

to the linear CPS calculus could help with the preservation of equality. Note

that the duality is well-behaved with respect to the JMP and ETA laws, in that

it transforms their redexes into each other.

(M[m m])' = (M{n(x)=m(x)})' = x(m){x(n)=M'} = M'[n -* m]

3.7 Two connections between call-by-value and call-
by-name

We have already mentioned in 3.1.5 that the lazy call-by-name CPS transform

can be seen as arising from thunking.

Consider)-calculus augmented by two special forms, force and delay. We

give a translation from)-calculus into the augmented variant.

X t = forcex

=
(MN)' = Mt (delay N t)

62

We adapt the call-by-value CPS transform for special forms force and delay as

follows.

forcex = k(x)

delay M = k(p){p(k)=M}

Then call-by-name factors over call-by-value by virtue of thunking [HD95]:

Mt (see [HD951).

We note that the variables appearing in a source term are reused in its CPS

transform, along with continuation variables freshly generated by the CPS trans-

form. For different transforms, this reuse is conceptually quite different.

In call-by-value, the variables from the source language are recycled to denote

the value of the translated term being passed to the current continuation. The

latter is anonymous, inasmuch as the current one is always used. For instance,

in T = k(x), the variable x evaluates to itself; hence x is passed to the current

continuation, which, in the shorthand version of the transform, is always called k.

For Ax.M = k(f){f(xk)=M}, the ,\-expression evaluates to a closure; a pointer

(private name) to this is passed to the current continuation.

For call-by-name, there are two intuitively different, but equivalent readings.

Either one of these may seem more natural, depending on whether one looks at

the thunking or the flattening transform as an intermediate step towards call-by-

name CPS. They are equivalent in that they are adjoint correspondent under

the self- adjointness on the left.

In the first interpretation, which regards call-by-name as a variant of call-

by-value obtained by thunking, A-calculus variables are recycled in the manner

described above for call-by-value. The difference that the environment does not

hold values, but thunks. Hence x = k(x) is read as saying that the thunk whose

address x is stored in the environment is forced by being sent the current contin-

uation k. (Categorically, then, x : -r I- x : rfl denotes a morphism

representing this forcing.) According to this view, the translation of)-expressions

is identical to that under call-by-value.

The second interpretation of call-by-name holds that source language variables

are recycled to denote the current continuation of the translated expression. The

latter, rather than the current continuation, now becomes an anonymous request

channel or return address. x = k(x) is read as saying that k is passed to the

current continuation, called x, of the transform of the)-term x. (Categorically,

this means that ftx : T I- x : -Fj denotes a morphism -'frJ -+ -fr j representing

the identity.) Under this interpretation, application in particular is quite different

63

from the call-by-value case.

= f(q){q(p)=p(xk)}

f is now the current continuation of application, to which the request channel q

is passed.

3.8 From flattening tuples to premonoidal cate-
gories

One could argue that the tuple notation (M, N) in a call-by-value language should

be considered as no more than syntactic sugar for the flattened form

let a = M inlet b N in (a,b)

and that semantics should be based on the de-sugared form. Thus semantics

should not be based on the categorical structure for which the tuple language

M ::= () I x I (M, M) is the internal language, finite products [Cro93]; but

instead on the structure corresponding to the de-sugared let-language.

In the spirit of categorical semantics (for an accessible introduction, see e.g.

the textbook [Cr0931), we now attempt to arrive at a categorical semantics.

The minimal setting for a semantics of the flattened tuple language is a cate-

gory equipped with a "tensor", more precisely, a binoidal category [PR971.

The let-construct is decomposed into tensor A 0 (_) and composition. That

is, in a judgement

L, F I- let x = N in M :

L1] is composed "in parallel" with [F I- N: al by means of the tensor EAfl ® (_),
and the result is composed "sequentially" with 1[L, x : a I- M : by means of the

categorical composition "; ".
In order to make the semantics cope with ambiguities in the notation, specif-

ically writing environments as associative lists, we require coherence conditions

that make the different readings of ambiguous syntax agree semantically. This

leads to the notion of premonoidal category [PR97].

3.8.1 Definition Given a premonoidal category and an interpretation ftfl of

base types as objects of that category, we give a semantics to the flattened tuples

language as follows.

def = 	(... (ftr®...)...)®frj

64

	

ftx:rHx:r 	deffl 	= 	id

	

IF, LF let x=N in M:r]] 	ftFHN:uJJ®ftz; Ix: a,LHM:rfl

ftL,F I- let x = N in M: 	ftL]]® IF I- N: crfl; IA, x : a F- M: Tfl
def

	

IF, zI- (U,V):a®-i- JJ 	ftFHU:P}I®ftL;fta]®ftLF - V:TE

de ftx : r1 , (y : T2, z : r3) I- ((x, y), z) : (Ti ® T2) 0 	=f assoc
def 	—1 ft (x : r1 , y : 'r2), z : 73 I- (x, (y, z)) : 'r1 0 (r2 ® 3)J1 	=

The coherence theorems 1PR971 for premonoidal categories then let us write en-

vironments associatively. The ambiguities in the syntax do not lead to problems

because "every diagram commutes" (as long as it is made up of the denotations

of values).

The let expression can be written almost exactly the same in ML (let val

x = N in M end). By way of illustration, consider the following ML code.

fun assoc ((x,y),z) = (x,(y,z));

assoc : ('a * 'b) * ' c —> 'a * (' b *

fun tensorleft f (a, x) = (a, f x);

tensorleft : (' a —> 'b) —> 'c * ' a —> 'c *

fun tensorright f (x,a) = (f x, a);

tensorright : (' a —> 'b) —> 'a * 'c —> 'b * ' C;

In Scheme, we would write flattened tuple expressions using let* like this: (let*

((a M) (b N)) (list (a b))). Note that the heterogeneous lists in Scheme

allow us to define a strict premonoidal category by using list concatenation for

defining ®.

Some readers may be surprised that the premonoidal structure is not in fact

monoidal. We briefly illustrate why one should not expect this. For example, in a

language with state, there are two possible meanings of a tuple (M, N), depending

which component is evaluated first. Consider the following examples, where we

make the evaluation order explict by using let.

let val s = ref 0 in

let val x = (s := !s + 1; !s) in

65

let val y = (s := 's + 1; !s)

in #1(x,y) end end end

let val s = ref 0 in

let val y = (s := !s + 1; !s) in

let val x = (s := !s + 1; !s)

in #1(x,y) end end end;

Just as for state, in the presence of continuations (first-class or otherwise) there

are two possible meanings of the tuple (throw k 1, throw k 2).

callcc(fn k =>

let val x = throw k 1 in

let val y = throw k 2

in #1(x,y) end end);

callcc(fn k =>

let val y = throw k 2 in

let val x = throw k 1

in #1(x,y) end end);

In a monoidal category, there would be no way to distinguish between the

two composites. This makes monoidal categories suitable for those cases where

both composites are evaluated in parallel or where there can be no interference

between the two (which would the case, say, if both had access to disjoint pieces

of state). But with control, as given by continuations, we have both a sequential

evaluation order and interference between the components, since a jump in one

will prevent the other from being evaluated at all.

Put differently, the presence of computational effects, like state and control,

"breaks" the bifunctoriality, so one is left with a binoidal category. (Partiality

appears to be a separate case that should perhaps not be lumped together with

genuine effects like state and control.)

Me

Chapter 4

®-i-categories

In this chapter, we develop a categorical account of the structure inherent in

first-class continuations.

For first-class continuations, it is particularly worthwhile to look at the cate-

gory of computations, for the following reasons:

• First-class continuations allow the full callcc to be added to the language,

which is the most powerful version of control found in actual languages.

This contrasts with the situation for state, where only a rather weak notion

of global state is added by commonly used notions like the state monad.

• The construct to be studied has universal properties on the category of

computations. That does not seem to be the case for constructs associated

with state, such as assignment.

• Continuations are an advanced concept in programming languages that

could be made easier to use by semantic clarification. While local state

has subtleties, it is not obvious if global variables as introduced by the state

monad are all that much in need of elucidation.

(We have made a comparsion with state here, as state and control appear to be

the most natural things to add to a programming language, but this discussion

would apply to other effects, e.g. exceptions.)

4.1 Introduction: what structure do we need?

The task of finding a semantic infrastructure for continuation semantics is some-

what analogous to that of interpreting A-calculus in a cartesian closed category.

We need a first-order structure for interpreting environments and tuple types, in

Me

analogy with, but weaker than, cartesian products, as well as higher-order struc-

ture for interpreting continuation types. These now become the fundamental

notion, while arrow types are derived as a special instance of continuation types.

But whereas in)-calculus every morphism is a "pure function", in CPS there is a

need to identify a subcategory of effect-free computations (or values) that satisfy

stronger properties than the general, possibly effectful, computations.

We show that effect-freeness in the presence of first-class continuations is a

more subtle notion than would at first appear. In particular, it is not enough to

exclude straightforward jumps like throw k 42.

In our framework, environments are modelled by means of a premonoidal cat-

egory [PR97]: this is a categorical framework which provides enough parallelism

on types to accommodate programs of multiple arity, but no real parallelism on

programs. For each object (type) A, there are functors A ® (_) and (_) ® A.

For morphisms f : A -+ A' and g B -+ B', there are in general two distinct

parallel compositions, f®B; A'®g and A®g; f®B'. The central morphisms are

those f such that for all g, the above composites agree. That is, those programs

phrases which are not sensitive as to whether they are evaluated before or after

any other. This provides a robust notion of effect-free morphism.

The continuation type constructor extends to a contravariant functor, as every

function a —* r gives rise to a continuation transformer i cont —+ or cont in the

opposite direction. This functor is adjoint to itself on the left, i.e., there is a

natural bijection

-'C --~ B
We use the notation - and refer to an application of the continuation functor

more succintly as a negation, without claiming any deep connection. 1

Intuitively, a morphism -'B —+ C expects both a B- and a C-accepting

continuation as its argument and current continuation, respectively. The above

correspondence arises by simply switching these. This ties in with the typing of

continuations in Standard ML of New Jersey.

We can define the unit force : --A —* A of this adjunction, the isomorphism

of adjunction q: hom(-iB, C) —+ hom(,C, B) and the negation functor itself.

We require this to hold even "parametrically" in some other object A

A®-'B—C
A®-'C —*B

'There is a formal resemblance between the continuation functor and logical negation, just
as there is a formal resemblance between, say, slice categories and division on the integers by
virtue of C/i C and C/A/B C/(A x B).

M.

The unit of this adjunction is the application map apply: A® -(A ® -'B) -+ B.

Restricted to the subcategory of central morphisms, -1 is adjoint to itself on the

right.

B--iA

Intuitively, a central morphism A —p -'B expects an argument of type A and

returns a B-accepting continuation. Hence there is demand for both A and B;

and again the correspondence arises essentially by swapping.

The unit of this adjunction is a generic delaying map thunk : A -* --A.

Using thunk, we define a morphism

pair: C -* -'(A® -'(A®C))

which is a natural transformation in the centre. This in turn is used to define

A-abstraction.
- 	 def
AAf = pair; -(A ® -'f)

This definition of A-abstraction in terms of control (and tuple types) does not

give rise to a closed category, although we have the following.

(A ® sf); apply = A ® pair; A ® -(A ® -if); apply = A ® pair; apply; f = f

The corresponding A(A ® g; apply) = g, however does not hold in general. Hence

this A-abstraction does not give rise to a cartesian closed category. But it is still

sufficient for interpreting a call-by-value A-calculus, as a central g can be pushed

into A (and values denote central morphisms). Although neither SML nor Scheme

make this identification of function types [A -+ B] with -'(A (9 -'B), we can still

define a pair of coercion functions (figures 1.12 and 1.13).

The basis for our categorical account of continuation semantics will be the

negation functor, corresponding to the typing based on -' in Chapter 2 However,

the continuations considered there were actually polyadic, that is, in k(x i ... z1)

k is applied to a tuple of arguments. That is why, before introducing -', we need

some first-order structure for building up such tuples (as well as environments).

4.2 Semantics of environments in a premonoidal
category

Before addressing the categorical semantics of environments, we should perhaps

clarify what we mean by "environment" here. The terminology we adopt may not

be completely standard, but is a rational one in being semantically motivated.

In Type Theory, the antecedent of a judgement x 1 : r1 ,. . . , x,-, : T H M : r is

usually called a context. In Computer Science, an environment is traditionally a

map from variables to values. Here we use the word environment in the general

sense of anything that ascribes something (types, values, ...) to variables; the

former, then, is a type environment and the latter a value environment.

Semantically, a type environment denotes an object in some semantic category,

while a value environment denotes an element thereof. (In the categorical sense

of element: an element of an object being a morphism with that object as its

codomain.)

This generalises the usual notion of types denoting objects and terms denoting

their elements in a straightforward pointwise fashion to indexed collections of

both: value and type environments, respectively.

In the sequel, we concentrate on the semantics of type environments and do

not deal with value environments explicitly. But their semantics is implicit in

that a morphism Irl -~ ftrlj can be seen as mapping elements of JrJ to elements

Of ftrfl.
In particular, suppose our semantic category consists of sets with structure,

and that we build up the denotation of a type environment ftx 1 : ri ,. . . , x, : r,j

as the product of the denotations of the types ftrjfl. Then a value environment p is

(up to isomorphism) a (global) element of the denotation of the type environment

1

This also implies a notion of value environments "matching" type environments

in that p ascribes to each x, a value v2 having type r.

The above generalisation of environments is also closely related to the view

of structures in Standard ML having the signatures which they match as their

"type" [FT95], to the extent that an ML structure represents a value environment

and a signature a type environment.

Another reason for avoiding the word "context" here is that in Computer

Science this often refers to a notion of "term with a hole", such as evaluation

context. Using "context" in the sense of "type environment", moreover, may lead

to an unfortunate inversion of terminology if the word "environment" is then used

for (the totality of) computing agents with which some interaction is possible, a

concept more closely allied with "evaluation context" or indeed "continuation".

We will use a premonoidal structure 0 for interpreting environments of the

form ftxi : Ti, . .. ,x : -r,j as i['jJ ® . . 0

4.2.1 Definition (1PR971) A strict premonoidal category is a category IC to-

70

gether with an object 1 e ObK and, for each A E Ob/C, endofunctors A ® (_)

and (_) ® A that agree in the sense that

(A® (_))(B) = (()® B))(A) =: A® B

such that 1 ® (-) = id = (-) 0 1 and

(A®B)®C = A®(B®C)

(f®B)®C =.f®(B(OC)

(A(Dg)®C = A®(g®C)

ry;jroi --J

A morphism f : A -+ A' is called central if it commutes with everything in

the sense that, for all g : B -+ B', we have

That is, for f to be central, we require these diagrams to commute

A®B Ae9AB,

feBj
A'®

A'®B 	A'®B'

B®A

B®f

B®A' 9 B'®A'

The centre Z(K) of K is the subcategory of K consisting of all objects and all

central morphisms. Let t : Z(1C) '-* K be the inclusion.

The inclusion of the centre will often be left implicit.

4.2.2 Remark To simplify the account, we have concentrated on the strict case,

rather than the more general premonoidal category. Because each premonoidal

category is equivalent to a strict premonoidal category (implicit in [PR971), the

restriction to strictness is not a very severe one.

One could reasonably expect everything to generalise to the general case in a

routine way.

In any case, the emphasis here is on the categorical structure of continuations,

so we believe it to be defensible to postpone coherence issues until this is well-

understood and definitive. - For the present, the canonical example is a term

model (which we try to understand more abstractly), so it would be somewhat

counterproductive not to take advantage of the strictness afforded by term models.

71

4.2.3 Definition A ®-category is a strict premonoidal category K such that ®

is given by cartesian product in the centre of K and furthermore, the twist map

arising from this product

(7r2 ,7r i) : A®B —* B®A

is natural in A and and in B.

We extend the morphism pairing operation (,) given by the products in the

centre of /C to the whole of K as follows. (Note that this implies a choice of

which component is computed first: here it is the second.) For f : C —* A and

g: C —* B, let

(f, g)
d=el

 (idc ,idc);C®g;f®B : C — A®B

4.2.4 Definition We say that a morphism f : A —* B is copyable if it respects

the binary products of the centre in the sense that

f;(id,id) = (f, f) : A —* B®B

and that f is discardable if it respects the terminal object 1 of the centre in the

sense that

f; !B =!A : A — 1

In [Fi189], discardable morphisms are called total.

4.3 Continuation types as higher-order structure

We will be interested in a particularly simple kind of adjunction: a contravariant

functor being adjoint to its own dual, with the unit and co-unit being the same.

4.3.1 Definition A functor F : C°P —+ C is called self-adjoint on the left if

there is a natural transformation e : FF° — p idc such that Fe; eF = Id. Dually,

F is called self-adjoint on the right if F'P is self-adjoint on the left.

(See also [Mac7l, p. 87] for the "on the left" idiom.)

The continuation functor -i has two universal properties, adjointness on the

left and right; we axiomatise them here in terms of the universal maps apply and

thunk, respectively.

4.3.2 Definition A 0--category is a 0-category K together with

72

. a functor -' : IC° 1) —+ Z(K) such that for each object A of)C,

(A ®t-'()) : K°' —+ IC

is self-adjoint on the left (let applyA : A ® -'(A ® -'B) —+ B be the unit of

this adjunction), and

. a natural transformation thunk: id z (,c) —+ -i-i in Z(k)

such that

• apply is dinatural in A

o thunk; force = id where force
(Lef

 apply 1 : -- A —+ A

• -'force =thunk-i

def
• letting apply = A 0 -'(A (9 force); applyA, we have

-'force = thunk-'

thunk;-i-iapply = apply;thunk

thunkAec = A®thunkc ;A®-iapply;apply

applyAeA, = (72,71) o -'(A 0 A'0 -iB); A'(& apply; applyAl

The first of these four axioms establishes another link between forcing and

thunking (in addition to the more familiar thunk; force = Id); the second states

that the call-by-name application, unlike the call-by-value one, is effect-free; the

other two are somewhat technical coherence conditions.

Intuitively, dinaturality of the application map means that modifying the

operand of a function application by a map f : A —+ A' is the same as modifying

the operator by a corresponding continuation transformer.

Al-(f 0-1)
A®-'(A'®-'B)

-.
	'A®-'(A(9-'B)

	

f®_.(A1®B)1 	 apply

	

A' o -, (A' ® -'B) 	
apply

Dinaturality is rquired as a separate axiom, as it does not seem to follow from

naturality (unlike in a Cartesian closed category).

The universal property of the continuation functor can be expressed by the

following diagrams (naturality and triangular identity for force.)

force 	 —'force

	

-i-i A 	' A 	-IA 	-i-i-iA

JN 	[force

force

	

--B 	B 	 -'A

73

In addition to the usual thunk; force = Id, we have another axiom linking forcing

and thunking. A consequence of this is the self- adj ointness on the right of the

restriction of -i to the centre, with unit thunk.

	

thunk 	 thunk
A 	-1 -A 	A 	A

91 -thunk

thunk
B 	3- __1__1B 	 -A

(where g is central.) In chapter 6 (figures 6.3 and 6.4), we will consider programs

written in "compositional" style, that is, using sequential composition of functions

and the programming analogues of thunk, -', ... (figures 1.12 and 1.13). We hope

that the simple and quite symmetric categorical laws expressed by the above

diagrams could facilitate reasoning about programs written in this style.

4.3.3 Definition Given a cartesian closed category C (with strict products), and

an object R of C we can define a 0--category K; as follows

	

ObAC 	ObC

	

IC(A,B) 	C(RB , RA)

A ® (_) is given by the product A x (_) in C. The functor -, is R'-'. force
def
=

(\ 	 def 	 I 	 RA iR'-' and thunk = R'R-', where 71A : A —* R is the unit of the contin-

uation monad" on C. We call K; the standard model for C and R.

Despite the apparent generality of this construction, we regard this as an

overly specific approach that does not do justice to the full generality of CPS

(compare section 2.6). It consists essentially of implementing CPS in simply-

typed)-calculus and then interpreting this in the usual fashion in a cartesian

closed category.

4.3.4 Remark In the category C, the functor [(_) —+ R] is self-adjoint on the

right. The two isomorphic views of the continuation semantics category as a cat-

egory of continuation transformers and as the Kleisli category of the continuation

monad are connected by the self-adjointness (i.e. its isomorphism of adjunction).

C(A , RB) C(BRA)

This is also the connection between the typings of the Plotkin-style (continuation

last) and Fischer-style (continuation first) CPS transforms. On types, this gives

the continuation monad view a —+ r = —* - i-rr, or the continuation transformer

view a --+7- = —+ -ia , respectively.

74

4.4 Some interdependencies of properties

We write OA for the isomorphism of adjunction for the self-adjointness on the left.

This is an involution. OA : K(A (D -'B, C) —+ AC(A 0 -IC, B)

QAf 1_-'f A 0 —f; aPPlYA
def

For A = 1, we have 0 = 	JC(-ìB,C) —p ftC(-'C,B) with Of = -'f ;force.

4.4.1 Remark Note that because of the finite product structure on the centre,

each functor A 0 (_) comes equipped with a comonad structure, the unit being

given by discarding, the multiplication by weakening.

We can regard çi5A as essentially the same as q, but on the co-Kleisli category

for the comonad A 0 (_)

	

ObKA 	ObK

	

KA(B,C) 	! K(A®B,C)

For each A, K has its own "indexed negation" 'A, defined as

def
'Af = cbA(A 0 force; f)

This "indexed functor" point of view has some advantages. In particular,

some of the axioms of an ®-i-category become more comprehensible: they were

essentially reverse-engineered to make 'A viable as an indexed functor. This issue

will be addressed more fully in chapter 8 where we take the indexed category

presentation as fundamental.

4.4.2 Remark What is perhaps surprising about this definition is that we have

made such strong assumptions about the centre. All central morphisms are

deemed to be effect-free, so that they respect the product. While centrality is cer-

tainly necessary for effect-freeness, there is in general no reason to assume that it

is sufficient. It appears to be the presence of first-class continuations, specifically

the unit force, that that makes centrality such a strong property: if a morphism

commutes with everything, it must commute with force, and that implies that it

commutes with reification. Slightly more technically, if f : A —* B is central,

then f 0 -'-i--'B; B 0 force = A 0 force; f 0 -'B. This implies the naturality of

thunk, as

f;thunk

= A 0 thunk; A 0 -'(f 0 -i--i--'B; B (9 force; apply); apply

= Aothunk;A0 -i(Ao force; f(9--iB;apply);apply

= thunk;-i--if

75

4.4.3 Remark If a morphism f is thunkable in the sense that it makes the

naturality square
thunk

A 	-,-iA

thunk
B
	
-'-'B

commute, then it respects binary products.

f; (Id, Id)

= f; (thunk; force, thunk; force)

= f; thunk; (force, force)

= thunk; —'--if; (force, force)

= (thunk; —i---if; force, thunk; —'—if; force)

= Ulf)

4.4.4 Remark Instead of defining -, to have the centre as it codomain, we could

have required the adjoint correspondence

A® -'B —C

A® --iC —B
to be natural in A , as this implies that every morphism of the form -if is
central. This property is perhaps more intuitive in terms of control flow: control

manipulation concerning B and C does not affect a separate strand of control

g:A—A'.

4.4.5 Proposition Every negated morphism -'C 	-'B is central.

PROOF Let B 	C and A ' A'. We need to show that

A ® -'C
AØf

 A ® -'B 	A' ® -'B

and

A®-iC

are the same morphism. Applying OA to the first composite, we get

çbA (A®-if;g(9-iB)
= (IA(A 0 -if; gO -'B; idA'(DB)
= 7fA(9(&B;idA'Ø-B);f
= g®-'(A (&—iB),cbAi(IdAlØ,B),f

For the second composite:

OA (9 0 -'C; A' ®-'f)
= çbA(g ® -'C; A' ® -if; id A ' (D -, B)
= g ® -'(A' ® -'B); cbA '(A' (& -if; idA' Ø B)
= g® -'(A' ® -'B); q)A1(ldA1Ø,B); f

76

Because OA is an isomorphism, this means that A®-if; g® -'B = g®-iC; A'® -'f.
0

4.4.6 Proposition

A'®A® -'(A®A'®-iB)

A®A'®-i(A®A'®-iB)

A'(DAØ(AØforce)
A'& A ® -i(A ® -i-i(A' ® -iB))

A ' OaPP'YA

A' ® -(A' ® -iB)

aPPIYAI

applyA®AF 	
B

could equivalently be expressed in terms of coherence for the indexed negation

A'®A idAØA , ØB
A'®A®-i(A®A'®B)

—'

FAIIdAFØB

A ® A' 0 - , (A 0 A'(& B)
AØAhidAØAFøB

4.5)-abstraction in a ®-i-category

Just as in the standard CPS transforms, function types a —+ r will be decomposed

into continuations for arguments a and result continuations -'r. So instead of

exponentials, we have a derived notion of arrow type

[A-+B]

The corresponding application map is the unit of the adjunction

applyA :AO -i(A® --iB) 4 B

In a cartesian closed category, we could define)-abstraction in terms of the

right adjoint [A —f (_)] in A x (_) -1 [A —+ (_)} and the unit of adjunction (the

curried pairing map) pair: C —p [A —p (A x C)] as \f g pair; [A—+ f]. The

notion of ,\-abstraction that we have in the present setting can be defined in a

way that is formally very similar, although we do not have cartesian closure.

We define a pairing map as

def
pair = thunkc; -(A ® -i(A (& force); applyA) : C —+ i(A ® (A (9 C))

Note that of the two possible composites of the functors A 0 (_) and -, one

is self-adjoint on the left, the other on the right. A 0 -(_) is self-adjoint on the

left -'(A (9 (_)) restricted to the centre is self-adjoint on the right.

77

The pairing map then allows us to define (call-by-value))-abstraction.

);f 	pair; -(A ® -if)

Although we may read apply and pair as having the types familiar from cartesian

closed categories, that is

apply :

pair : C—[A-(A®C)]

this is really a kind of secondary etymology, as in reality apply and pair are the

unit/counit of negation functors A ® -(_) and -(A ® (_)), respectively.

apply : A®-i(A®-iB)--B

pair :

4.5.1 Proposition The following two diagrams commute

AØC
Aøpair

apply

A®C

pair 	
-'(A®-'(A®--'(A(9-'B)))

id—(A O— B) 	 I(AØaPPIY)

In the framework of premonoidal categories, a notion of call-by-value)-abstraction

was proposed [Pow]. Formally, this is a mild variation on monoidal closure, re-

quiring not A 0 (_), but it composition with the inclusion of the centre to have

a right adjoint, hence the name "central" closure.

4.5.2 Proposition A 0--category is centrally closed, in the sense that

t((_)(9A) H --i(A®--i())

where t: Z(k) -* K. In terms of equations:

A®A(f);apply = f

X(A 0 g; apply) = g

)(AOg;f) =

= 	f;h)

where g is central.

The fact that pair is not natural with respect to all morphisms is what makes the

"protecting by a)." technique work in this setting. (It is really the precomposition

with thunk that does the protecting.)

4.5.3 Corollary The inclusion of the centre is left adjoint to double negation.

1 -I --1 --1

The isomorphism of adjunction is

K(A,B) — Z(AC)(A,-'-'B)

f 1-4 thunk;-i-f

This is a categorical formulation of thunking as a form of reification, given

here by f —* thunk; -i--if.

4.5.4 Corollary AC is the Kleisli category for the monad -'-' on Z(AC).

We nonetheless prefer to regard the category of computations AC as primary, rather

than reifying everything and then running a Kleisli interpreter on top of it.

4.5.5 Proposition The call-by-name application and abstraction satisfy the fol-

lowing:

A®)t A
f;apply = f

® A a PPY A) = 9

Moreover, apply is itself central.

It could appear as if we were somehow recovering a Cartesian closed category.

But that is not really the case. Although the centre does have finite products, the

centrally closed structure given by apply does not restrict to the centre, as apply

is not itself central. Intuitively, this is because the application map is a jump

with arguments, and jumps are too effectful to be central. So there is a trade-off

of sorts: one can either have the products or the higher-order structure.

79

Chapter 5

The CPS term model

In this chapter, we build a term model of a ® -'-category from the syntax of

(simply-typed) CPS calculus. This is analogous to the (standard) construction

of a Cartesian closed category from simply-typed A-calculus (e.g. [Cro931).

The CPS calculus is of course rather different in style from A-calculi, so instead

of familiar structures like (Cartesian) closure, or its generalisation to other binding

constructs as adjoints to reindexing 1, we get self-adjointness as the algebraic

manifestation of first-class jumping (hinted at in section 1.2.1 in the introduction).

5.1 Building a category from CPS terms

In this section we will attempt to isolate the crucial structure that makes con-

tinuation semantics work, gradually abstracting from the CPS calculus to arrive

at a syntax free-presentation that will lead to a categorical semantics in the next

section.

The jumping and the binding construct of CPS calculus correspond to iden-

tities and composition in the term model.

The self-adjointness on the left is responsible for various generalised jumps

(which eliminates double-negations); while the self-adjointness on the right builds

new places to jump to (which introduces a double negation).

5.1.1 First-order structure

In [App92], CPS terms are likened to the machine code of a von Neumann machine

(as far as control is concerned). But as far as sequential composition is concerned,

CPS terms are even more low-level than code, as they do not have a default or

current continuation. The basic idea, then, is to ascribe meaning not to a CPS

'Consider for instance the definitions of fl, >, V, 3 in a topos

F;"]

term by itself, but to a CPS typing judgement that lists the free variables of the

term, distinguishing one of them as the current continuation.

The type environment part :b', k:— of a judgement ±:ô, k:—'f F- M gives

each morphism [:ô, k:- F- M] a unique domain and codomain, as required.

Conversely, if the domain 6 and codomain F are clear from the context, we can

write more succinctly [k F- M].
Once a current continuation has been singled out in a judgement, there is a

natural concept of sequential composition:

def
(in F- M]; [Wk F- NJ = [xk F- M{n()=N}]

This has [xk F- k(±)] as its identity.

Furthermore, we have product types (by concatenation); and although these

are not categorical products, we do have projections 7ri = [± k F- k()] as well

as contraction J = [k F- k()].

Hence we have enough parallelism on types to accommodate multi-arity maps

denoting program phrases of more than one free variable. Given the sequential

nature of CPS, we would not expect genuine parallelism of morphisms (denoting

terms) f 0g.

Given two CPS judgements

[±kF-M] 	[çhF- N]

there are in general two different composites; we can run either M or N first.

In each case, the term first to be evaluated has to carry along the free variables

needed by the second judgement. If we run M first, this gives a judgement

[xy7k' F- M{k()=k'(iT2)}]

But implicit in this composition of M and N was the notion of "carrying along

free variables". Considered on its own this is, for every object A, a functor A®()

defined by

A ® [xk F- M]
del

 [y7±k' F- M{k(z)_—k(y7z)}]

Symmetrically, we have a functor (_) 0 A-

5.1.2 Application as double negation elimination

All the above are trivial terms in the sense that they jump to the current continu-

ation. A CPS judgement that does not do this is evidently [hk F- h(k)]. But this

is just the identity [kh F- h(k)] with the argument and the current continuation

interchanged.

E31

More generally, given any [hk F- M} with a continuation parameter h, let

lel
çb[hk F- M] = [khF- M]

- extends to a functor. We can define it in terms of 0 and force as

q(force; f). Concretely, this boils down to the following:

-, [h F- M]

= 	(force; [xh F- MJ)

= /([kl F- k(1)]; [xh F- M])

= cb[kh F- k(1)f1(Y)=M}]

= [hk F- k(l){1(ri)=M}]

The switching operation does not interfere with any other names ±' in the

environment, that is, a judgement [xhk F- M] can be switched to yield [xkh F- M].

And this is natural.

This switching operation is quite unfamiliar from direct-style programming,

but used on identities, projections and contraction it gives rise to some of the most

important idioms that we need for the interpretation of A-calculus with control.

force switching argument h and current continuation k in the identity [hk F- k(h)]

gives

force: [kh F- k(h)] : -i--iA —+ A

apply switching argument f and current continuation k in the identity gives

apply: [x7k F- f (xk)] : A ® -(A ® - ,B) - B

throw switching h argument and current continuation k in the projection 71

[xhk F- k()] gives

throw = [Thk F- k(f)] : A ® -A -4 B

callcc switching argument k and current continuation f in [kf F- f(kk)] gives

[1k F- f(kk)] : -'(- IA ® - iA) —* A

Note that the clauses for application, throw and callcc in figure 3.1.1 consist

essentially of composing with one of these constants, while force is essentially the

denotation of a free variable in call-by-name.

RIN

5.1.3 Thunking as double negation introduction

The units of the self- adj ointness on the right wrap their argument into a thunk.

thunk = [xk I- h(f){f(h)=h(x)}J

pair = [±k F- h(f){f(?7h)=h(7x)}J

5.2 The 0-i term model

5.2.1 Definition The category K(CPS) is constructed as follows. Objects are

sequences f of types. A morphism from 6 to TF is an equivalence class [f:6, k:-v F-

M] of judgements, where 	k:-i F- M and Y': 6' , k':-'r F- M' are equivalent if

M = M'[f"k' '- ±k]

is derivable.

ObK(CPS) = {r1 .. . 	r is a CPS type expression}
AC(CPS)(,) = {[f:ê,k : 	HM]I:a,k: -' F-Misderivable)

Identities and composition correspond to the two term-forming rules of CPS

calculus.

Id a =
n:-' F- M]; [ç:, h:-' F- M] = [, h:f F- M{m(y?)=N}]

The structure on morphisms is given as follows:

h:-'r F- M] = [h:-ir, k:-, -iö F- k(f){f(x)=M}]

	

[:ôi ,k:-F- M]®a2 = 	 F- M{k(z)=h(iyi)}]

	

ä ®[2 ,k:-'F- M] = 	, 2 ,h:-i(1) F- M{k(z)=h(yz')}]
appIy 	= 	f:-i(6, -vt), k:-f F- f(xk)]

	

thunkq = 	k:-'--'-i F- k(f){f(h)h(5)}]

5.2.2 Remark We should point out that focussing on the term model is not

really a restriction to syntactic, as opposed to semantic models.

Consider the definition of the premonoidal structure on the category of con-

tinuation transformers on a Cartesian closed category, where a morphism is of

the following form:

It would be easy to say that C(9 4D is given by virtue of the functor (_) C and the

evident isomorphims

RCXA (R 	(R(R 	RCXB

FW

As soon as definitions become more complicated, that style becomes hopeless and

one needs to adopt a more systematic approach by using the internal langauge

of the Cartesian closed category, that is simply-typed A-calculus with products

and a constant for every morphism in the category. Then we can write the

definition more concisely and rigorously as:

C®
def
 ftk : RCXA I-A(c,a) : C 	A.'1(Ab.k(c,b))a : RI

Up to ordering of variables, this is essentially the definition in the CPS term

model, with CPS specialised to the A-calculus. Moreover, the axioms of the CPS

calculus are sound for the translation to A-calculus, hence proofs are translated

to proofs about (the internal language of) Cartesian closed categories.

Reasoning within the CPS term model is thus similar to using the internal

language of a Cartesian closed category or the internal logic of a topos instaed of

doing diagram chases.

5.2.3 Proposition K(CPS) as defined in Definition 5.2.1 is in fact a category.

PROOF

id is the identity
id; [h I- N]

= [fn H n(Y)J; [c/i i- N]
= [f/i I- n(f)fn(77)=N}]
= [fhHN[->f]]

= [c/iF-N]

[fn F- M]; Id
= [in HM];[çhHh(y1)]
= [f/i I- M{n(y1)=h(y1)}]
= [fhl-M[ni-+h]]
= [fnl-M]

• composition is associative

([fmHL];[77nHM]);[kHN]
= [fn I- L{m(y1)=M}]; [zk F- N]
= [fk I- L{m(y)=M}{n(2)=N}]
= [fk H L{n(zN}{m(y)=M{n(z')=M}}]
= [fk H L{rn(y1)=M{n(z)=M}}]
= [fmHL];([?7nH MI; [kHNJ)

U

5.2.4 Lemma A morphism [fk H M] is central if for all N with Z V FV(N),

i5FV(M)

M{k(z)=N{h(?i5)=1(i)}} = N{h('iiJ)=M{k(z)=l(iuii)}}

PROOF Let f = [xk F- M] : A -+ A' be central. Then for all g = [yTh F- N]

B—B',f®B;A'®g=A®g;f®B'.

f®B;A'®g

= [Tl F-

A g; f OB I

0

For instance, the identity [k F- k(x)] is central, but force = [hk F- h(k)] is not:

take M = x(k) and N = y(h).

5.2.5 Lemma If a morphism f is central, then thunk; -' --if = f; thunk.

PROOF If f = [k F- M] is central, then by Lemma 5.2.4,

M{k(y)=h(f){f(1)=z(91)}} = h(f){f(1)=M{k(y?)=z(i1)}}

Hence, applying {z(ff1)=1(y1)}, we have

M{k(y1)=h(f) {J(1)=z(1) }}{z(771)=1(yi) }

= h(f){f(1)=M{k(yT)=z(il)}}{z(f/1)=l(y)}

And this simplifies to

M{k(ff)=h(f){f(1)=1(y)}} = h(f){f(k)=M} 	 (5.1)

Now

-'-if

=
= -'[kp F- p(g){g(±)=M}]

= [ph F- h(f){f(k)=p(g){g(x)=M}}]

thunk; ---,f

= [xn F- n(p){p(k)=k(i)}]; [ph F- h(f){f(k)=p(g){g()=M}}]

= [xh F- n(p){p(k)=k(x)}{n(p)=h(f){f(k)—p(g) {g()=M}}}]

85

= [±h H h(f){f(k)=p(g) {g(x)=M}}{p(k)=k()}]

= [h I- h(f){f(k)=g(){g()=M}}]

= [±h H h(f){f(k)=M}]

f; thunk

= [k I- M]; [h I- h(f){f(l)=1(y)}]

= [±'h H M{k(y=h(f){f(1)=l(y)}}1

So by (5. 1), thunk; -'-if = f; thunk.

This implies that thunk is a natural transformation in the centre.

5.2.6 Remark The isomorphism of adjunction of the self-adjointness on the

right is a map : hom(A, -iB) -+ hom(B, -A) defined by

b[k H M] = [ilh I- k(f){f()=M{k(1)=1(y7)}}]

This is an involution when restricted to central morphisms; for general morphisms,

it is not quite an involution:

"[k I- M] = [k H k(g){g(y)=M{k(l)=1(y)}}]

Consider x= a and M = a(k).

5.2.7 Proposition The centre of K(CPS) has finite products: 0 together with

the evident projections
def 	..

In = [x 1 x 2 kHk(x)]

is a product in the centre of K(CPS); and the empty sequence together with

evident morphism [k H kØ] is a terminal object in the centre.

PROOF For f = [k H Mi l, let

def
(fi, f) = {xh I- M 1 {k 1 (T1)=M2 {k 2 (7j2)=h(7j1 172)}}].

(71, 72)

= ([Il k, H k 1 (f 1)], [2 k 2 H k2(Y2)1)

= [12 h H

= [12 hHh(12)]

=id

me

Note that central morphisms can be copied and discarded because the corre-

sponding thunks can. This is the key to the proof, the remainder being routine

manipulations of the definition of (). Let [k I- M] be central. Then

M{k(y1)=h(f){f(l)=1(y1)}} = h(f){f(k)=M}

Therefore

M{k(y)=IØ}

= M{k(y)=h(f){f(k)=k(y)}}{h(f)=IØ}

= h(f){f(k)=M}{h(f)=IØ}

= IØ{f(k)=M}

=10

Similarly, we have

M{k(y)=1(yyt)}
= M{k(jj)=p(y7) {p(?7i)=q(y) {q(:V2) =l(th2)}}}
= M{k(y)=f(){p(1)=f(q){q(y72)=1(7i j2)}}{f(r)=r(yi)}}
=
= h(f){f(k)=M}{h(f)=f(p){p(7j 1)=f(q) {q(72)=1(ç12)}}}
= f(p){p(77i)=f(q){q(ç2)=l(fj12)}}{f(k)=M}
= M{k(71)=M{k(g2)=1(1 g2)}}

This means that, for a central morphism g, we have g; (Id, Id) = (g, g). Let

g:A—*B and f:B--->.C. Then

g; (fl, 12)

= g;(id,id);B0f2 ;Ci ®f2

= (id,id);A®g;g®B;B®f 2 ;fi ®C2

= (id,id);A®g;A®f 2 ;g®C2 ;fi ®C2

= (Id, Id); A® (g; f2); (g; 1') ® C2

= (g; fl, g;f2)

Similarly, for central gi , (gi, g); 7rj = 9j 	 EJ

5.2.8 Lemma A morphism f : A -+ -A' is central if f is of the form

[±k F- k(f){f(y1)=M'}]

with k V FV(M').

PROOF Let N = b(h) with b and h fresh. Because [fk I- M] is central,

M{k(a)=b(h){h(y7)=l(ayi)}} = b(h){h(y)=M{k(a)=l(ayi)}}

Applying (_){l(a7)=a(y)} to both sides, we get

M{k(a)=b(h) {h(y1)=l(ay) }}{l(ayi)=a(y) }

= b(h) {h(y=M{k(a)=l(ay)}}{l(ay)=a(y)}

Simplifying this yields

M[k '- b] = b(h){h(y)=M{k(a)=a(y1)}}

Hence

f

= [kF- M]

= [fbHM[k4b]]

= [b I- b(h){h(y)=M{k(a)=a(y)}}]

[±b I- b(h){h(y)=M'}]

for M' = M{k(a)=a(yi)} and b V FV(M'), as b is fresh. 	 0

5.2.9 Definition (Trivial CPS term) A CPS term is called trivial in k if it

is of the form

k(p 1 . . 	 {Pjm(jm)Mjm}

with k V FV(1/!). 	 ç {1,...,n})

5.2.10 Proposition Suppose that there are no base types in CPS calculus. Then

a morphism f : A -+ B in K(CPS) is central if f = [k F- M] such that M is

trivial in k.

This means we can find a trivial representative for the equivalence class, not

that all representatives are of this form (one could simply expand a redex). For

instance,

id = [k I- k()] = [k I- n(h){h(k)=k(x)}{n(h)=h(k)}] = thunk; force

PROOF By cases on B. If B = -"i- , apply lemma 5.2.8. Otherwise, B = TOT, . . .

and we proceed by induction on n. Since B is a sequence of type expressions, we

split off the first one, which must be of the form -r o = -iu. Apply the induction

hypothesis to f; 72 : A -4 r, . . . r. By lemma 5.2.8, f; 7t1 : A -4 T0 =

defined as

f; it, = ['tiih I- M{k(py)=h(p)}]

must be of the form

f; it, = [zih H h(p){p(±)=M'}I

As! is central, f = (f;iri ,f;ir2). Then

(1; irk, 1; ira)

= 	['üik I- M{k(p=h(p){h(p)=M{k(q2)=k(p2)}}}]

= 	['9k I- M{k(py)=h(p)}{h(p)=M{k(qz')=k(pz)}}]

= 	[ziik I- h(p) {p()=M'}{h(p)=M{k(qE)=k(pz)}}]

= 	[ulk I- M{k(qz)=k(pz)}{p()=M'}}

= 	[ulk I- k(pp, .. . {Pjm(jm)Mjm}{P()M'}]

5.2.11 Conjecture We conjecture that respecting the finite product structure

can be characteried syntactically by the occurrence of the current continuation.

A morphism in K(CPS) is cancellable if it is of the form

[k F- k(p 1 . . . p1){n,(7,)=N,} . . . {i2mWm)Nm}]

A morphism in ,AC(CPS) is copyable if it is of the form

[k F- q(p, . . . p1){n,(ffi)=N,}... {flmWm)Nm}]

with k V FV(NJ).

5.2.12 Proposition K(CPS) is a ®-'-category.

I.i.1 Id

. 	is functorial: - preserves identities

-'id
= -[±hHh()]
= [hk I- k(f){f()=h(f)}]
= [hk F- k(h)]
= id

-1 preserves composition

-'[il/i I- N]; -'[in F M]
= [hk' F k'(n){n(y)=N}]; [nk I- k(m){m()=M}]
= [hk I- k'(n){n(y)=N}{k'(n)=k(m){m(f)=M}}]
= [hk F k(m){m(f)=M{ri(y1)=N}}]
= -[h F M{n(y)=N}]
= -([nI-M];[77hFNJ)

• 	1C(A ® -'B, C) 	K(A ® -iC, B) is natural in B and C, i.e. OA (A ®
—ig;f)=çb(f;g)

(o(9 -[y7h' F- N]);cbe[±kn FM]
= 	® [hk' F- k'(n){n(yt)=N}]; [±nk I- M]
= [±hh' F- k'(n){n(y)=N}{k'(n)=h'(±n)}]; [xnh F- M]
= [±'hk F k'(n){n(y)=N}{k'(n)=h'(fn)}{h'(xn)=M}]
= [hk F h'(n){n(yi)=N}{h'(n)=M}]
= [hk F M{n(y)=N}]
= cbe [±kh F M{n(y)=N}]
= ç& ([xkn F M]; [çh F N])

• 	IC (A 0 -iB, C) 	J'C(A ® -'C, B) is natural in A, i.e. cbAl(g 0 -'B; f) =

g®-'C;q A (f)

Oa! ([±n F M] 0 -'jf; [yhk F N])
= q ([Thn' F M{n(y7)_—n'(yh)}]; [yhk F N])
= q[xhk F M{n(y)=n'(ilh)}{n'(ch)=N}]
= [±kh F M{n(y1)=N}]

[xkh F M{n(y1)=n'(çk) }{n'(çk)=N}]
= [xkn' F M{n(y)=n'(ilk)}]; [ykh I- N]
= [xn F M] ® —'p; cbe [Uhk F N]

• (—) ® ó is functorial

id 1 ®U2

= [±kHk()]®o
= [h F k(±){k(2)=h(2y)}]
= [ih F (h())[-* ±]]
= [ThFh(±yi)]
= id 152
= id 1®2

([nFM]; [Wk F NJ) ®
= [±k F M{n(y)=N}J 0
= [iJh F M{n(y)=N}{k(z)=h(iJ)}]
= [i5h F
= [i5h F M{n(y)=N{k(z)=h(iii)}}]
= [iik F
= [i5n' F M{n(yi)=n'(iY)}]; [ilüih F N{k(z)=h(iil)}]
= [nFM]®Y;[kFM]Ø

90

Analogously for 6 ® (-).

In [Fi1891, a different notion of value was proposed: a morphism f : A —+ B

is called total if it can be discarded in the sense that A —+ B —* 1 = A —+ 1.

This is plausible insofar as jumps cannot be discarded, so that by excluding jumps

one might hope to isolate those program phrases that do not have control effects.

5.2.13 Proposition ® is not a product in the subcategory of total morphisms.

PROOF The following morphism twicecc is total (but not central). twicecc does

not respect ®.

twicecc
def = [±hk F- k(1){1=k(7h)}] : A ® -'A —* A 0 -iA

Informally, in terms of continuation transformers, twicecc could be read as "k -4

k o V.

This is total, because twicecc; [tYk F- kØ] = [xk F- kØ] However, twicecc is not a

value: it is too effectful to be copyable, in that twicecc; (Id, Id) =A (twicecc, twicecc)

can be distinguished by ; [zcfz'c'gr F- f(zq){q(w)=g(wc)}].

The two composites are "h3" as distinct from "h4", that is,

[fahk H

[ahk F- h(q){q)=h(tiq){q(i5)=h(üiq){q(uii)=h(üJa)}}}]

We omit the calculations here; this counterexample will be discussed in Chap-

ter 6, where we demonstrate experimentally, by exhibiting programs, that twicecc

cannot be copied.

5.3 The indexed term model

We have mentioned in remark 4.4.1 during the discussion of ® -'-categories that

it may be helpful to think about negation as indexed.

As this chapter establishes the connection between CPS calculus and cate-

gories, we now sketch how this indexed viewpoint is related to a two-zone CPS

calculus (see remark 2.4.3), in which operations such as negation affect only a

subset of the environment. We arrive at an indexed category as a term model of

the alternative (indexed) view of ®-'-categories to be developed in chapter 8.

We define the equivalence of judgements as follows: 	k:-' H M and

k':-J' H M' are equivalent if

M = M'[±k' i-f ±k]

91

is derivable from the axioms of CPS calculus.

The indexed category H : C° —* Cat is defined as follows

the objects of C and all the fibres HC are sequnces of CPS type expressions

the product of objects in C is given by concatenation of sequences

• a morphism from ê to F in the base category C is an equivalence class of

trivial judgements

17: öt,q : -f F- q(pi .. .p){p 1 (f 1) =Mil } ... {Pjm(fjm)=Mjm}

a morphism from F1 to in H6 is an equivalence class of judgements

: ê; f: F1 , k: -,,F2 F- M

. the structure on the fibres is given as follows

	

id 	[;fkF-k(f)]

	

[; fn F- M]; [; 17k F- N] 	[1; fk F- M{n()=N}]

C*[i; 77k F- M]
def

 = [zx; Wk F- M]
de

L[if; i5k F- M] =
f
 [1; fiiik

/ F- M{k()=k'(fy)}}

'cc[f;ti5kF- 	
def

M] 	= 	[;fi5kF-M]

def

	

fk F- M] 	[; kh F- h(f){f(f)=M}]
def

	

force 	= 	[z; hk F- h(k)]

• Reindexing on f along h: for f = [f/c F- M] and

h = [17q F- q(pi . . .p){p 1 (f 1)=M 1 } . . { Pjm(fjm)=Mjm}]

let
def

Hh(f) = [Wk F- M{p 1 (f 1)=M 1 } . . . { Pjm(fjm)Mjm}]

5.4 Recursion in CPS

We can define a term model K(REcCPS) of a ®-i-category analogously to defi-

nition 5.2.1, but using the recursive CPS calculus.

92

Recursion plays no part in any of the categorical structure of a 0--category,

but we may ask what additional categorical structure it gives rise to. As a first

step towards an answer to that, we sketch how a looping operator could be intro-

duced categorically as a dinatural transformation. To some extent, this amount

to a categorical account of "recursion from iteration" [Fil94a].

f. Ax. Mf(k)
de

 ! k(f){f(±h)=JMflh)}

A looping operator on a 0--category K is a dinatural transformation

fixA : K1(A ® (_), (_)) 	ZIC(A,

XA,C

	

IC (A ® C, C) 	
fi 	

Z)C(A, -'C)
AC)

(A 0 B, C) 	 ZK(A, -iC)

Kg 	
f_
	 g)

XA,B

	

® B, B) 	ZK(A, -B)

For A®B 1 >C and C 9 B

f1x(f;9); -19 = fixA (A®g;f)

5.4.1 Proposition In IC = ,AC(REcCPS), there is a looping operator

fixA IC (A 0 (_), (_)) 	Z(K)(A,

given as follows

def
fix jr[: F, j: 6 , k: -'ê F- M] 	[: F, h: -'-'s F- h(k){k(y=M}]

def 	_. _. _. 	 def
PROOF Let f = [x r, yn F- M] and g = [zk I- N]. Then

fix f (f; g); g

= fix 74q F- h(k){k(yi)=M{n(z=N}}]; [kq F- q(f){f(z=N}]

= [q I- h(k){k(M{n(i)=N}}{h(k)=q(f) {f (?=N}}]

= [q H 	 (zj

fix(® g; f)

= fix[fn H N{k(y=M}]

= [q H q(n){n(z=N{k(y=M}}]

93

.

Our notion of equality for the recurive CPS calculus in not quite strong enough

without some induction principle allowing us to conclude that

(zl 	= q(n){n(z=N{k()=M}}

as required for the dinaturality. Alternatively, we could construct the term model

from term modulo observational congruence 2.3.2. We conjecture that for this

notion of equality the dinnaturality would follow, i.e.:

(zl 	q(n){n(i=N{k(y=M}}

5.4.1 Recursion from iteration

The point of having a looping construct for recursively-defined continuations is

that, given our decomposition of functions into special continuations, it is exactly

what is needed for recursively-defined functions. The link is established by the

self- adj ointness (on the left).

If M is the body of a recursively defined function f : a -* r in the environment

F, we have a judgement F, x : a, f : (a -+ r) I- M : T whose denotation is a

morphism

E[F1 ® I[iJ ® 'U[11 0 -iftyjj) -* lIi

applying the isomorphism of adjunction q" yields a morphism

lefrl (E[MU : ftFfl 0 ftaJ 0 frfl - afl (9 -iftrfl

and looping this gives a morphism

ftFfl - -i(ftafl ® - 'frll)

which is the denotation

jif. Ax. M]J : ftF} -+ E[a -

This can be seen as a categorical distillation of Filinski's "Recursion from itera-

tion" [Fil94a], where 0 was called a "context-switch".

Chapter 6

Effects in the presence of first-class
continuations

In this chapter, we demonstrate that first-class continuations give rise to strong

and rather subtle effects. First of all, this is an illustration and validation of our

categorical semantics. The issue that we wish to clarify and give support to is

our choice of the subcategory of effect-free computations.

While semantic considerations form the backdrop, it is also possible to read

this chapter as an exploration of a simple idea: that the current continuation can

be used twice. Once it is established that this can indeed be done, essentially the

same idea leads to counterexamples to at least three separate conjectures:

• Andrzej Filinski's view of the total morphisms as effect-free

The idempotency hypothesis of Andrzej Filinski and Amr Sabry

• The decomposition of force (Felleisen's C-operator), attempted by James

Laird

Put more positvely, this shows that callcc is very expressive (in the sense of

[Fe191]). The examples here seem to indicate that, intuitively or "morally", first-

class continuations ought to be grouped together with state among the strong

computational effects and not with much weaker effects like divergence.

Preliminaries

We make use of the categorical combinators that were defined in figure 1.12 on

page 19 and figure 1.13 on page 20 for ML and Scheme, respectively.

We need to make a distinction between jumps in which the value thrown is

not itself of continuation (or function) type, as in a plain goto like throw k 0,

and the unrestricted jumps afforded by callcc. We call the former first-order

jump or exit, and the latter first-class jump.

95

6.1 Using the current continuation twice

One way of thinking about the denotations of terms in the presence of first-

class continuations is as "continuation transformers" transforming a continuation

for their codomain backwards into a continuation for their domain, by analogy

with predicate transformers transforming postconditions into preconditions. At

first sight this appears to be dual to the usual functional way of thinking about

denotations as transforming a value (of the type given by the domain of the

denotation) forward into a result (of the type given by the codomain). However,

this is not really a duality, because, although each value transformer gives rise to a

continuation transformer by precomposition, not every continuation transformer

arises this way. Non-standard manipulations of the control flow, as by control

operators, do not simple apply the current continuation to a result. For instance,

a jump typically ignores the current continuation. (Strictly speaking, this applies

only to first-order jumps that do not pass the current continuation as an argument

the way force does.) But there are other ways, apart from applying it or ignoring

it, of transforming the current continuation: such as using it twice.

The identification of functions with certain continuations cuts both ways: not

only can we reduce functions to continuations; we may also regard continuations

of the appropriate type as functions and treat them accordingly.

In the context of the present discussion, this means that we can regard a

computation of type

'la * 'la cant -> 'la * 'ía cont

viewed (on the meta-level) as a continuation transformer

('la * 'la cant) cant -> ('la * 'ía cant) cant

as just a "function transformer" mapping the function space 'ía -> 'a into itself.

A fairly obvious candidate for such a function transformer is the function twice

f -*fof.

This continuation transformer counterpart of twice, while not representing a

jump (ignoring the current continuation), is still a non-standard control manipu-

lation, as it is different from applying the current continuation to a result.

6.1.1 Writing twicecc compositionally

We have two alternative ways of writing twicecc. We can take the CPS term

k(l){1(y)=k(77h)}

Coll

fun twicecc (n,h) = callcc(fn k =>
(ft n => throw k (n,h))
(callcc(fn q => throw k (n,q))));

twicecc : 'la * 'la cont -> 'la * 'la cont;

Figure 6.1: twicecc in continuation-grabbing style (NJ-SML)

(define twicecc
(lambda (1)

(call/cc (lambda (f)
((lambda (n)

(f (list n (cadr 1))))
(call/cc (lambda (q)

(f (list (car 1) q)))))))))

Figure 6.2: twicecc in continuation-grabbing style (Scheme)

fun twice f = f o f;

twice : ('a -> 'a) -> ('a -> 'a);

fun twicecc a = (phi(funtocont o twice o conttofun) o thunk) a;

twicecc : 	'la * 'la cont -> 'la * 'la cont;

Figure 6.3: twicecc in compositional style (NJ-SML)

(define (twice f)
(compose f f))

(define twicecc
(compose
(phi
(compose fun-to-cont twice cont-to-fun))

thunk))

Figure 6.4: twicecc in compositional style (Scheme)

97

and do a continuation-grabbing style transform (see definition 2.6.8 on page 41)

to arrive at an ML (and similarly, Scheme) program (figures 6.1 and 6.2).

This amounts to writing a continuation-passing style function composition in

the source language (ML or Scheme), bypassing its control structure in favour

of explicit jumps and continuation bindings. Although this method provides a

practical use for continuation-grabbing style, it is somewhat rough and ready,

in that it is a functional analogue of spaghetti coding and makes it harder for

the compiler to supply useful type information for those subterms that are non-

returning.

Informally, we could paraphrase figures 6.1 and 6.2 as follows. The current

continuation is seized by a callcc. It is then treated as a function by being

composed with itself. This composition, though, is done in the style of CPS.

That is to say, it the continuation treated as a function is invoked twice, each time

with an argument and a result continuation. Composition is achieved by making

the result continuation of the first invocation to be evaluated (textually this is

the second one) refer to the place where the second one expects its argument.

This is done by the inner callcc seizing the A in the operator position as its

continuation.

A more structured approach would be to start with the familiar function
def

twice =) f.fof

twice: [A — A] —* [A - A]

which up to coercion is a map

-(A ® -A) —* -(A (9 -A)

Negating this and and composing with thunk and force yields

A® -iA —* -i-i(A®-iA) --i-i(A®-A) —AØ -iA

And this is what we do in figures 6.3 and 6.4, using the categorical combina-

tors from figures 1.12 and 1.13. twicecc becomes a one-liner in ML, consisting

mainly of function composition (with a i-redex to prevent non-generic weak type

variable).

As a first illustration of what twicecc does, consider the following example

in ML:

callcc(fn k =>

(fn (n, h) => throw h (n+1))

(twicecc (0, k)));

(* val it = 2 : mt *)

Here the continuation of twicecc could be phrased as "pass the first argument

incremented by one to the second argument". The continuation that twicecc

supplies to its arguments, then, is twice that; hence 0 is incremented twice before

finally being passed to the (top-level) continuation supplied by the surrounding

call cc.

6.2 Copying and discarding

The fact that twicecc is total in the sense of discardable is corroborated by

considering its composite with a function that discards its argument.

fun bang - = 0;

bang : 'ía —> unit;

fun discardtester testee =

callcc(fn k => ((fn - => 42) o testee)(0,k));

We demonstrate the fact that twice cc is not copyable (see proposition 5.2.13)

by counterexample.

Copying twicecc (using copy_twicecc) and attempting to copy its result

after it has been run (using twicecc...copy produce different results:

— distinguisher copy_twicecc;

val it = 3 : mt

— distinguisher twicecc_copy;

val it = 4 : mt

The context that can distinguish copy_twicecc and twicecc_copy, abstracted

as distinguisher above, could be visualised as follows.

inc 	
n f 	 g

We can show similarly that force is not copyable either (figures 6.2 and 6.8).

force is in some sense maximally effectful: it is a jump, but as it passes the

current continuation as an argument, it is more sensitive than an ordinary jump,

which is oblivious to its current continuation.

The distinguishing context to show that force is not copyable is built us-

ing the one for twicecc. Roughly speaking, (force, force) will behave like

(twicecc,twicecc) when each occurrence of force is given a separate copy of

twicecc wrapped in a thunk.

99

fun copy_twicecc x = (twicecc x, twicecc x);

fun twicecc_copy x = (fn y => (y,y)) (twicecc x);

fun distinguisher testee =
callcc(fn k =>

(fn (((n,h),f),(_,g)) =>
throw h (conttofun f (conttofun g n)))
(testee ((O,k),funtocont (fn n => n+1))));

Figure 6.5: Effectfulness of twicecc. Copying a computation, copying its result
and a context to distinguish them (NJ-SML)

(define copy-twicecc
(lambda (1)

(list (twicecc 1) (twicecc 1))))

(define twicecc-copy
(lambda (1)

((lambda (y) (list y y))
(twicecc 1))))

(define distinguisher
(lambda (testee)

(call/cc (lambda (k)
((lambda (1)

((cadaar 1)
((cont-to-fun (cadadr 1))
((cont-to-fun (cadar 1))
(caaar 1)))))

(testee
(list (list 0 k)

(fun-to-cont
(lambda (n) (+ n i))))))))))

Figure 6.6: Effectfulness of twicecc. Copying a computation, copying its result
and a context to distinguish them (Scheme)

100

fun copyforce h = (force h, force h);

fun forcecopy h = (ft a => (a,a)) (force h);

fun distinguisher2 f= distinguisher (f o (delay twicecc));

Figure 6.7: force is not copyable (NJ-SML)

(define copy-force
(lambda (h)

(list (call/cc h) (call/cc h))))

(define force-copy
(lambda (h)

((lambda (y) (list y y))
(call/cc h))))

(define (distinguisher2 testee)
(distinguisher
(compose
testee
(negate (negate twicecc))
thunk)))

Figure 6.8: force = call/cc is not copyable (Scheme)

101

6.2.1 twicecc is not thunkable

This also provides an example for the fact that twicecc is not thunkable in the

sense that composing with thunk does not succeed in wrapping the computation

of twicecc into a thunk. Hence the following simple-minded attempt to define

the distinguishing context for the non-copyability of force does not work:

fun forcecopytesterwrong f =

distinguisher (f o (pseudodelay twicecc));

Because forcecopytesterwrong cannot pass twicecc to each occurrence of

force, both tests evaluate to the same value, 4.

- forcecopytesterwrong copyforce;

val it = 4 : mt

- forcecopytesterwrong forcecopy;

val it = 4 : mt

A proper distinguishing context uses the delaying idiom, which negates twice cc

fun forcecopytester f =

distinguisher (f o (delay twicecc));

Now the non-copyablity of force manifests itself in the same way as for twicecc

- forcecopytester copyforce;

val it = 3 : mt

- forcecopytester forcecopy;

val it = 4 : mt

6.2.2 Cancellable and copyable are orthogonal

Considering that values are copyable and discardable whereas jumps (throw) are

copyable but not discardable, we can summarise that copyable and discardable

are orthogonal.

While it is evident that values can be discarded and jumps cannot, the right

column was previously thought to be unoccupied, in that Filinski [Fi189] thought

that cancellability, separating the top from the bottom row, was sufficient for

separating value from all effects.

I 	 II copyable I not copyable I
discardable x)x.M twicecc a

not discardable throw k 42 force h

102

A corollary of this table is that a first-order jump like throw 42 is not max-

imally effectful. When it comes to being effectful, it is self-defeating in that it

forgets the current continuation. This implies that is it copyable, because one

jump (Ax. (x, x)) (throw k 42) is as good as two (throw k 42, throw k 42), because

the first jump will ignore it continuation containing the second jump, so that it

does not matter whether the latter is present or not. The quintessential first-class

jump force, by contrast, is not oblivious to its continuation, as this is passed as

an argument. This makes force sufficiently sensitive to its continuation to resist

copying.

6.2.3 First-class control is not an idempotent effect

distinguisher also gives us a counterexample to the conjecture, due to Andrzej

Filinski and Amr Sabry, that control is an idempotent effect; thanks to Andrzej

Filinski for pointing this out to me. [Andrzej Filinski, personal communication].

The idempotency conjecture holds that x.(x, x))M should be indistinguish-

able from (M, M)
The conjecture could be perhaps be supported by informal arguments about

first-order jumps. We have mentioned that these can be copied essentially because

they are oblivious to their continuation, so that it does not matter if another jump

follows. Hence the idempotency could be defended for values, as well as for first-

order jumps. What it fails to take into account are terms that do not simply

pass something to the current continuation, but do not ignore it either. There

seems to be an assumption of a kind of excluded middle here, along the line of:

functions in continuations semantics can return a value or else they are got o's.

As witnessed by twicecc, first-class continuations are more subtle than that.

Continuations of the appropriate type can be used just as ordinary function de-

clared with a fun or define.

To refute the idempotency hypothesis, we once again use distinguisher and

twice cc:

distinguisher (fn x => (fn y => (y,y)) (twicecc x));

distinguisher (fn x => (fn a => (fn b => (a,b))

(twicecc x)) (twicecc x));

To the extent that that such ideological conclusions can be drawn from this

example, we should like to argue that it is misleading to think of first-class control

as a form of non-termination due to jumping.

103

6.3 Centrality and effect-freeness

Having demonstrated in section 6.2 that discardable morphisms are too permissive

a notion to be a suitable characterization of effect-free computation, we now try

to add some plausibility to the claim that centrality in the presence of first-class

continuations is a suitable notion.

We mentioned in remark 4.4.2 that it is due to the self-adjointness that cen-

trality can be assumed to imply effect-freeness. There is some room for misun-

derstanding here, as there is a different, but weaker, argument for such an impli-

cation. We hope to clarify the connection between centrality and effect-freeness

in the presence of first-class continuations by some concrete examples

First note that we can talk about centrality in quite a general setting: when-

ever we have a language having a let- and a tuple construct, we can define a

term M to be central if for all fresh variables a and b and all other terms N,

let a = M inlet b = N in (a, b)

is the same (under whatever notion of equality we happen to have) as

let b = N inlet a = M in (a, b)

For instance, if our notion of effect is given by (not necessarily first-class)

continuations and at least two different values that can be thrown, then terms M

that throw cannot be central. We only need to take for N a term that throws

something else in order to tell the difference between the two composites.

-(callcc (fn k =>

let val a = throw k "A side effect." in

let val b = throw k "A subtly different side effect.\n" in

a end end));

= = = val it = "A side effect." : string

- (callcc (fn k =>

let val b = throw k "A subtly different side effect." in

let val a = throw k "A side effect." in

a end end));

= = = val it = "A subtly different side effect." : string

If additional side-effects, such as input-output, are present in the language, it

is quite straightforward to see that twicecc is not central; see figure 6.11. Some

more care is needed if control is the only effect.

104

fun forcefirst (a,b) =
let val y = force b in
let val x = (output(std_out, "A side effect.\n"); 42) in

(x,y) end end;

fun forcelast (a,b) =
let val x = (output(stcLout, "A side effect.\n"); 42) in
let val y = force b in

(x,y) end end;

fun trytoreify f (n,k) =
(phi(fn h =>

(fn (x,y) => throw y x)
(f ((n,k),h)))) (thunk 0);

val effectnotinclosure = trytoreify forcelast (0,0);
effectnotinclosure : jilt cont cont;

val effectinclosure = trytoreify forcefirst (0,0);
effect inclosure : mt cont cont;

force effectnotinclosure;

force effect inclosure;

Figure 6.9: force can reify by being precomposed (in ML)

105

(define (forcelast 1)
(let*

((x (begin (write "A side effect.") (newline) 42))
(y (call/cc (cadr 1))))

(list x y)))

(define (forcefirst 1)
(let*

((y (call/cc (cadr 1)))
(x (begin (write "A side effect.") (newline) 42)))

(list x y)))

(define (trytoreify f)
(lambda (1)

((phi
(lambda (h)

((lambda (1) ((cadr 1) (car 1)))
(f (list 1 h)))))

(thunk (list)))))

(define effectnotinclosure ((trytoreify forcelast) (list)))

(define effectinclosure ((trytoreify forcefirst) (list))))

(call/cc effectnotinclosure)

(call/cc effectinclosure)

Figure 6.10: force can reify by being precomposed (in Scheme)

106

However, with first-class continuations, one can do much more than subject M

to testing for effects; one can actually reify M. For N = force h, the composite

with force coming after M

let a = M inlet b = force h in (a, b)

passes to h the continuation after running M; this gives access to the value that

M returns after being run and possibly side-effecting. The composite with force

coming first, by contrast, passes to h the continuation before M is computed.

This has the same effect as wrapping the whole computation, include possible

side-effects, into a thunk.

So instead of the somewhat weak argument "if M had effects, we should be

able to find a test N that can tell the difference", we know that force will reify

anything that follows. Now, intuitively speaking, in order for the two composites

to agree, (i.e. for M thunked and unthunked to be the same) M itself must

already be as good as reified.

Depending on whether force appears first or not, one can achieve either the

genuine thunking

	

thunk 	__
A 	-' -A 	-i-iB

or the "pseudo-delaying"

	

I 	thunk
A>B 	>-i-,B

The difference between these two is demonstrated in figures 6.9 and 6.10.

6.3.1 twicecc is not central

We established in 6.2 that twicecc cannot be copied. In our semantics, central

morphisms respect the product and can be copied. Thus twicecc cannot be

central - at least that is what the semantics predicts.

To show that this is indeed the case, and so to validate our semantics, we

consider a final experiment.

As in the above, counterexamples are easier to find if we allow ourselves the

additional observations afforded by I/O) - see figure 6.11 for a demonstration

that twicecc is not central.

For the general case, without relying on I/O, we reuse the distinguishing

context once more. The fact that twicecc is not central is demonstrated in

figures 6.12 and 6.13.

107

callcc(fn k =>
(fn ((Q,x),y) => throw x y)
(let val y = output(std_out, "Side effect.\n") in
let val x = twicecc (Q,k) in

(x,y) end end));

(* prints once

callcc(fn k =>
(fn ((O,x),y) => throw x y)
(let val x = twicecc (O,k) in
let val y = output(std_out, "Side effect.\n ") in

(x,y) end end));

(* prints twice *)

Figure 6.11: twicecc is not central (shown using I/O)

fun twicecc_first (a,b) =
let val x = twicecc a in
let val y = force b in

(x,y) end end;

fun twicecc_last (a,b) =
let val y = force b in
let val x = twicecc a in

(x,y) end end;

fun centralitytester testee =
distinguisher ((fn h => (force h, force h))

o (trytoreify testee));

centralitytester twicecc..last; (* val it = 3 : mt *)

centralitytester twicecc_first; (* val it = 4 : mt *)

Figure 6.12: twicecc is not central (In ML)

(define (twicecc_first 1)
(let*

((x (twicecc (car 1)))
(y (call/cc (cadr 1))))

(list x y)))

(define (twicecc_last 1)
(let*

((y (call/cc (cadr 1)))
(x (twicecc (car 1))))

(list x y)))

(define (centralitytester testee)
(distinguisher
(compose
(lambda (h) (list (call/cc h) (call/cc h)))
(trytoreify testee))))

(centralitytester twicecc_last)

(centralitytester twicecc_first)

Figure 6.13: twicecc is not central (In Scheme)

109

6.4 Another non-copyability result

We consider another morphism that is total, but not copyable, while easier to

understand in intuituive terms than twicecc. We will also need it for the con-

struction of counterexamples in Sections 6.5 and 6.7 below.

Written as a CPS term, twicecc seems to be the simples way of using the

current continuation twice.

{Thk H k(xq){q(y)=k(h)}]

If we want something of function type using its current continuation twice, we

can write the following CPS term in the same spirit as twicecc, though slightly

longer:

[k F- k(f){f(xp)=k(f){f(yq)=q(x)}}]

Despite being longer as a CPS term, this is easier to write in ML or Scheme,

requiring no messy Continuation Grabbing Style:

callcc(fn k => throw k (fn x => throw k (ft y => x)))}

This term passes a function to its current continuation k. When this function is

called with an argument x, the constant function always returning that argument

is passed to k. Hence the function eventually (on the second call to the current

continuation) returned by the term is the function always returning the argument

to the first call. We can regard this as the solution to the following continuation

programming exercise:

Define a function f such that all calls to f return the argument of the

first call of f. Do not use state.

(We name this argf c, for "argument of first call".)

At first sight, it seems hard to see how to do this without state: the obvious

solution, after all, uses two variables (or in ML, references): a non-local variable

to hold the argument of the first invocation and a boolean flag to record if the

function has been called before (if not, then the variable needs to be assigned).

See figures 6.16 and 6.17 for a version of argfc with local state. In Scheme (fig-

ure 6.17), we can give a better analogue of argfc with continuations (figure 6.15)

by using a function that updates its own definition when it is called.

110

fun argfc 0 =
callcc(fn k =>

throwk (fn x => throw k (fn y => x)));

let val f = argfc 0 in
[f 1, f 2, f 3, f 41 end;

let val f = argf c C) in
[f 42, f 2, f 3, f 41 end;

fun distinguisher testee =
let val (f, g) = testee argfc 0 in

(f 1, g 2)
end;

distinguisher (fn f => fn x => (f x, f x));
(* (1,2) : mt * mt *)

distinguisher (fn f => fn x => ((fn y => (y,y)) (f x)));
(* 	(1,1) : mt * mt *)

Figure 6.14: argf c cannot be copied (in ML)

111

(define argfc
(lambda 0

(call/cc
(lambda (k)

(k
(lambda (x)

(k
(lambda (y) x))))))))

(let ((f (argfc)))
(list (f 1) (f 2) (f 3) (f 4)))

a list with the all entries the same (1,2,3 or 4); unspecified which
bigloo picks the last

(let ((f (argfc)))
(list (f 5647) (f 3425) (f 2484) Cf 75473)))

Cannot be copied

(define (distingiiisher testee)
((lambda (1)

((car 1) 1)
((cadr 1) 2))

((testee argfc))))

(distinguisher
(lambda (f)

(lambda 0
(list (f) (f))))) 	 ; 	2

(distinguisher
(lambda (f)

(lambda C)
((lambda (y) (list y y)) 	;
(f)))))

Figure 6.15: argfc cannot be copied (in Scheme)

112

fun argfc 0 =
let val fc = ref true

and arg = ref 0
in

fn x =>
(if !fc then (fc := false; arg := x)
else 0;

!arg)
end;

Figure 6.16: argfc with local state (in ML)

use local variable for argument of first call

(define (argfc)
(let

((fc #t)
(arg 0))

(lambda (x)
(if fc

(begin
(set! fc #f)
(set! arg x)))

arg)))

use variable for the function

(define (argfc)
(letrec

((fc #t)
(f (lambda (x)

(if fc
(begin

(set! fc #f)
(set! f (lambda (y) x))))

(f x))))
f))

Figure 6.17: argf c with local state (in Scheme)

113

datatype void = VOID of void;

fun invoid (VOID x) = invoid x;

fun callcc' f = callcc(fn k => f (fn x => VOID(throw k x)));
callcc' : 	(('la -> void) -> 'la) -> 'la;

Figure 6.18: Variant of callcc with void-returning continuations

6.5 The failure of Laird's bootstrapping of force

In [Lai97], James Laird claims that control operators at ground type are sufficient

in that one can inductively define them at function types. Specifically, he gives

an inductive definition for the double-negation control operator of type

((('a -> 1 2b) -> void) -> void) -> 'a -> 1 2b;

in terms of that of type

((1 2b -> void) -> void) -> 1 2b)

[James Laird, personal communication/email].

For ML, the inductive definition supposes a variant of callcc in which con-

tinuations are identified with functions . . . - > void; see figure 6.18.

In figure 6.19, we give a simplistic version lairdi first; the function laird

can then be seen as a refinement thereof designed to cope with control effects in

its argument. The Scheme analogue is in figure 6.20.

The informal argument for the correctness of this construction seems essen-

tially similar to that which one could advance in favour of the idempotency hy-

pothesis. The function laird, in its improved version, first gives its argument

h a chance to side-effect by jumping out of the current evaluation. If h did not

jump, it can then be treated like a value.

Implicit in this reasoning, one can find the assumption that all total morphisms

are effect-free. Again, it is refuted by using the current continuation twice: figures

6.21 and 6.22.

The importance of this refutation lies in that it invalidates Laird's claim to

have a fully abstract semantics for a language with callcc [Lai97]. Hence the

situation for full abstraction is not improved by Games models. There still is a

tradeoff between models with the full callcc, but not fully abstract without the

114

fun lairdi (h :(('a -> 1 2b) -> void) -> void) =
fn x =>
(force' : ((1 2b -> void) -> void) -> 1 2b)
(fn y => h Mn z => y (z x))));

lairdi : ((('a -> 1 2b) -> void) -> void) -> 'a -> 1 2b;

fun laird h =
(fn u =>
fn x => force' (fn k =>

h (fn f => k (f x))))
(force' (fn p => h (fn f => p (fn z => z))));

laird : ((('a -> '2b) -> void) -> void) -> 'a -> 1 2b;

Figure 6.19: Laird's bootstrap in ML

(define (laird h)
((lambda (u)

(lambda (x)
(call/cc (lambda (k)

(h (lambda (f) (k (f x))))))))
(call/cc (lambda (p)

(h (lambda (f) (p (lambda (z) z))))))))

Figure 6.20: Laird's bootstrap in Scheme

115

val argfct =
callcc'(fn a =>

(fn k =>
invoid (k (fn x =>

invoid (k (fn y => x: string)))))

(force' a));

argfct : ((string -> string) -> void) -> void;

fun lairddistinguisher testee =
(fn f =>

(f "Not Laird.";
f "Laird."))

(testee argfct);

lairddistinguisher force';

lairddistinguisher laird;

Figure 6.21: Failure of Laird's bootstrap: A distinguishing context in ML

(define argfct
(call/cc (lambda (a)

((lambda (k)
(k (lambda (x) (k (lambda (y) x)))))

(call/cc a)))))

(define (lairddistinguisher testee)
((lambda (f)

(f "Not Laird.")
(f "Laird."))

(testee argfct)))

(lairddistinguisher call/cc)

(lairddistinguisher laird)

Figure 6.22: Failure of Laird's bootstrap: A distinguishing context in Scheme

116

prompt [SF901, and fully abstract models with callcc only at base types, as in

[KCF92I.

A possible formal connection between the refutation of Laird's attempt at

bootstrapping force and the categorical approach appears to be given by co-

herence conditions, or more specifically lack thereof. Whereas the unit of the

self- adj ointness on the right satisfies coherence, the unit for the self- adj ointness

on the left seems to be inherently indecomposable. Intuitively, it seems evident

(in the light of the counterexample) that force at function type o -* r needs

to pass the continuation of type —(a -+ T) to its argument and cannot get away

with passing something else fabricated from a continuation of type —'r. It may be

an open problem meriting futher work to state in precisely which algebraic sense

force is indecomposable (or possibly prime).

6.6 Cross reference to preceding chapters

The programs in this chapter are intended to illustrate a (semantic) point. This

relates then to material in other chapters. We give a little link table.

I 	Slogan I ML code I Scheme code I Proposition or remark

twicecc not copyable figure 6.5 figure 6.6 5.2.13

force can reify figure 6.9 figure 6.10 4.4.2

twicecc not central figure 6.12 figure 6.13 implied by 5.2.7

6.7 Discriminating Ax.xx and Ax.x(Ay.xy) under call
by name

We show that the expressive power of callcc is sufficient to distinguish the

terms Ax.xx and)tx.x(\y.xy) under call-by-name. Moreover, the key ingredient

for making the distinction is a term that uses its current continuation twice.

Recall the Plotkin call-by-name CPS transform from Definition 3.2.2: ()

extended with callcc and throw.

= x(k)

Ax-M= k(f){f(xk)=M}

MN = M{k(f)=f(nk){n(k)=N}}

callcc M = M{k(f)=f(gk){g(p)=p(k)}}

throw M N = M{k(k)=N}

117

Here we consider this as an untyped transform from untyped)-calculus (with

callcc) to untyped CPS calculus.

We define a source language term argf c by

def argf c = callcc(Ah.throw h (x.throw h (.Ay.x)))

Let A(k)
def
= argfc be the corresponding CPS term (for current continuation

k), that is to say:

rfc

ca11cc\h.throw h (Ax.throw h (Ay.x)))

= h(k) {k(k) =k(f) {f (xk)=h(k) {k(k)=k(f) {f (yk)=x(k) }}}} {h(p)=p(k) }

= k(f){f(ap)=k(f){f(bq)=a(q)}}
def

.A(k)

First, we note that A(k){k(f)=f(yk)} = y(k).

A(k){k(f)=f(yk)}

= k(f){f(ap)=k(f){f(bq)=a(q)}}{k(f)f(yk)}

= f(yk){f(ap)=f(yk){f(bq)=a(q)}}

= y(k)

Now the CPS transform of xx is:

= x(k){k(f)=f(xk)}

Therefore,

(..\x.xx) argfc

k(f){f(xk)=xx}{k(f)f(xk){x(k)A(k)}}

= 	xx{x(k)=A(k)}

= 	x(k){k(f)=f(xk)}{x(k)=A(k)}

= 	A(k){k(f)=f(xk){x(k)=A(k)}}

= 	A(k){k(f)=f(xk)}{x(k)=A(k)}

= 	x(k){x(k)=A(k)}

= A(k)

On the other hand, the CPS transform of x(.Ay.xy) is:

x(Ay.xy) = x(k) {k(f)=f(nk){n(k)=k(g){g(yk)=x(k){k(f)=f(yk)}}}}

118

Hence,

(Ax.x(Ay.xy)) argfc

= k(f){f(xk)=x(,\y.xy)}{k(f)=f(Xk){Z(k)A(k)}}

= x(Ay.xy){x(k)=A(k)}

= x (k){k(f)=f(rik){n(k)=k(g){g(yk)=X(k) {k(f)=f(yk)}}}}{x(k)=A(k)}

A(k){k(f)=f(nk){n(k)=k(g){g(Yk)=A(k){k(f)=f(Yk)}}}}

= A(k){k(f)=f(nk)}{n(k)=k(g){g(yk)A(k){k(f)f(Yk)}}}

= n(k){n(k)=k(g){g(yk)=y(k)}}

= k(g){g(yk)=y(k)}

Finally, A(k) and k(g){g(yk)=y(k)} can be distinguished.

The terms Ax.xx and)x.(,\y.xy) are one of the canonical examples cited as

evidence of the expressive power of the ir-calculus [San95]. While it was originally

claimed that this expressive power was due to specific features of the 7r-calculus,

notably nondeterminism, the realisation of the importance of CPS in the trans-

lation form) to or-calculus makes it seem plausible that it is in fact due to the

presence of continuations [Davide Sangiorgi, personal communication]. The above

can be seen as preliminary evidence of this view. It is perhaps not surprising that

we can distinguish Ax.xx and)x.x(.Ay.xy), in that the same terms were already

used in [P1075] as a counterexample to show a non-completeness result.

Compare this with Theorem 8.5 and the "conditional u-rule" Corollary 8.4

in [San94]. There Sangiorgi shows that in a Church-Rosser calculus, Ax.xx and

Ax.x(,\y.xy) cannot be distinguished. Roughly, the reason is that in case M

diverges, both MM and M(Ay.My) diverge; otherwise M and)y.My (y fresh)

cannot be distinguished.

This reasoning, valid for a restricted class of calculi, appears to be precisely

what gave rise to the flawed assumptions about control operators encountered in

the preceding sections.

In the remainder of this section, we formualise the distinction between)x.xx

and .Ax.x()y.xy) in Scheme. In order to make Scheme behave like call-by-name,

we use a thunking transform, with the thunks being implemented by means of con-

tinuations. Concretely, this means that variable occurences need to be replaced

by forcings and function arguments need to be thunked. The first is achieved by

replacing x with (call/cc x) Recall that in Scheme, forcing a CPS thunk is just

a special case of call/cc. (This is not necessarily the same as Scheme's built in

force, which may or may not be implemented in this way.) In the two A-terms

119

and Ax.x(\y.xy), the only arguments are values, hence we can thunk them by

applying then function thunk, and if the argument is a variable that cancels its

forcing, i.e.(thunk(force x))= x, so we can just write x.

Notice that the call-by-name semantics of argfc is the same as the call-by-

value semantics of an almost identical term.

callcc7h.throw h (Ax.throw h (Ay.force x)))

= call cc(Ah.throw Ii (Ax.throw h (Ay.x)))

So in Scheme, the distinguishing context will consist essentially of a (call by name)

application to callcc(Ah.throw h (Ax.throw h (\y.force x))).

For writing the distinguishing context in figure 6.23, we need to take some

care in thunking term that are not values. For thunking a value, we can simply

apply the function thunk:

(define (thunk a)

(call/cc

(lambda (k)

((call/cc k)

a))))

However, applying thunk to a side-effecting term does not succeed in wrapping

the side effect into the thunk. In (thunk (write 'Effect)), the argument will

be evaluated an the effect will not be wrapped into the thunk. That can only be

achieved by putting the side-effecting term into the thunking idiom:

(define effect-in-thunk

(call/cc

(lambda (q)

((lambda (p)

(p (write 'Effect)))

(call/cc q)))))

The printing occurs only when (call/cc effect-in-thunk) is forced.

More generally, a computation, as opposed to a value, is thunked by the

following idiom:

(call/cc

(lambda (q)

((lambda (p)

(p

120

(define lambda-x-xx
(lambda Cx)

((call/cc x)
X)))

(define lambda-x-x-lambda-y-xy
(lambda (x)

((call/cc x)
(thunk
(lambda (y)

((call/cc x)

(define dist
(lambda (testee)

((lambda (f)
(f (thunk 1))
(f (thunk 2)))

(testee
(call/cc
(lambda (q)

((lambda (p)
(p

(call/cc
(lambda (h)

Ch
(lambda Cx)

(h
(lambda (y)

(call/cc x)))))))))
(call/cc q))))))))

Figure 6.23: Distinguishing Ax.xx and .\x.x\y.xy) under call by name

121

computation to be thunked

))

(call/cc q))))

In figure 6.23, we put all these ingredients, namely, (a variant of) the function

argfc, the thunking idiom, and a distinguishing context like that in figure 6.15,

together to get a distinguishing context for)x.xx and)x.x(Ay.xy) under call by

name.

(dist lambda-x-xx) evaluates to 1, while (dist lambda-x-x-lambda-y-xy)

evaluates -to 2.

122

Chapter 7

Categorical semantics in
® -i-categories

In this chapter, we develop the categorical counterparts of CPS transforms (see

chapter 3).

7.1 Call-by-value semantics

Given the notions of)-abstraction from section 4.5, a simply-typed)-calculus

can be interpreted in a ®-i-category.

For call-by-value, control operators are naturally part of such a semantics, as

they relate directly to the fundamental operations on the - type. Specifically,

callcc is interpreted as post-composition with the adjoint correspondent

[-A — A] = -(-iA (& -A) —# A

of the diagonal map -iA —* -'A ® -'A.

7.1.1 Definition (Semantics for call-by-value with callcc) Given a ®-'-

category K, we can give an interpretation V{—fl for)-calculus with control as

follows. Types and environments are interpreted as usual, except for the breaking

down of arrow types.

Vft -'rlI

VFja -4 Tfl

Vftx 1 :ri ,...,x:,j

def

def

def

=

Vfr 1 fl®®Vfrfl

A judgement F F- M : r denotes a morphism VF — Vfrfl, defined by induction

on M.

Vfri:ri , ... , x:T H x :rj]1
123

VFF-Ax.M:a-+rll
del

v Vx:a,FHM:Tll

	

VF F- throw M N:ojl 	! (V[' F- N:-r]], V[F F- M:-irfl); V [r] ® -'r; apply

	

V({F F- callcc M nj 	VF F- M:-'n —+ r; -'(id,v1, id-,v1); force

de

	

V(F F- MN: r]] 	! (Vft[' I- N : all, V[[F F- M: a —~ n]) ; apply

What makes the call-by-value semantics work is the fact that all values denote

central morphisms, together with the fact that the centre has finite products and

that we have central closure.

7.1.1 The naturality of callcc

Perhaps the most canonical property of control operators is the naturality of

callcc, in the sense of the following axiom from [Hof94].

V (callcc M) = ca11cc\k.V (M(Ax.k (Vx))))

where V ranges over values, i.e. V ::= x I)x.M. However, this relies on con-

tinuations being a special case of procedures, as in Scheme. With a typing for

continuations like that in NJ-SML, instances of this axiom will be ill-typed.

The negation operation suggested by our categorical semantics, definable as
del

negate =)f.)h.ca11cc((throw h) o f o callcc o throw), is useful for adapting

this axiom as follows

V (callcc M) = callcc(V o M o (negate V))

(For example, let V = fn n => n + 1 and M = f k => throw k 1. Then V

(callcc M) and callcc(V o M o (negate V)) both evaluate to 2.) This

axiom is sound for our semantics.

7.1.2 Proposition

VftF I- V (callcc M) nfl = V[F F- callcc(V o M o (negate V)) : nfl

7.2 Plotkin call-by-name semantics and variants

Plotkin call-by-name is a slight variation on call-by-name obtained by the tech-

nique of thunking arguments in applications and forcing variables; this is a cate-

gorical analogue of [HD951.

We consider the doubly-negated -i--iA as the type of lazy data of type A.

124

7.2.1 Definition (Plotkin Call-by-name semantics) Given a 0--category,

we define the Plotkin call-by-name semantics £ft—fl as follows.

def

	

 fl 	 &
def

	

£fr1: Ti, ...,x:Tfl 	=

Again, a judgement F F M : r denotes a morphism PF}J —+ Pftrfl.

	

Pftx1:r1,...,x:rFxj:'rj]1 	
c4g 	

ir;force

	

PFFx.M:cx—*rfl 	1 Pfr:0r,FFM:Tfl

	

PF F MN: rh 	(.A 1 P[[F F N: U]], 7'[[F FM: a —+ r); apply

The Plotkin call-by-name semantics satisfies the full /3 law by thunking argu-

ments at the point of application. Thus arguments are always central. However,

the application map is still the same as in call-by-value; the "jump with argu-

ments", apply, which is not central.

The Plotkin semantics rests on the thunking corollary 4.5.3 along with the

central closure 4.5.2.

7.2.2 Remark We now have the categorical framework in place in order to talk

more abstractly about some of the issues addressed in terms of name-passing in

chapter 3. We mentioned in remark 3.1.5 two possible choices for a semantics with

the call-by-name typing. These correspond to the two passages in the naturality

square for thunk. Because the naturality does not hold in general (only in a

subcategory), there really is a choice.

As explained in [DH94], the Reynolds and modified Reynolds have the same

semantics of function types, but they differ in the choice of when the delayed

argument is forced.

7.2.3 Definition Given a 0--category, we define the Reynolds call-by-value se-

mantics RH as follows.

-7®-ifl.ftrfl)

R4x 1 : Ti, .. . , x, :

A judgement F F M : r denotes a morphism R.Ffl —+ 7ftrfl.

Rx1:ri,...,x:rFx:rj 	
def]J 	= 	7r3 ;force

RftF F Ax.M :01 —+ rh g X1((force;thunk) ®R[F];R.x : a,F FM :

RftF F MN : 	

d4 	
() RE[F F N : 011,7E[F FM: a —+ rfl);apply

125

7.2.4 Definition Given a 0--category, we define the modified Reynolds call-by-

value semantics 7Z!jj-fl as follows.

—+ r]
	del

T1,. . . , x :
	del 	

® 7'IITnfl

A judgement F F- M: r denotes a morphism lZ'ftF]] —+ R'frfl.

Rfri:Ti,...,x:TF-x:T
	del
 =

R![F F- Ax.M : a —~ 	
' 	

force ® R'[[Ffl; R'J[x : a, F F- M : 1])
'R'IIF F- MN : r]] 	! (,\ 7'E[r' I- N : a], R,'F F- M : a —+ r]]); apply

7.3 Uncurrying call-by-name semantics

The uncurrying call-by-name semantics relies on the variant)-abstraction A and

application apply.

7.3.1 Definition (Semantics for uncurrying call-by-name)

del
= 	-i(jVfri]]® ... ØVft 1jØ_v\fI[b11)

def

	

'r F- x : T]] 	=

del

	

j\fftFF-Ax.M:a—]] 	 j\fftx:a,FF-M:fl

	

AF F- MN : rfl 	! (jVftF F- N : a]],VftF F- M: or —* rfl) ; apply

The undurrying call-by-name semantics, by contrast with the Plotkin one,

uses an application map that is itself central (see 4.5.5). Hence all denotations

are central. This it what make this semantics validate both the full 3 and ij.

We can now explain more conceptually the invariant (lemma 3.3.1) that made

the syntactic soundness proof of the uncurrying call-by-name CPS transform

work: it is just one of the many equivalent characterisation of centrality, namely

thunkability.

Both the denotations of variables and the application map used by the un-

currying semantics are central (denotations of)-abstraction are central for all

semantics considered here). This is what makes the uncurrying semantics gen-

uinely call-by-name. For the Plotkin call-by-name semantics, by contrast, not

even the denotations of variables are central.

126

7.3.2 Proposition For the special case of the term model, that is K; = K:(CPS),

the denotation of a judgement is the equivalence class of its CPS transform.

VftF F M: T1 = 	[J]F, k : -ITO F 	M(k)]

PftF F M: r]] = 	[P(F), k : -'(]T) I- 	M(k)]

RV F- M: nj = 	[7?-90, k : -1(T[) F- IMO (k)]

1?'L[FF- M:i =
.A/ftF F- M:]1 = 	[.Af(I', k: -vVn[) F- .Af(]MD(k)]

For the shorthand transformation this reads as follows

VFFM:njJ= Fr, k:-"rFM]

PftF FM: nj = [F,k: FM]

jVE[FFM:r]= [f,k:- nF]

7.4 State and meta-continuation-passing

A very elementary construction on a premomoidal category is to "add state":

each morphism takes and returns an additional argument. This can be regarded

as depending on, and possibly modifying, some global variable. Whiel this is not a

very satisfactory account of state in programming languages, it is sufficient to give

a categorical counterpart of meta-continuation passing style 3.2.4 on page 50. The

combination of first-class control and (even a single piece of global) state seems

to be a rather powerful one; see [Fi194b].

ObJC!S = ObK

K;!S(A,B) = 	K;(S(9A,S®B)

SA = 	-'(S(9A)

= S® -'!

YAJ - 	PSøA

thunks = 	S®pair

7.4.1 Remark In VS, we have operations for dereferencing and assigning to

the single piece of state:

=:S—+1

!:!—S

127

These are just the second projection

def
= = 72:S®S—S=10S

the diagonal map
def -
= Os:S®1=S—+S®S

in the base category K. Note that, in the CPS term model ! = [sk I- k(ss)] and

= [sxk F- k(x)]. In that sense, ! is essentially the same as callcc, and := the

same as throw. There may be a connection with the relationship, mentioned in

the introduction, between figures 1.7 and 1.8, and figures 1.5 and 1.6. Compare

also figures 6.16 and 6.15 in Chapter 6.

7.4.2 Conjecture We conjecture that, under some "mild" conditions on K, if K1

is a ®-i-category and S e 0b, then K1!S is a (D--category.

Meta-continuation-passing style arises as the special case S = -'R. Expressions

of type R can be aborted and control-delimited.

7.5 Categorical semantics for CPS calculus

Assigning a morphism to each CPS calculus judgement is made somewhat awk-

ward by the fact that these judgements have only premises (typing for names),

but no conclusions (type for the whole term), so that there does not seem to be

a canonical choice for the codomain of its denotation. This is perhaps surpris-

ing, but we would argue that CPS is so low-level that even composition is not

fundamental, but a relatively involved idiom from its perspective.

We could either choose a "dummy" codomain (the corresponding continuation

never being used) or single out one of the names in a judgement as the current

continuation corresponding to the codomain.

Compared to the (syntactic) CPS transforms from the CPS literature, the

first of these is analogous to a Continuation Grabbing Style [Sab96] transforma-

tion, while the second would amount to a Back to Direct Style [Dan94, DL921

transform.

We sketch each of those, before giving a more detailed account of a Direct

Style semantics for a small fragment of CPS calculus.

7.5.1 Continuation Grabbing Style semantics for CPS-calculus

A Continuation Grabbing Style semantics for CPS-calculus could be defined as

follows.

128

F I- M]]: F]] -+ -'1

ftF,: 6,k: -6 F- k(±)]j

= ir

ftF F- M{n(f)=N}]]

7.5.2 Back to Direct Style semantics for CPS-calculus

A Back to Direct Style would have to solve the problem of how to choose a

current continuation, corresponding to the codomain of the denotation, in each

CPS calculus judgement.

One could introduce conventions for singling out one variable (the last, say) in

a judgement as the current continuation. (Incidentally, it is not trivial that this

is always possible; we conjecture that in the non-recursive CPS calculus, for each

derivable judgement at least one variable in the typing assumptions is assigned a

continuation type.)

A judgement F, k: -yr F- M would then denote a morphism

[[F]] -+

The problem is how to define this inductively on the structure of M.

If, in a binding M{n()=N}, k is free in N, but not in M, then the denotation

of F, k : - iT F- M{n()=N} should be a straightforward composition ' of the

denotations [[F,n : -ió F- M]] and ftF,: a F- N]].

But in general k may occur anywhere in M or N or both, requiring a compli-

cated case analysis. (In [Dan94, DL921, this necessitates intricate techniques for

digging out a current continuation.)

We restrict ourselves to a fragment of CPS so simple that a few cases are

enough: that is we consider only the linear unary CPS calculus. This is a fairly

severe restriction: without polyadic continuations, we loose the ability to trans-

late functions. On the other hand this simple fragment has a clean categorical

semantics: it is the internal language of a self- adj ointness.

It is straightforward to build a category equipped with a self-adjoint functor

from the syntax of simply-typed, linear unary CPS calculus along the lines of

definition 5.2.1. We focus on the other direction.

'In the co-Kleisli category k[rl

129

7.5.1 Definition Given a category K together with a self-adjoint functor -

froP -* K with unit force, we define a semantics for the linear unary CPS

calculus.

I[xk F- k(x)fl = id

frk F- x(k)fl = force

frk F- M{n(y)=Nfl = xn F- Mfl; (Jyk I- N 	, k E FV(N)

ftxk F- M{n(y)=N} = -' yx F- N]]; ftnk I- M]] 	, k e FV(M)

7.5.2 Lemma frk F- M]] =]Jyh F- M[xk '-* yh]]]

7.5.3 Lemma The denotation ofajudgement kx F- M with the variables swapped

is the adjoint correspondent of the denotation of the original judgement xk F- M.

-iftxk F- Mfl; force = ftkx F- Mfl

PROOF By induction on M.

k(x)

-'xk F- k(x)]]; force

= -id; force

= force

= ftxk F- x(k)fl

x(k)

-iftxk F- x(k)]]; force

= -force; force

=id

= ftxk F- k(x)]]

M{ri(x)=N} First, let k e FV(N).

-4xk F- M{n(y)=n}fl; force

= -i(frn F- Mfl; Eyk F- NJ); force

= -iftyk F- N]]; -'xn F- Mfl; force

= -iftykF- NJ; ftnxF-Mfl

=][kx F- M{ri(y)=N}]]

130

Because of the naturality of and the triangular identity for force, we have:

-i(--[xk F- ME;force);force

= -'force; -'-[Jxk F- Mfl;force

= -'force; force; E[xk F- ME

= frkF- M]

7.54 Proposition The semantics 	fl of linear unary CPS-calculus in defini-

tion 7.5.1 is sound with respect to the axioms of the calculus given in defini-

tion 2.4.1.

PROOF We show for each axiom M1 = M2 that M1 fl =

JMP

ftm(x){n(y)=N}fl

= ftxn F- n(x)J; yk F- N]]

= id;E[yk F- Nfl

= I[ykF- Nil

= frkF-M[yH+x]]]

ftxk F- ri(k){n(y)=N}]]

= -i[[yx F- NE; ([nk F- n(k)]]

= -'[[yx F- NE; force

= [xyF-N]]

= xkF-N[yH+k]fl

ETA

ftxk F- M{n(y)—k(y)}]]

= ([xn F- Mfl; ftyk F- k(y)]]

= ftxnF-M]];id

= ftxnF- M]J

= xkF-M[n-+k]]]

131

frk F- M{n(y)=x(y)}J]

= -4yx F- x(y)J]; link F- MI

= id;link F- MJ]

= ftnkl -Mfl

= ftxkF-M[n'-x]]J

FL0AT-L: ii E FV(L)

. k e FV(M)

lixk F- L{rn(y)-M}{n(z)=N}J]

= -'][zx F- NJ]; link F- L{rn(y)=M}]]

= -iftzx F- NE;][nm F- U]; [[yk F- MJ]

=][xm F- L{n(z)=N}J]; liyk F- M]

= frk F- L{n(z)=N}{rn(y)=M}]

. k e FV(N)

frk F- L{m(y)=M}{n(z)=N}]]

= -([yx F- ME; limn F- U]];][zk F- NJ]

= -1][yx F- It/I]];][rnn F- L{n(z)=N}]]

=][xk F- L{ri(z)=N}{m(y)=M}]J

FL0AT-R: n E FV(M)

. k E FV(N)

frk F- L{m(y)_-M}{n(z)=N}J]

= (ftxrn F- L]]; ftyn F- Mfl;)lizk F- N]]

=][xm F- L]]; (liyn F- MJ]; Eyk F- NJ])

= ftxrn F- U];][yk F- M{n(y)=N}]]

=][xk F- L{m(y)=M{n(z)=N}}Jj

. k e FV(L)

lixk F- L{rn(y)=M}{ri(z)=N}]]

= -4zx F- NJ]; link F- L{m(y)=M}J]

= -4zx F- NJ]; -'][yn F- MJ]; limk F- U]

132

= -(yn H MI; zx I- Nfl; mk F- L

= --iftyx F- M{n(z)=N}]]; t[mk F- L]]

= I[xk F- L{m(y)=M{n(z)=N}}fl

t

We have established that an extremely distilled version of CPS, a unary name-

passing calculus, is the internal language of a self-adjointness. From the point of

view of categorical semantics, an intriguing question would be what, if anything,

in the categorical structure makes its internal language a name-passing calculus.

133

Chapter 8

Indexed -i-categories

In Chapter 4, we have mentioned that we can see the continuation functor as

indexed. Here we develop this point of view. Although relevant for continuation

semantics, the possibility to use either indexed categories or premonoidal struc-

ture for the semantics of environments arises in denotational semantics in general,

so we treat it at its natural level of generality.

This chapter presents joint work with John Power [PT97]; in particular, the

result (8.3.4 below) on which the connection is built is due to him.

8.1 Environments as indices

Traditionally in denotational semantics, there have been two categorical ways of

modelling environments. The first is given by finite products in a Cartesian closed

category, as for instance in modelling the simply typed)-calculus. Over the years,

that has gradually been extended. For instance, in order to model partiality, one

must generalise from finite product structure to symmetric monoidal structure;

and more recently, that has been further generalised to the notion of symmetric

premonoidal structure [PR97].

A premonoidal category is essentially a monoidal category except that the

tensor need only be a functor in two variables separately, and not necessarily a

bifunctor: given maps f : A -+ A and g : B -* B', the evident two maps from

A ® B to A' ® B' may differ. Such structures arise naturally in the presence of

computational effects, where the difference between these two maps is a result of

sensitivity to evaluation order. So that is the structure we need in order to model

environments in the presence of continuations or other such strong computational

effects. A program phrase in environment F is modelled by a morphism in the

premonoidal category with domain Ij.

The second approach to modelling environments categorically, also used to

134

model the simply typed A-calculus, is based on indexed categories with structure,

and has been heavily advocated, although not introduced, by Bart Jacobs [Jac92]:

the slogan is that contexts, which we call environments, are indices for the cate-

gories in which the terms definable in that context are modelled. Here, a program

phrase in environment F is modelled by an element 1 -+ I-rl in a category that

implicitly depends on F, i.e., by an arrow from 1 to rfl in the fibre of the indexed

category over ftl]. We consider a weak version of indexed category with structure,

called a r,-category, implicit in recent work by Masahito Hasegawa [Has95]. In

the setting of indexed categories, various binding constructs can be studied. A

r,-category has a weak first order notion of binding, given by the assertion that

reindexing along projections has a left adjoint. In programming terms, that cor-

responds to a special form that binds an identifier but is not reifying in the sense

that it does not produce a first class function. Hasegawa [Has95] compares it to

lambda in early LISP.

The first major result of this chapter is to prove the above two models of envi-

ronments equivalent. More precisely, we show that every symmetric premonoidal

category with a little more of the structure cited above, gives rise to a ic-category,

and that this gives a bijection between the classes of symmetric premonoidal cat-

egories with such structure and ic-categories. The extra structure we need on a

symmetric premonoidal category)C is a category with finite products C and an

identity on objects strict symmetric premonoidal functor J : C -+)C. At first

sight, that may seem a somewhat complex structure, but in fact, as made precise

in [Pow], it is particularly natural category theoretic structure, more so than that

of premonoidal structure alone, as it is algebraic structure.

Related Work

The relationship between symmetric premonoidal categories and r,-categories is

related to work by Blute, Cockett, and Seely [RBS]. Implicit in their work is

the construction which, to a symmetric premonoidal category with a little added

structure, assigns a r,-category. The latter are closely related to their context cat-

egories. Identifying precisely which indexed categories thus arise did not appear

in their work.

Bart Jacobs' thesis [Jac9l] championed the view of contexts as "indices for

the terms and types derivable in that context." We believe this to be relevant

not only to type theory but also to the modelling of environments in computer

science, and we use it for that purpose in our third approach to continuation

semantics.

135

Ong [0ng96] also uses a fibration to model environments for his categorical

formulation of the)-calculus [Par92]. As this calculus is an extension of the call-

by-name A-calculus, Ong can assume every fibre to be Cartesian closed. However,

for call-by-value programming languages like ML or Scheme, one cannot assume

Cartesian closure. (And even if one were to assume call-by-name, the intended

meaning of callcc would be less than clear.)

8.2 Premonoidal categories

In this section, we recall the definitions of premonoidal category and strict pre-

monoidal functor, and symmetries for them, as introduced in [PR971 and further

studied in [Pow]. We also develop a basic construction on a premonoidal category

that we will need later. A premonoidal category is a generalisation of the concept

of monoidal category: it is essentially a monoidal category except that the tensor

need only be a functor of two variables and not necessarily be bifunctorial, i.e.,

given maps f : A -+ B and f' : A' -* B', the evident two maps from A 0 A' to

B 0 B' may differ.

Historically, for instance for the simply typed A-calculus, environments have

been modelled by finite products. More recently, monoidal structure has some-

times been used, for instance when one wants to incorporate an account of par-

tiality [RR88]. In the presence of stronger computational effects, an even weaker

notion is required. If the computational effects are strong enough for the order

of evaluation of f : A -+ B and f' : A' -+ B' to be observable, as for instance

in the case of continuations, then the monoidal laws cannot be satisfied. The

leading example for us of such stronger computational effects are those given by

continuations. However, for a simple example of a premonoidal category that

may be used for a crude account of state [PR97], consider the following.

8.2.1 Example Given a symmetric monoidal category C together with a speci-

fied object S, define the category K to have the same objects as C, with K(A, B) =

C(S (9 A, S ® B), and with composition in /C determined by that of C. For any

objectAofC,onehasfunctorsA® — :/C—+/Cand —®A:/C--+ IC, but they

do not satisfy the bifunctoriality condition above, hence do not yield a monoidal

structure on)C. They do yield a premonoidal structure, as we define below.

In order to make precise the notion of a premonoidal category, we need some

auxiliary definitions.

136

8.2.2 Definition A binoidal category is a category K together with, for each

object A of AC, functors hA : AC -+ AC and kA : AC -+ AC such that for each pair

(A, B) of objects of AC, hAB = kBA. The joint value is denoted A ® B.

8.2.3 Definition An arrow f : A -* A' in a binoidal category is central if for

every arrow g : B - B', the following diagrams commute:

A®B A®9A®B,

fØBj , ØB'
A'Ø

A'®B 	A'®B'

B®A gOA

B®f 	 B'Øf
'

BOA / 9
ØA
 >B'®A'

Moreover, given a binoidal category AC, a natural transformation a : g ===> h

B -* AC is called central if every component of a is central.

8.2.4 Definition A premonoidal category is a binoidal category AC together with

an object I of AC, and central natural isomorphisms a with components (A® B) ®

C 	A ® (B ® C), 1 with components A -+ A ® I, and r with components

A 	10 A, subject to two equations: the pentagon expressing coherence of a,

and the triangle expressing coherence of I and r with respect to a.

Now we have the definition of a premonoidal category, it is routine to ver-

ify that Example 8.2.1 is an example of one. There is a general construction

that yields premonoidal categories too: given a strong monad T on a symmetric

monoidal category C, the Kleisli category Kleisli(T) for T is always a premoidal

category, with the functor from C to Kleisli(T) preserving premonoidal structure

strictly: of course, a monoidal category such as C is trivially a premonoidal cate-

gory. That construction is fundamental, albeit implicit, in Eugenio Moggi's work

on monads as notions of computation [Mog89], as explained in [PR97].

8.2.5 Definition Given a premonoidal category AC, define the centre of AC, de-

noted Z()C), to be the subcategory of AC consisting of all the objects of AC and the

central morphisms.

For an example of the centre of a premonoidal category, consider Example 8.2.1

for the case of C being the category Set of small sets, with symmetric monoidal

structure given by finite products. Suppose S has at least two elements. Then

the centre of AC is precisely Set. In general, given a strong monad on a symmetric

monoidal category, the base category C need not be the centre of Kleisli(T), but,

modulo a faithfulness condition sometimes called the mono requirement Mog89,

PR971, must be a subcategory of the centre.

The functors hA and kA preserve central maps. So we have

137

8.2.6 Proposition The centre of a premonoidal category is a monoidal category.

This proposition allows us to prove a coherence result for premonoidal cat-

egories, directly generalising the usual coherence result for monoidal categories.

Details appear in [PR97].

8.2.7 Definition A symmetry for a premonoidal category is a central natural

isomorphism with components c: A® B -+ B ® A, satisfying the two conditions

C2 = 1 and equality of the evident two maps from (A (D B) ® C to C ® (A 0 B).

A symmetric premonoidal category is a premonoidal category together with a

symmetry.

All of the examples of premonoidal categories we have discussed so far are

symmetric, and in fact, symmetric premonoidal categories are those of primary

interest to us, and seem to be those of primary interest in denotational semantics

in general. For an example of a premonoidal category that is not symmetric,

consider, given any category C, the category End,, (C) whose objects are functors

from C to itself, and for which an arrow from h to k is a C-indexed family of

arrows a(A) : h(A) -4 k(A) in C, i.e., what would be a natural transformation

from h to k but without assuming commutativity of the naturality squares. Then,

this category, together with the usual composition of functors, has the structure

of a strict premonoidal category, i.e., a premonoidal category in which all the

structural isomorphisms are identities, which is certainly not symmetric.

8.2.8 Definition A strict premonoidalfunctor is a functor that preserves all the

structure and sends central maps to central maps.

One may similarly generalise the definition of strict symmetric monoidal func-

tor to strict symmetric premonoidal functor.

In order to compare the various models of environments in the next section, we

need to study a construction that, to a premonoidal category, assigns a Cat-valued

functor.

8.2.9 Definition A comonoid in a premonoidal category K consists of an object

C of K, and central maps 6 : C -* C 0 C and v: C -+ I making the usual

associativity and unit diagrams commute.

It follows from centrality of the two maps in the definition of comonoid that one

has the usual coherence for a comonoid, i.e., n-fold associativity is well defined,

and comultiple products with counits are also well defined.

138

8.2.10 Definition A comonoid map from C to D in a premonoidal category IC

is a central map f C -* D that commutes with the comultiplications and

counits of the comonoids.

Again, it follows from centrality that a comonoid map preserves multiple applica-

tion of comultiplication and counits. Given a premonoidal category IC, comonoids

and comonoid maps in K; form a category Comon(K) with composition given

by that of IC. Moreover, any strict premonoidal functor sends a comonoid to

a comonoid, so any strict premonoidal functor H : K; - £ lifts to a functor

Comon(H) : Comon(IC) -p (L).

Trivially, any comonoid C in a premonoidal category K; yields a comonad

on IC given by - ® C, and any comonoid map f : C -p D yields a map of

comonads from - ® C to - ® D, and hence a functor from Kleisli(— (& D), the

Kleisli category of the comonad - ® D, to Kleisli(— ® C), that is the identity

on objects. So we have a functor from Comon(C)°P to Cat, which we denote by

s(/C). See [PR97] for this construction and another application of it.

Now, given a category C with finite products, every object A of C has a unique

comonoid structure, given by the diagonal and the unique map to the terminal

object. So Comon(C) is isomorphic to C.

Thus, given a category C with finite products, a premonoidal category IC, and

a strict premonoidal functor J : C -+ K, we have a functor ic(J) C°1 -+ Cat

given by s(IC) composed with the functor induced by J from C Comon(C) to

Comon(IC).

8.3 k-categories

In this section, we introduce r,-categories, and show that the construction at the

end of Section 8.2 yields an equivalence between premonoidal categories with

added structure as we shall make precise, and ic-categories.

Hasegawa has decomposed the)-calculus into two calculi, the ic-calculus, and

the (-calculus IHas951. This analysis arose from study of Hagino's categorical

programming language. The idea of the ic-calculus, also known as the contextual

calculus, is that it has product types on which its abstraction and reduction are

constructed, and it can be regarded as a reformulation of the first-order fragment

of simply-typed A-calculus, but does not require the exponent types. We do not

explicitly present the r,-calculus here. However, we do describe the notion of ic-

category, which is a categorical analogue of the definition of r,-calculus. Further,

we compare the notion of r,-category with that of symmetric premonoidal category

139

with a extra structure. That relationship is one of the main theorems of the

chapter, which we later extend to relate our two main models of continuations.

Given a small category C, a functor from COP to Cat is called an indexed

category, a natural transformation between two indexed categories is called an

indexed functor. The notion of indexed natural transformation is definable too,

and this gives us a evident notion of adjunction between indexed categories. In

concrete terms, it amounts to an ObC-indexed family of adjunctions, such that

the units and counits are preserved by reindexing along each f : A —+ B. And

given an indexed category H : COP —4 Cat, we denote by H° COP Cat the

indexed functor for which HAOP = (HA) °' with HfOP defined by H1 .

We will need the definitions of HOP and adjunctions between indexed cate-

gories in later sections to extend the notion of a functor being self-adjoint on

the left, as in the semantics for continuations with premonoidal structure used to

model environments in Chapter4 to that of an indexed functor being self-adjoint

on the left as in the semantics for continutations using k-categories to model

environments in Section 8.4. But now for our definition of k-category.

8.3.1 Definition A k-category consists of a small category C with finite prod-

ucts, together with an indexed category H : C°' —+ Cat such that

. for each object A of C, ObH A = ObC, and for each arrow f A —+ B in

C, the functor H1 : HB —p HA is the identity on objects

. for each projection ir : B x A —* B in C, the functor H, has a left adjoint

LB given on objects by — x A

• (the Beck-Chevalley condition) for every arrow f: B —+ B' in C, the nat-

ural transformation from LBoHfxid A to H1 OLBF induced by the adjointness

is an isomorphism.
LB'

HB'XA 	 HB'

HfxidAI 	

Hf

HBXA 	
LB

:. H

We shall denote the isomorphism associated with the adjunctions given in the

definition by

ic: HB X A(C,C') HB(C x A,C').

A k-category allows us to model the environments in the presence of continu-

ations or other computational effects. Of course, modelling computational effects

140

involves more structure than that of a r,-category: for continuations, it requires

the assignment to each type r of a type -'r that awaits an input of type r. We

shall study such structure in Section 8.4, where we shall define an indexed

category. But here, we restrict out attention to modelling environments, and we

shall pursue our leading example, that of continuations, later.

8.3.2 Proposition Given a r,-category H : C° —* Cat, there is an indexed

functor mc: s(C) —* H as follows: for each A in C, we have a functor from s(CA)

to HA. On objects, it is the identity. To define inc 1 on arrows, given f : A —* B
in C, consider the arrow LB : 1 —+ B in HB corresponding under the adjunction to

idB in H1 . Applying H1 to it gives a map Hf(LB) : 1 —* B in HA, or equivalently,

under the adjunction, a map from A to B in H1 . Define inc i (f) to be that map.

I
1 	 A 	-B 	 1

A 	 1 	 1 	 B

inci(f) 	
Hf(tB)1 	

H1 	A 	tB 	 I idB

B 	B 	B 	B

This plus naturality determines the rest of the structure.

PROOF It is immediate that inc, preserves identities, and one can prove that

it preserves composition: this follows by proving that for any map f : A —+ B in

C and any map g: 1 —+ C in HB, the map H1 (g) corresponds to the composite

in H1 of Inc 1 (f) with the adjoint correspondent to g. Moreover, this yields a

functor IflCA for every A, with naturality as required.

Using proposition 8.3.2, we can exhibit the relationship between symmet-

ric premonoidal categories with specified extra structure and ic-categories. This

forms the basis for the first main result of the chapter, Prop 8.3.4. First, for the

construction of a ic-category from a symmetric premonoidal category, we have

8.3.3 Proposition Given a small category C with finite products, a small sym-

metric premonoidal category IC and an identity on objects strict symmetric pre-

monoidal functor J : C —+ PC, the functor ic(J) : C°' —+ Cat is a ic-category.

PROOF It follows immediately from the construction of ic(J) in Section 8.2 that

for each object A of C, we have Obic(J)A = ObC, and that for each arrow

f : A —+ B in C, the functor ic(J) 1 is the identity on objects. Moreover, the

existence of the adjoints to each ,c(J), follows directly from the construction and

141

the fact that C is symmetric. The Beck-Chevalley condition also follows directly

from the construction. 	 0

Now, for the converse, giving our first main result of the chapter.

8.3.4 Proposition Let C be a small category with finite products. Given a it-

category H : C°1) —4 Cat, there are a symmetric premonoidal category K; and an

identity on objects strict symmetric premonoidal functor J C —+ K, unique up

to isomorphism, for which H is isomorphic to ic(J).

PROOF Define K; to be H1 . For each object A of ?C, equally A an object of C

since 0bH1 = ObC, define — 0 A : K —p K; by the composite L o H where

A —* 1 is the unique map in C from A to 1. Note that ! is of the form

ir, so the left adjoint exists. Moreover, for each map g C —+ C' in K, we

have g®A: C A —+ C' x A. The rest of the data and axioms to make Ka

symmetric premonoidal category arise by routine calculation, using the symmetric

monoidal structure of C determined by its finite product structure, and by use of

the Beck-Chevalley condition.

Define J : C —* K by inc 1 as in proposition 8.3.2. It follows from the Beck-

Chevalley condition that for a map f: A —+ B in C, and for a map g: C -+ D

in HB, we have that H1 (g) is given by the composite of J(idc x f) with the

adjoint correspondent of g. The Beck-Chevalley condition further implies that

(inc i —)® A agrees with inc i (— x A). It follows from functoriality of the H1 's that

every map in C is sent into the centre of K. Functoriality plus the Beck-Chevalley

condition similarly imply that all the structural maps are preserved. So J is an

identity on objects strict symmetric premonoidal functor.

It follows directly from our construction of J that K(J) is isomorphic to H.

Moreover, J C —+ K is fully determined by H since C is fixed, K must be H1 up

to isomorphism, with premonoidal structure as given, and J must agree on maps

with the construction as we have given it. Hence, J is unique up to isomorphism.

0

8.4 Continuation semantics in indexed -i-categories

In this section, we use the definition of ic-category as a basis, together with self-

adjointness, for defining the notion of an indexed -'-category. We then use that

latter definition to give our third continuations semantics. In the final section,

we shall prove that it is essentially equivalent to the second, i.e., that given by

(9--categories.

142

8.4.1 Definition An indexed -'-category consists of a r,-category H C° —* Cat

together with an indexed functor - H° —* s(C) such that inco - is self-adjoint

on the left, together with a coretract thunk of force1 o mc, where force is the unit

of the self-adjunction, such that

. force is dinatural in A with respect to all maps in H1 and

• letting (forceA)B be the correspondent under the adjunction to LAH,((forcel)B),

we have

-'force 1 = thunk,

thunk;-'--iforce = force;thunk

thunkA x c = A x thunkc ; A x -'force; force

ic'(idcX A) = —'c(LH(forcei)); forcec

The left adjoint to reindexing along projections gives rise to a comonad on

each fibre, which we will write as (_) ® A. Furthermore , using mc, we have a

diagonal map 6A A —+ A ® A in each fibre.

The thinking behind the definition is as follows. The category C with its finite

product structure allows us to model an environment as the product of the types

it contains. In the indexed category, program phrases defined in an environment

will be modelled as elements in the fibre over the denotation of that environment.

ciiI1 x 	x ftcrfl

x:HM:r

H

The isomorphism of adjunction ic is a first order binding construct that allows

us to make the dependency of a program phrase on certain variables explicit. The

negation functor is much as before, except that it now acts on those variables

explicitly singled out by a previous ic.

FxC 	F 	 F 	F

K

143

The motivation for the axioms is as for Ø-'-categories, except that here, we can

avoid one of the axioms as it follows from the indexing of -. However, we need

our last axiom here in order to make the indexing of -' coherent: intuitively, it

means that negating the retrieving of a value of type C from the environment

to cons a value of type C to a value of type A gives us an operation of partially

satisfying demand for a value of type C while leaving the demand for a value of

type A untouched.

This formalism, unlike that for a ® -'-category, separates the data and the

control mechanisms. The indexed functor - is in some sense oblivious to the

indexed structure with which first order data manipulation is described. We do

not want control to interfere with any data with which it is not concerned. So

the ability to model continuations with indexed categories as we do here is a

clear indication that we have separated the two. In the final section, we show

that this modelling is essentially equivalent to that using premonoidal categories

and self-adjointness. We take this as evidence that modelling continuations by

self- adj ointness is a robust notion in the sense that it is not overly sensitive to

the way we model environments, as we could model them in two different ways,

in each case fitting the self- adj ointness into this framework.

To model)+ca11cc, types are interpreted as objects in C. Environments are

interpreted using the product in C.

def
=
	

ft
Tj

def
=
def = 	ftTiflX ... XftT7J

A judgement F I- M : i- denotes an element Jr F- M : TJ : 1 —*JTJ in the fibre

over ft['fl.

[[F I-)x.M : a —+ T}]

[[F 1- throw M N: a]]

[[F I- callcc M : i-]]

[[F F- MN:

! H rj k 1 (d1rj1)
def

thunk; -i(ic--iftF, x : a F- M :

[[F F- M : -ir]];-(,c(H, 1 ftF F-N: T]])); force
def = 	ftFF-M:-'T---*r]];--'8;force

ftFF- M:a-~ rfl;-1(ftFF-N:afl®ftTfl);force

Again, the semantics as such is not the topic of the present chapter. We only give

some hint at how it is intended to work.

We write a morphism from X to Y in the fibre over C as

x
144

The most interesting clause is the one for A-abstraction in that abstracting over

a variable implies moving from one fibre to another.

In a more traditional (call-by-name) setting,). would be interpreted by means

of an adjoint to reindexing. Here, it is more elaborate, as it is decomposed into

the first-order abstraction given by the structure on the fibration on the one hand

and the fibrewise "negation" given by the continuation functor on the other.

A judgement F, x : a F- M : r denotes a morphism

1Irxfr 	
7-fl

Negating this given an arrow

-'1

which, by virtue of ic, amounts to

X -'fril 	Irl 	> -'1

Negating this yields a morphism

--i-il
Ii

 > -'([afl X -'11 1)

All that remains to be done in order to get the meaning of Ax.M is to precompose

with thunk: 1 —+ -i---'l, taking care of the double negation:

1 	 –'--ii 	 -'(11ah x -iftrfl)
I'i

8.5 Relating ®-'-categories and indexed -i-categories

In this final section of the chapter, we build upon the equivalence between Ic-

categories and symmetric premonoidal categories with the extra structure speci-

fied in Proposition 8.3.4 to relate 0--categories and indexed --categories. They

are almost but not quite equivalent. The only difference lies implicit in Propo-

sition 8.3.4: for our definition of ®-'-category, we assert that the centre of our

category has finite products, whereas Proposition 8.3.4 merely asserts that we

have a category with finite products mapping, as the identity on objects, into the

centre of our category. We regard this as a minor difference, as the latter merely

extends the former mildly without changing any other structure.
del

Let öA = (id A , id A) : A —p A ® A

Let K be a 0--category. Let *A be the Kleisli composition

del
f*Ag = (iri , id);A®f®g

145

Define A : K1eis1i(A ® 	
) O) 	K1eis1i z(,c) (A x (_)) by -'AB = B on

objects and by
def

'Af = A®-'f;apply

on morphisms. This is well-defined: A ® -'f is central, because -if is, and

apply = apply; thunk; -'thunk = thunk; -i--iapply; -ithunk

is also central.
def

Define forceA : -'A -'AB —+ B in K1eis1i(A (9 (_)) by forceA = 7F2; apply 1 .

'A preserves identities 72 : A ® B —+ B because

'A (72)

= - A(!(9B)

= A®-'(!(9B);A® -'(A®apply l);applyA

= A®-'(A®apply l ;!®B);applyA

= A ® -'(! ® -'-'B; 10 apply 1); applyA

= A ® -(1 ® apply 1); A ® -i(! ® ----' B); applyA

= A ® -(1 ® apply 1); ! ® -'(1 (9 -'--'B); apply 1

= A 0 -i(apply 1);! 0 -i--i--iB; apply 1

= ! ® -'B; 10 -'(apply1); apply 1

= 7r2 :A®-'B—+-'B

'A preserves composition: let f : A ® B —+ C and g: A 0 C —+ D. Then

'A(f *A g)

= -i A (SA ®B;A®f;g)

= A® —'(8A 0 B;A(g f;g);A 0 -'(A(& apply 1); apply

= A® -'(A®apply l ;5A ®B;A(gf;g);apply

= 4 ®A®A®C;A®A®g;A®A®(A(gf) ; apply
A®A

'A(f) *A -A (9)

= 5A 0 -'B; A 0 A 0 -(A& apply 1 ; f); A 0 applyA; A (&-(A 0 apply 1 ; g); apply

146

So the required identity follows from the axiom

applyA®AI = (7r2, in) 0 -(A ® A' ® -'B); A' (9 apply, applyAl

and the facts that (7 2 , in) is central and 8; (72 , in) = 6.

The triangular identity -lAforceA *A forceA = id holds:

—'AforceA *A forceA

= 'A (72; apply 1) *A forceA

= (A (D -iapply 1 ; -'A (7r2)) *A forceA

= (A ® -'apply1 ; it2) *A forceA

= 6A ® - iB; A® A® -iapply 1 ;A ® 72 ; ir2 ;apply 1

= A® -'apply 1 ; 6A ® -'--i-iB; A® 72; it2; apply 1

= A®-'apply 1 ;ir2;apply 1

= A ® -iapply1 ; ! ® -'--'--'B; apply 1

= ! ® -'B; 1 ® -'apply 1 ; apply 1

= 72 ; -iapply 1 ; apply 1

=

force is natural:

'A'Af *A force A

= A ® -'(A (9 - 'f; apply); apply ; apply 1

= A® -'apply; A® -i(A (D -if); apply4

= A® —apply ;apply;f

= A®apply1 ;f

= force A *A f

Putting this all together, it follows that we have

8.5.1 Proposition Given a 0--category, (IC, - , apply, thunk), the construction

(i'c(J), 'A, force A) as above, together with the given thunk, give an indexed

category.

PROOF Most of the proof is given above. For the rest, the axioms hold simply

because the category H1 is given by K. 	 0

8.5.2 Proposition Given a symmetric premonoidal category IC for which the

premonoidal structure restricts to finite product structure on the centre, to extend

147

this to the structure of a ®-'-category is equivalent to extending the structure of

the ic-category ic(J) to that of an indexed -'-category.

PROOF We need to prove that the construction of the proposition is a bijection

up to isomorphism. Given an indexed —'-category, one can obtain a 0--category

by considering H1 . In order to show that the construction applied to that ®--

category yields the original indexed -'-category, everything is routine provided one

can show that for any indexed -'-category, the behaviour of on H1 determines

its behaviour on HA for all A. But this follows from the fact that -' is indexed

and from the final axiom. El

There is little difference between the notions of indexed -'-category and 0--

category. The only difference between them lies in the choice of an explicitly

given category with finite products and an identity on objects strict monoidal

functor into a symmetric premonoidal category rather than consideration of a

property of the centre. The former is the structure given naturally by an indexed

-n-category. Computationally, it is natural to assume that in the presence of first-

class continuations the whole of the centre admits finite products. This is because

the self-adjoint structure allows every central morphism to be reified, as explained

in section 6.3.

UM

Chapter 9

Towards a graphical representation
of CPS

In this chapter, we present a graphical notation that may be seen as an extreme

distillation of CPS (a negation-only fragment). This graphical representation

relates to CPS roughly as Miler's graphical action structure PlC [Mi193] for the

ir-calculus relates to the full ir-calculus. We may regard it as giving some insight,

though the match with CPS is not a perfect one. (See also [Mi194] and [Par951.)

Given the composition and identity definable in the calculus, we naturally

arrive at a ("CPS") monoid. Despite its simplicity it has some of the deeper

structure characteristic of CPS: considered as a one-object category, it comes

equipped with a contravariant functor self-adjoint on the left and on the right.

Among the aspects of CPS that can be illustrated by the graphical presenta-

tion we would like to point out the following:

. The self adjointness, and in particular

. a view of the isomorphism of adjunction as turning a program upside down

. A view of variables as nodes in a graph or pointers

While our graphical formalism allows to visualise the above, it fails to address

other aspects of CPS. The self- adj ointness "degenerates" (in the sense of a line

degenerating to a point, say) to a duality. However, the degeneracy is not a

collapse (in the sense that all morphisms are equal).

9.1 A graphical calculus

The 	-calculus consists of boxes EJ possibly containing "bullets" ., linked

by directed edges

149

An arrow can be linked (on either end) to the box or the bullet it contains;

hence there are four possible ways (apart from the direction of the arrow) in which

two boxes can be linked.

If nothing connects to the bullet, we omit it.

The calculus has the following four rules:

= - 	(a)

	

EII> 	= 	('8)

	

EII 	= 	(ij)

L1-111111 = LIII 	(a)

Strictly speaking, these rewrite rules are only a shorthand for a more complicated

pattern matching. In the last two laws, the two boxes are to be fused into one;

this (and if there is one, the • inside) inherits all arrows connected to either of

the fused boxes. For example, applying ij may look like this:

9.2 Duality, or inside out

We point out two dualities. Poincaré duality: the rOles of boxes and arrows are

interchanged, while the bullet/box distinction remains:

is dual to 	0-
is dual to 	 LIII

While the Poincaré duality appears to reflect a certain symmetry of the formal

set-up, the second duality, that between boxes and bullets may be more relevant

as an operation.

-III 	is dual to 	_____

is_ dual _to

150

This latter duality can be regarded as "turning inside out" inasmuch as the dual

of putting the left box into the one on the right

is given by putting the right box into the left one

The rules are connected by the dualities like this:

Poincaré

(a) 	(a)
bullet/

box 	
C@) 	(i)

So up to the two dualities, the four laws are only a single law, stating that

connected things at the same level of box nesting can be merged.

9.3 The CPS monoid

The elements of the CPS monoids are finite nonempty sequences of boxes, where

any two adjacent ones are connected in one of the eight possible ways, i.e. any

box/bullet combination and any direction of the connecting arrow. We usually

draw these vertically or, to save space, from left to right. Elements which can

be proved equal using the laws are identified (so the elements of the monoid are

actually equivalence classes, but this will be glossed over by representative-wise

definitions etc.).

We use

LIF>L1
as a meta-notation ranging over morphisms. Here are some examples of mor -

phisms that will be used later.

id 	 force 	 thunk

151

In addition to these constants, we also have operations on morphisms. For mor-

phisms f and g, the composition f; g, the negation -if and the transpose Of are

defined as follows:

f;g 	-,f 	Of

The associativity of composition is trivial.

We write proofs of equations about the CPS monoid as sequences of graphs

side by side, with adjacent graphs transformed into each other by one rewrite

step. id is the identity:

=0 Y =77 Y

9.4 Self-adjointness, or upside down

9.4.1 Proposition -i is a contravariant functor right adjoint to its dual. force is

both the unit and counit of this adjunction.

PROOF

-' preserves identities -'id = id:

152

- preserves composition -'g; -'f = -'(1; g):

- is natural: -'--if; force = force; f

T T
f 	f 	I 	I

153

triangular identity for -I: -'force; force = id

This completes the proof of the adjointness. Notice that the adjoint correspondent

of a morphism f is just its transpose Of, that is, f upside down.

The self-adjointness on the right follows from the fact that force and thunk are

actually inverses in this model, i.e. force; thunk = id. Hence force is the unit of a

duality; but then so is its inverse thunk.

9.5 A semantics for linear unary CPS calculus

Recall the typing of linear unary CPS calculus.

xIc I-
	 xk I- x(k)

xnl-M ykl-N
	

nkl-M yxl-N

xk I- M{n(y)=N}
	

xk I- M{n(y)=N}

154

	

We can give a semantics for the linear unary CPS-calculus in the 	-

monoid

ftxkF- k(x)fl 	 jxkF-x(k)fl

ftzk F- M{n(y)=N}fl 	 frk I- Mjn(y)=Njj 	[
IxnFM1I 	 lyxI- N

LJ 	 L

lykFNJj

This semantics can be summed up in the following recipe for drawing the graph-

ical representation of a term. To translate a linear unary CPS term, do the

following:-

a-convert if necessary, making all variables pairwise distinct;

. draw a box for each variable;

. for every subterm of the form k(x), draw an arrow from the box for x to a

bullet in the box for k;

• for every subterm of the form M{n(x)=N}, draw an arrow from a bullet in

the box for N to the box for x.

9.6 Duality and degeneracy

Put crudely, the graphical representation can account for ... (...), but not . . . {... =
.}. This is analogous to the way PlC does not account for guarding [Mil94].

The self- adj ointness and the duality appear closely connected.

Somewhat more ominously, we have

force; thunk = Id

This means that force and thunk are both isomorphisms; hence both self-adjointnesses

collapse to a duality.

155

Thus this calculus is a degenerate model even of the tiny fragment of CPS that

it can describe, as it does not adequately account for reification. It is reification

(wrapping things into closures) that makes a proper CPS negation non-involutive.

On the other hand, the calculus has a great deal of the intuitive flavour of CPS;

and if the missing ingredient is indeed only reification, we could hope for the

following connection between CPS negation (self-adjointness, unit not iso) and

classical negation (duality):

CPS - reification = duality = classical negation

If this is so, one should get a classical negation from CPS by adding a law for

dissolving closures:

classical negation = CPS + (—reification)

So the degeneracy of this model may actually be useful for exploring those con-

nections in a simplified setting. Note that attempting to add extra axioms to the

CPS calculus in order to enforce "classicality" will quite easily lead to collapse,

e.g. if one makes force; thunk = id by adding the following axiom

h(k){k(a)=n(f){f(p)p(a)}} = n(h) 	(INv)

This issue of the degeneracy of a self- adj ointness (for instance to a duality), is

also explored in Masahito Hasegawa's manuscript [Has97).

Preliminary though they are, the ideas in this chapter may lead to two com-

plementary directions for further work. On the one hand, we could attempt to

add extra structure on the graphs to represent reification. A conventional way

to do this would be to add boxes to encapsulate certain subgraphs and preclude

certain reductions, as in [Mi1941 and [Par95].

On the other hand, the duality aspects of CPS may become clearer if ad-

dressed in a setting where there actually is a duality functor. Duality seems to

have a powerful, though somewhat ambiguous, influence on intuitions about con-

tinuations. (For instance, the subtitle of Filinski's early categorical account of

continuations is "an investigation of duality".)

A related point is the duality on terms from section 3.6, which can be visual-

ized here as the box/bullet duality.

156

Chapter 10

Conclusions and directions for
further research

10.1 Conclusions

We have tried to show that continuations are a universal raw material from which

low-level as well as high-level programming language constructs can be crafted.

The categorical properties of the operations, such as force basically being the unit

of adjunction, appear to defy common prejudices against control manipulation as

excessively low-level and unprincipled. Like functions, continuations scale up well,

but unlike functions, they do not require "purity". That is to say, the adjunction is

not destroyed by the addition of effects in the style done by call-by-value languages

like ML or Scheme.

To some extent what we have attempted here is a bridge-building effort be-

tween a tradition of semantics, centred around a few institutions in the USA,

relying much more on metacircular interpreters for Scheme than on, say, domains

and the more mathematically inclined European (predominantly British) tradi-

tion. Whether or not the Schemers need anyone to tell them that there is an

adjointness about remains to be seen, but we believe that for the European tra-

dition of semantics, it is of particular importance to maintain the link between

theoretical fields such as categorical semantics and programming languages.

10.2 Directions for further work

10.2.1 Language design

The self- adj ointness seems characteristic of continuations that are first-class as

well as statically bound. Neither ML-style exceptions nor a Lisp-style (dynam-

ically bound) catch construct appear to give rise to this kind of structure. We

157

conjecture, then, that self-adjointness is a semantic criterion that sets first-class

continuations apart.

Perhaps the best use of category theory in the semantics of programming

languages is to rationalise semantic definitions [Ten9l]; we hope to add more

objective reasons to the general impression that continuations are, for lack of a

better word, "cool". (This may even lend some moral support to the cause of their

inclusion in future ML-like languages, whether idealised or real.)

The treatment of continuations in the type system of Standard ML of New

Jersey is already fairly conducive to our semantic views of them (not least because

it shaped them in the first place). A suggestion that we could offer is to facili-

tate passing between functions and continuations, by making it easy to convert

between, or even identifying arrow types a -+ r with special continuations, i.e.

-'(a *

In traditional imperative languages, both functions and continuations (in the

form of jump labels, say) are very far from being first-class: both can be intro-

duced only as compile-time literals.

But semantically (even more categorically) it is precisely the first-class ver-

sion that is more natural. First-class functions (of different flavours) give rise

to cartesian, or monoidal, or central, closure. First-class continuations give self-

adj ointness.

On the basis of that, we would argue that callcc is the natural choice of con-

trol operator. While advanced, it is not particularly incomprehensible. Attempts

to "improve" on it may be counterproductive.

The drive for first-class notions without arbitrary restrictions (as well as the

related principle of orthogonality of such notions), appears to be one of the major

feedbacks from semantics into practice, in particular language design, and on a

more everyday level, programming language teaching.

(Given that first-class control is more natural than plain goto in that it enjoys

universal properties, one could be led to speculate whether there is not a notion

of first-class state more natural than plain ":".)

10.2.2 Applications to programming

While Scheme in particular is expression-oriented, the categorical combinators

could form the basis for a more composition-oriented approach to continuations.

We conjecture that they, together with a recursive (reflexive?) continuation

type, could be used as a set of primitives for upward (in the sense of [FWH92])

continuations and coroutines in particular. (See also sections 1.1.2 and 1.2) in

158

the introduction.

A related point is that we seem to be almost forced to define a continuation

transformer akin to the negation functor for reasoning about callcc in the setting

of an ML style typing of continuations. See 7.1.1.

10.2.3 Relation to ir- and related calculi

Continuation Passing Style transformations have been studied primarily as a

translation between different versions of A calculus. Such a translation between

different A-calculi is indifferent to the calling mechanism of the target calculus.

What appears to have been studied much less (although it underlies CPS com-

piling) is that CPS is indifferent even as to whether the target language is a

A-calculus at all, in that function application is translated into a kind of message

passing between caller and callee. In that sense, CPS transforms are closer in

spirit to ir-calculus and related formalisms than to A-calculi.

Much of the expressiveness of the ir-calculus appears to be due to the fact

that its "first-class" names can be used to implement generalized first-class con-

tinuations. We propose to find criteria for when names are used in such a CPS

discipline, in order to scale up some of the essentially simple structure of CPS

from the sequential to a concurrent scenario. In particular, a categorical charac-

terization of continuation types appears to be quite robust in the sequential case,

so that a generalisation to channels used as continuations appears possible. This

would allow the isolation of a class of well-behaved computations lying properly

between the purely functional and the fully concurrent. The ability of the lan-

guages in this class to accommodate (generalized) continuations would provide a

more modular account of their expressive power. This would automatically entail

the existence of encodings (CPS transforms) of various evaluation strategies for

the A-calculus, with control operators for free.

A related use of CPS as a unifying principle would be to take the existence of

a CPS transform between two languages as a comparison of their expressiveness.

We conjecture that a CPS discipline can be found not only in A-calculus encodings

[Bou97], but also in Sangiorgi's translation of Higher Order ir-calculus back into

the ir-calculus.

We hope to explore these connections and extend the analysis of CPS as

a particularly structured form of name-passing. Dually, given the popularity

of graphical representations in concurrency, aspects of CPS could perhaps be

elucidated by building on graphical presentations of, say, the ir-calculus. Other

techniques from concurrency that could profitably be conferred on CPS include

159

contextual notions of equivalence and bisimulation.

Among the uses of CPS in compiling, we may distinguish between optimisa-

tions and translations to more low-level constructs.

The former do not change the character of the language: they re-write A-terms

into other, more efficient, A-terms. The latter eliminate the A altogether in favour

of jumps with arguments.

In [FSDF93], it is argued that CPS is superfluous for optimisation purposes,

as one can optimise while staying in the source language by so-called A-reductions

that allow the same optimisations to be made as after a CPS transform. That

would imply that CPS transforms, if considered as transforms from the A-calculus

to itself, are of little use to compiling. That would shift the emphasis to the other

aspect of CPS, which we have attempted to address here, namely breaking down

the A's, as it were.

10.2.4 The expressive power of callcc

Section 6.7 consitutes preliminary evidence to the discriminating power of tt

callcc. It seems possible that the equivalence induced on A-terms by the Plotkin

CPS transform (M and N are equivalent if M = N) is similarly fine-grained to

that given by Miler's ir-calculus encoding, which coincides with the Levy-Longo

tree equality [5an94]. Specifically, the presence of first-class continuations allows

to distinguish values from general computations.

10.2.5 Internal languages

Both the concreteness and ease of use of the CPS calculus and the more abstract

viewpoint based on the self-adjointness are useful, not least because they comple-

ment each other. Their relationship would be clarified if the CPS calculus were,

in a precise sense, the internal language of a 0--category.

Similarly, one could hope for a fuller development of the flattened calculi as

the internal languages for premonoidal categories.

10.2.6 Robustness

We have argued informally that the structure that we propose for first-class con-

tinuations is not something specific to the small fragment of programming lan-

guages that we actually studied and that it would still be present in a more

realistic language with state, I/O and other effects. A connection with state has

been sketched in section 7.4.

160

10.2.7 Refinement of the standard model

As a first refinement of the standard model, we propose that some care should

be taken in the choice of the result type R. Of course, literally any type in C

could be taken as the result type, but it should be clear that the choice of the

terminal object yields a trivial interpretation. Other choices, such as a NNO are

more defensible and possibly sufficient for PCF-like languages [SF90].

As one of the fundamental properties of the CPS transform is its being poly -

morphic in the result type, we would argue that this should be reflected in the

model.

Realizability models have enough structure to allow for such a polymorphic

result type. In the terminology of [FT951, we could take the result type R to be
(G\

the "generic predomain" j. in a slice of the category of assemblies. (While this
\CoJ

is probably not the best account of a "generic" type is seems quite sufficient for

our purposes here.) If we wanted to add recursion, we could simply take the lift

of this object instead; that would just amount to its fibrewise lift.

It appears that the abort operator A could not be well typed in this setting.

No value produced by a program phrase could be polymorphic enough, as it were,

to inhabit the result type.

Another conjecture is that in this setting, the control-flow and the domain-

theoretic concepts of lifting should coincide, as on grounds of parametricity one

would expect, for any base type A, that

RA
RA 1

(The question arises: over how big a collection of types does R have to vary for

this to hold?)

10.2.8 Relation to polymorphism and semantics in general

The difficulties faced when trying to accommodate continuations as morphisms

with a domain but without a codomain, as it were, are in some ways similar to

those when attempting to account for polymorphic functions as morphisms with-

out fixed domain and codomain. In each case the mathematical framework seems

ill-equipped to deal with them, being based on (monomorphic, non-escaping)

functions.

There is also a more direct link to polymorphism in continuation semantics. If

one does model continuations as functions, at least one should wish to do justice

to the parametricity of the answer type and explore its ramifications. Examples

161

of the latter are the existence or non-existence of the abort operator and control

delimiters and the issue of full abstraction without them. Felleisen and Sabry

show that in their model, control operators are necessary for 'full abstraction

[SF90].
The approach in this thesis could help the search for a better denotational

account inasmuch as it points out what to look for, namely self- adj ointness, and

what not (exponentials). One of the goals of the present approach was to give an

account of continuation semantics without answers, so to speak.

162

Bibliography

[ACS96] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisim-

ulations for the asynchronous pi-calculus. In Seventh International Con-

ference on Concurrency Theory (CONCUR '96), volume 1119 of Lecture

Notes in Computer Science. Springer Verlag, August 1996.

[App92] Andrew Appel. Compiling with Continuations. Cambridge University

Press, 1992.

[Bac781 John Backus. Can programming be liberated from the von Neumann

style? Comm. ACM, 8:613-641, 1978.

[BCL96] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and Chris

Stone. Safe-for-space threads in Standard ML. In Proceedings 2nd ACM

SIGPLAN Workshop on Continuations, number NS-96-13 in BRICS

Notes Series, December 1996.

[Bou97] Gerard Boudol. Pi-calculus in direct style. In ACM Symposium on

Principles of Programming Languages, 1997.

[Cr093] Roy Crole. Categories for Types. Cambridge University Press, 1993.

[Dan94] Olivier Danvy. Back to direct style. Science of Computer Programming,

22(3):183-195, 1994.

[DF921 Olivier Danvy and Andrzej Filinski. Representing control, a study of

the CPS transformation. Mathematical Structures in Computer Science,

2(4):361-391, December 1992.

[DH941 Olivier Danvy and John Hatcliff. A generic account of continuation-

passing styles. In ACM Symposium on Principles of Programming Lan-

guages, pages 458-471, 1994.

[DHM91] Bruce Duba, Robert Harper, and David MacQueen. Typing first-class

continuations in ML. In Proc. ACM Symp. Principles of Programming

Languages, pages 163-173, January 1991.

163

[Dij68] E. W. Dijkstra. Goto statement considered harmful. Communications

of the ACM, 11, 1968.

[DL92] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class

continuations. In ACM Conference on Lisp and Functional Program-

ming, pages 299-310, 1992.

[Fe191] Matthias Felleisen. On the expressive power of programming languages.

In Science of Computer Programming, volume 17, pages 35-75, 1991.

Preliminary version in: Proc. European Symposium on Programming,

Lecture Notes in Computer Science, 432. Springer-Verlag (1990), 134-

151.

[FF96] Matthias Felleisen and Daniel P. Friedman. The Seasoned Schemer. MIT

Press, 1996.

[FFKD86] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and

Bruce Duba. Reasoning with continuations. In Proceedings of the Sym-

posium on Logic in Computer Science, pages 131-141, Washington DC,

June 1986. IEEE Computer Society Press.

[FH88] Anthony Field and Peter Harrison. Functional Programming. Addison-

Wesley, 1988.

[Fil891 Andrzej Filinski. Declarative continuations: an investigation of duality

in programming language semantics. In D. H. Pitt et al., editors, Cat-

egory Theory and Computer Science, number 389 in Lecture Notes in

Computer Science, pages 224-249. Springer-Verlag, 1989.

[Fi192] Andrzej Filinski. Linear continuations. In Proceedings of the Nine-

teenth Annual ACM Symposium on Principles of Programming Lan-

guages, 1992.

[Fil94a] Andrzej Filinski. Recursion from iteration. Lisp and Symbolic Compu-

tation, 7(1), Jan 1994.

[Fi194b] Andrzej Filinski. Representing monads. In Proceedings of the 21st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, January 1994.

[Fi196] Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer

Science, Carnegie Mellon University, 1996.

164

[Fis721 Michael J. Fischer. Lambda-calculus schemata. In Proceedings ACM

Conference on Proving Assertions about Programs, pages 104-109, Los

Cruces, 1972. SIGPLAN Notices, 7(1), January 1972.

[Fis931 Michael J. Fischer. Lambda-calculus schemata. Lisp and Symbolic Com-

putation, 6(3/4):259-288, November 1993.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.

The essence of compiling with continuations. In Proc. SIGPLAN

'99 Conference on Programming Language Design and Implementation,

pages 237-247, June 1993.

[FT95] Michael Fourman and Hayo Thielecke. A proposed categorical seman-

tics for ML modules. In David Pitt et al., editor, Category Theory in

Computer Science, number 953 in LNCS. Springer Verlag, 1995.

[FWH92] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Es-

sentials of Programming Languages. MIT Press and McGraw-Hill, 1992.

[Gri901 Timothy G. Griffin. A formulae-as-types notion of control. In Confer-

ence record of the 17th ACM Symposium on Principles of Programming

Languages (POPL), pages 47-58, San Francisco, CA USA, 1990.

[Has951 Masahito Hasegawa. Decomposing typed lambda calculus into a cou-

ple of categorical programming languages. In David Pitt et al., editor,

Category Theory in Computer Science, number 953 in LNCS. Springer

Verlag, 1995.

Has97j Masahito Hasegawa. Continuation monoids. unpublished manuscript,

March 1997.

1HD951 John Hatcliff and Olivier Danvy. Thunks and the lambda-calculus. Tech-

nical Report Technical report 95/3, DIKU, Computer Science Depart-

ment, University of Copenhagen, February, 1995.

[HDM93] Robert Harper, Bruce Duba, and David MacQueen. Typing first-class

continuations in ML. Journal of Functional Programming, 3(4), October

1993.

[Hen87] Martin C. Henson. Elements of Functional Languages. Blackwell Scien-

tific Publications, Oxford, 1987.

165

[HFW86] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Ob-

taining coroutines with continuations. Journal of Computer Languages,

11(3/4):143-153, 1986.

[Hof94] Martin Hofmann. Sound and complete axiomatizations of call-by-value

control operators. Math. Struct. in Comp. Science, 1994.

[HS97] Martin Hofmann and Thomas Streicher. Continuation models are uni-

versal for lambda-mu-calculus. In Proc. LICS '97, 1997. (to appear).

[Ing6l] P. Z. Ingerman. Thunks: a way of compiling procedure statements with

some comments on procedure declarations. Comm. A. C. M., 4(1):55-58,

January 1961.

[Jac9l] Bart Jacobs. Categorical Type Theory. PhD thesis, University of Ni-

jmegen, 1991.

[Jac92] Bart Jacobs. Simply typed and untyped lambda calculus revisited. In

M.P. Fourman, P.T. Johnstone, and A.M. Pitts, editors, Applications of

Categories in Computer Science. Cambridge Univ. Press, 1992.

[KCF92] Ramma Kanneganti, Robert Cartwright, and Matthias Felleisen. SPCF:

its model, calculus, and computational power. In Proc. REX Workshop

on Semantics and Concurrency, LNCS. Springer-Verlag, 1992.

[Lai971 James Laird. Full abstraction for functional languages with control. In

Proc. LICS '97, 1997. (to appear).

[LD931 Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-

passing style transformation. In ACM Symposium on Principles of Pro-

gramming Languages, pages 124-136, 1993.

[LS86] J. Lambek and P. J. Scott. Introduction to higher-order categorical logic.

Cambridge University Press, 1986.

[Mac7l] Saunders Mac Lane. 	Categories for the Working Mathematician.

Springer Verlag, 1971.

[Mi191] Robin Milner. The polyadic 7r-calculus: A tutorial. LFCS Report ECS-

LFCS-91-180, LFCS, University of Edinburgh, October 1991.

[Mi1931 Robin Milner. Action structures for the ir-calculus. Technical Report

ECS—LFCS-93-264, LFCS, May 1993.

Mil941 Robin Milner. Pi-nets: a graphical form of pi-calculus. In European

Symposium on Programming, volume LNCS 788, pages 26-42. Springer-

Verlag, 1994.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In 4th

LICS conference. IEEE, 1989.

[MTH901 Robin Milner, Mads Tofte, and Robert Harper. The Defintion of Stan-

dard ML. MIT Press, 1990.

[Mur9l] Chet Murthy. An evaluation semantics for classical proofs. In Proc. 11th

IEEE Annual Symposium on Logic in Computer Science. IEEE Com-

puter Society Press, 1991.

[Mur92] Chet Murthy. A computational analysis of girard's translation and LC.

In IEEE Annual Symposium on Logic in Computer Science. IEEE Com-

puter Society Press, 1992.

[MW851 Albert R. Meyer and Mitchell Wand. Continuation semantics in typed

lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs,

number 193 in Lecture Notes in Computer Science, pages 219-224.

Springer-Verlag, 1985.

[NJ93] AT&T Bell Laboratories. Standard ML of New Jersey - Base Environ-

ment, 0.93 edition, February 1993.

[0ng96] C.-H. L. Ong. A semantics view of classical proofs: type-theoretic, cate-

gorical, denotational characterizations. In Proc. 11th IEEE Annual Sym-

posium on Logic in Computer Science, pages 230-241. IEEE Computer

Society Press, 1996.

[Par921 Michel Parigot.)-calculus: an algorithmic interpretation of classical

natural deduction. In Proceedings International Conference on Logic

Programming and Automated Deduction, number 624 in LNCS, pages

190-201,1992.

[Par95] Joachim Parrow. Interaction diagrams. Nordic Journal of Computing,

2:407-443, 1995.

Pau911 Lawrence C. Paulson. ML for the Working Programmer. Cambridge

University Press, 1991.

167

[P1o75] Gordon Plotkin. Call-by-name, call-by-value, and the A-calculus. Theo-

retical Computer Science, 1(2):125-159, 1975.

[Pow] 	John Power. Premonoidal categories as categories with algebraic struc-

ture. (submitted).

[PR971 John Power and Edmund Robinson. Premonoidal categories and notions

of computation. Mathematical Structures in Computer Science, 1997. to

appear.

1PS931 Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mo-

bile processes. In Logic in Computer Science, 1993. Full version in

Mathematical Structures in Computer Science, 1996.

[PS96] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile

processes. Mathematical Structures in Computer Science, 6(5):409-454,

1996.

[PT97] John Power and Hayo Thielecke. Environments, continuation semantics

and indexed categories. In Proceedings TACS'97, 1997.

(RBS] J.R.B. Cockett R.F. Blute and R.A.G. Seely. Categories for computation

in context and unified logic. (submitted).

[Re91] Jonathan Rees and William Clinger (editors). Revised report on the

algorithmic language scheme. ACM Lisp Pointers IV, July-September

1991.

[Ree92] Jonathan Rees. The scheme of things: The june 1992 meeting. ACM

Lisp Pointers, 5(4):40-45, 1992.

[Rey93] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic

Computation, 6(3/4):233-247, November 1993.

[RR88] Edmund Robinson and Guiseppe Rosolini. Categories of partial map.

Information and Computation, 79(2) :95-130; 1988.

[RS941 Niels Jakob Rehof and Morten Heine Sorensen. The A N calculus. In

M. Hagiya and J. Mitchell, editors, Theoretical Aspects of Computer

Software, volume 789 of Lecture Notes in Computer Science, pages 516-

542. Springer-Verlag, 1994.

Im

[Sab96} Amr Sabry. Note on axiomatizing the semantics of control operators.

Technical Report CIS-TR-96-03, University of Oregon, 1996.

[San94] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario.

Information and Computation, 111(1):120-153, may 1994.

[San95] Davide Sangiorgi. Lazy functions and mobile processes. Technical Report

RR-2515, INRIA-Sophia Antipolis, 1995.

[San971 Davide Sangiorgi. The name discipline of uniform receptiveness. In Proc.

ICALP'97, 1997.

[Sch86] David A. Schmidt. Denotational Semantics - A Methodology for Lan-

guage Development. Allyn and Bacon, 1986.

George Springer and Daniel P. Friedman. Scheme and the Art of Pro-

gramming. MIT Press, 1989.

Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II:

full abstraction for models of control. In M. Wand, editor, Lisp and

Functional Programming. ACM, 1990.

[Shi96] Olin Shivers. Continuations and threads: Expressing machine concur -

rency directly in advanced languages. In Proceedings 2nd ACM SIC-

PLAN Workshop on Continuations, number NS-96-13 in BRICS Notes

Series, December 1996.

[SS76] Guy Steele and Gerald Sussman. Lambda: The ultimate imperative.

Technical Report Al Memo 353, MIT, March 1976.

[Ste76] Guy Steele. LAMBDA: The ultimate declarative. Technical Report Al

Memo 379, MIT, November 1976.

[Ste77] Guy Steele. Debunking the "expensive procedure call" myth or, proce-

dure call implementations considered harmful or, lambda: The ultimate

goto. Report AT 'Memo 443, MIT, 1977.

[Ste78] Guy Steele. Rabbit: A compiler for Scheme. Technical Report AT TR

474, MIT, May 1978.

[SW74] Christopher Strachey and C. P. Wadsworth. Continuations: A mathe-

matical semantics for handling full jumps. Technical Monograph PRG-

11, Oxford University Computing Laboratory, January 1974.

169

[SW961 Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM SIG -

PLAN Notices, 31(6):13-24, June 1996.

LTen91I Robert D. Tennent. Semantics of Programming Languages. Prentice-Hall

International, 1991.

[Thi96a] Hayo Thielecke. Continuation passing style and self-adjointness. In

Proceedings 2nd ACM SIGPLAN Workshop on Continuations, number

NS-96-13 in BRICS Notes Series, December 1996.

[Thi96b] Hayo Thielecke. Continuation semantics, self-adjointness and the 7r-

calculus. Unpublished draft, March 1996.

[Thi97] Hayo Thielecke. Continuation semantics and self-adjointness. In Pro-

ceedings MFPS XIII, Electronic Notes in Theoretical Computer Science.

Elsevier, 1997.

[Tur95] David Turner. The Polymorphic Pi-Calculus: Theory and Implementa-

tion. PhD thesis, University of Edinburgh, 1995.

170

