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Linear and Affine Typing of Continuation-Passing Style

Joshua James Berdine

Abstract

In this dissertation we show that linear and affine type systems for continuation-passing style
support correct and tight refinements of standard continuation semantics. In particular, a wide
variety of control constructs admit typing disciplines which ensure linear or affine use of the
control context in their continuation semantics.

This refinement of standard continuation semantics using restricted types is an exploitation
of the stylized use of continuations many control behaviors exhibit. Continuations are the raw
material of control and can be used to explain a wide variety of control behaviors, including call-
ing/returning (procedures), raising/handling (exceptions), jumping/labeling (goto and labels),
process switching (coroutines), backtracking (amb andfail), and capturing/invoking first-class
continuations (call/cc, or callcc andthrow). However, in all but the last case, continuations
are not themselves intrinsic to the control construct, instead they are “behind the scenes,” imple-
menting the control construct. In other words, except for first-class continuations, each control
behavior is simply an idiom of continuation usage, and hence the continuations are used in a
stylized fashion. Linear or affine use of control contexts; by which we mean, roughly, that con-
trol contexts cannot be duplicated or, in the linear case, discarded; captures this stylized usage
in all the above-mentioned cases bar backtracking. We also investigate several cases where even
storable labels (plusgoto) admit restricted interpretations.
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Chapter 1

Introduction

1.1 Note to the Reader

Note that reading this chapter is important for the reader familiar with continuations and
continuation-passing style. The continuations literature is full of ambiguous or multiply defined
terms, and this chapter sets our point of view and definitions of terms which the later discus-
sion will assume. Utter confusion is quite possible later if, for instance, a different notion of
“continuation” than we present here is assumed.

It is assumed that the reader has some working understanding of continuations, continuation-
passing style, and continuation semantics. Thielecke’s logic column [Thi99a] provides a brief
and conceptual introduction to these topics. A more complete introduction is given in Friedman,
Wand, and Haynes’ text [FWH92, FWH01]. Reynolds focuses more on continuation semantics
than on continuation-passing style in his text [Rey98b], and considers a wider variety of instances
of the ideas. Steele and Sussman’s original reports [SS98, SS76, SS78, SS79, SS80, Ste76,
Ste77a, Ste77b, Ste78, Ste80] and Appel’s text [App92] are also rich in intuitions.

Knowing some basic type theory will help. Pierce’s text [Pie02] covers far more than we
will need. Some understanding of linear logic might help, though I have attempted to make no
assumptions in this regard, and our use of linear logic will be very specialized.

We first, in Section 1.2, dive hard into some continuation programming to get a feel for the
sort of control behavior we will later be concerned with restricting. This could be rough going
for those not used to the insanity that is continuation programming, but understanding it fully
is not a prerequisite for understanding later chapters, and it may still provide some appropriate
context. After that, in Section 1.3, we will much more calmly introduce the basic ideas of our
approach. Then, in Section 1.4, we place this work and head off potential confusions for ex-
perts. Hence, it is rather rougher going than other sections on readers not (yet) embroiled in
the world of continuations, who may be better off skimming this section and referring back as
necessary. Section 1.5 details a few motivations for this work, and Section 1.6 summarizes the
main conceptual contributions.

1.2 Using a Continuation Twice

Our focus will be on prohibiting certain control behaviors through the use of restricted type
systems for continuation-passing style. So to set the stage, we first give an example of the sort
of control behavior we will be concerned with. Consider the following call-by-valueλ-calculus
term:

λz. λx. x
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Figure 1.1return/cc andbacktrack? in Scheme

(define call/cc call-with-current-continuation)

(define return/cc
(lambda ()
(call/cc (lambda (k) k))))

(define backtrack?
(lambda (testee)
(let ((ratchet (list ’anything #f #t)))
(let ((f (testee)))
(begin
(set! ratchet (cdr ratchet))
(f (lambda (x) ’anything))
(car ratchet))))))

This is almost as trivial asλ-terms come: it returns a procedure which when called returns the
identity procedure. The continuation-passing style (CPS) version of this term is

λr. r λk. λz. kλh. λx. h x

While more explicit and verbose, this term is simple enough: it accepts a (toplevel) continuation
and invokes it with theCPSversion of the valueλz. λx. x, which accepts a (return) continuation,
k, and an argument, and invokesk with the CPS version of the valueλx. x, which accepts a
continuation,h, and argument,x, and returnsx to h.

But now consider theCPSterm:

λr. r λk. λz. kλh. λx. k x (1.1)

We have simply changed the invocation ofh to invokek (boxed), which completely changes the
meaning. In direct (that is, not continuation-passing) style, (1.1) is

return/cc
def= λz. call/ccλk. k

This procedure, instead of doing something as thoroughly benign as returning the identity pro-
cedure, returns the current continuation (wrapped into a procedure, ascall/cc does) of the site
from where it is called. So, calling this returned procedure will cause the computation to back-
track, and the call ofreturn/cc will return again. More concretely,return/cc in Scheme along
with Thielecke’sbacktrack?1 [Thi99b] are shown in Figure 1.1. Now, evaluating

(backtrack? return/cc)

yields

#t

Tracing how this transpires, the first interesting point is when(testee) is called. Sincetestee
is bound toreturn/cc, f is bound to a continuation which corresponds to

1Actually, we use a slight variant since the arguments applied to the procedures returned byreturn/cc
must be procedures, rather than anything at all. This is understandable when one observes that the type of
return/cc is A→ µB. B→ R.
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(lambda (v)
(let ((f v))
(begin
(set! ratchet (cdr ratchet))
(f (lambda (x) ’anything))
(car ratchet))))

Then the ratchet is advanced once, andf is called. This returns(lambda (x) ’anything) to the
continuation bound tof, at which point execution proceeds by evaluating

(let ((f (lambda (x) ’anything)))
(begin
(set! ratchet (cdr ratchet))
(f (lambda (x) ’anything))
(car ratchet)))

Then the ratchet is advanced once more,f is called,’anything is returned, and finally the ratchet
is observed.

The point to note here is thatreturn/cc is a procedure which, when called once, returns
(to its first call site) twice. In this way, it “uses” its return continuation twice. Backtracking
is accomplished by remembering the return continuation when returning the first time. Here,
the current continuation is remembered simply by returning it, although other mechanisms are
equally possible.

1.3 Constraining CPS: Linear Use of Control Contexts

What the example in the previous section demonstrates is that the power to expresscall/cc

which is present inCPSis considerable. Addingcall/cc to a programming language completely
changes the character of the potential control-flow which programs may exhibit. Hence, for
languages without constructs such ascall/cc, translating intoCPS causes a drastic amount of
information loss. We aim to explore the conceptual issues surrounding a more constrainedCPS

into which languages with less expressive control constructs can be translated without this loss
of information.

The starting point is the observation in the previous section (made previously by Thielecke
[Thi99b]) that the key to the extreme expressivenesscall/cc provides is the ability to invoke a
continuation more than once. So we want to constrainCPSin such a way that continuations cannot
be invoked more than once. EquippingCPSwith a linear type system and interpreting program-
ming languages such that continuations are used linearly—meaning, roughly, that continuations
are neither duplicated nor discarded—allows us to capture this intuition.

The basic idea can be illustrated by considering the type used to interpret untyped call-by-
valueλ-calculus. As Scott [Sco70] gave a typed explanation of untypedλ-calculus using the
recursive type

µD. D → D

a standardCPS interpretation uses the recursive type

µD. (D → R) → D → R (1.2)

whereR is a type of results.
This domain indicates that theCPSversion of a procedure first accepts a return continuation

(of typeD → R), then accepts an argument (of typeD), and then runs (produces a final result,
of type R). As the parameter of an ordinaryλ-calculus function, there are no constraints on
how the return continuation is used. But inλ-calculus, once a procedure returns, it will not
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return again until called again, and it must return. Hence, the use of continuations by procedure
calling/returning is very stylized, and can be captured by restricting the principal(·) → (·) (the
type of ordinary functions) in (1.2) to(·) ( (·) (the type of linear functions), yielding

µD. (D → R) ( D → R (1.3)

Due to the stylized use of continuations procedures make, this type is expressive enough
to interpret all ofλ-calculus. Furthermore, control behavior beyond that expressible with
procedures—such as that exhibited by backtracking programs likereturn/cc—can be inter-
preted with (1.2) but not with (1.3) since, as we later discuss,call/cc duplicates the current
continuation and is ruled out by this more restrictive typing. Indeed, this restricted typing disal-
lows all CPS terms which do not correspond to an actual program in the source language. More
concretely, recallreturn/cc in CPS:

λr. r λk. λz. k λh. λx. k x

and note the two occurrences ofk (boxed). Attempting to give this term type (1.3) fails since the
continuationk is duplicated: one copy is wrapped into a procedure and passed to another copy.2

While considering only procedures is sufficient to demonstrate the basic idea, there is an
important conceptual issue lurking which procedures alone do not reveal. Later (Chapter 4) we
will present a language with a simple exception handling mechanism. There is only one sort of
exceptions, and in direct style the language could be interpreted, following Moggi, using the type

µD. D → (D + E)

whereE is the type of exceptions. We give aCPS interpretation using the type

µD. (D → R) & (D → R) ( D → R

where& is the linear additive product, and we have takenE = D. The typing of& allows
one or the other of the components of a&-pair to be used, but not both. The point to note
at this time is that it is the&-pair of type(D → R) & (D → R), rather than a continuation of
type D → R, which is used linearly in this interpretation. These&-pairs can be thought of
as “semantic” continuations,3 since they represent an abstraction of the effect of the rest of the
computation. But instead of having two crucially different sorts of continuations around, we
reserve the term continuation for “destination of a jump” continuations, having typeT → R, and
use the term control context for “rest of the computation” continuations. This same distinction
is made in Standard ML of New Jersey where (in our terminology)callcc captures control
contexts, including the current exception handler, whilecapture captures only continuations,
which when invoked use the exception handler of the invoker. So in general, the restriction on
CPSwhich we want to make is not that continuations are used linearly, but that control contexts
are used linearly. Later, in Section 5.3, we will argue much more strongly that this distinction is
indispensable by demonstrating how restricting the use of continuations but not control contexts
fails to prohibitcall/cc.

1.4 Vantage Point and Plan of Attack

Having briefly summarized our problem and approach, we now step back and fill in our starting
point and perspective in some more detail and generality, and then describe the generic plan of

2This explanation ofwhy the typing fails is not entirely accurate, but will do for now; and this issue is
handled accurately later in Section 3.6.

3Additionally, (D → R) & (D → R) is isomorphic to(D + D) → R, which looks more like a type of
continuations.
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which the following chapters are instances. The primary characteristic of our vantage point is the
definitions ofcontinuation, control context, control environment, andcontrol state. While still
informal, the definitions we state identifywhich of the informal definitions in the literature we
are taking, and form the basis of all later conceptual discussion. Being explicit in this regard is
important because we will be performing analyses and making distinctions which are uncommon
and sensitive to differences which are usually immaterial.

1.4.1 Continuation semantics

Programs contain not only code which manipulates data, but also code which manipulates
control-flow, that is, determines which code will be executed. The latter sort of code is formed by
control constructs: conditional branches or procedures, for instance. When giving the semantics
of data manipulation code, some auxiliary information is needed: thedata context. Similarly,
when giving the semantics of control-flow manipulation code, acontrol contextis needed. For
instance, knowledge of the branches of a conditional is needed to determine what code should be
executed after evaluating the test, and the return address of a procedure is needed to determine
what code should be executed once the procedure returns.

Commonly, a data context consists of a (data)environmentand a (data)state, and similarly, a
control context consists of acontrol environmentand acontrol state. The control environment is
used to handle constituents of the control context which exhibit a binding-like behavior. For in-
stance, in a language with the ability to jump to labeled commands, determining which command
a label refers to is treated similarly to standard lexical binding of identifiers. Also, determining
the return address of a procedure call is handled much like dynamic identifier binding. On the
other hand, the control state is used for constituents whose behavior is less regular or predictable.
For example, in a language with coroutines, keeping track of how far each coroutine has executed
is handled in a stateful manner.

It is not always be immediately clear what the control context should contain. One helpful,
we find, way to think about it is that the control context contains those resources which govern
or enable control flow. But this is admittedly unacceptably vague, and we will return to this point
in Chapter 12.

Continuations are the raw material of control. Hence, control contexts are generally one
or more continuations, combined in various ways, depending on the language and sort of code
under consideration. Acontinuationconsists of a piece of code together with the portion of the
code’s (data and control) context which is known when the continuation is constructed: (part of)
the data environment, and (part of) the control environment; and is parameterized by the portion
of the code’s context which is unknown when the continuation is constructed: (part of) the data
environment, (part of) the control environment, and the data and control states.4

Once constructed, the only operation on a continuation is toinvokeit by supplying arguments
and then executing its code. So intuitively, a continuation is the destination of a “jump with
arguments.” Crucially, after arguments have been passed to a continuation, the entire context (data
and control) of the continuation’s code is at hand, and so there is enough information to execute
all the way to “the end.” Hence, invoking a continuation causes the remaining computation to be
performed in its entirety.

An effectively equivalent but specific and highly syntactic characterization of continuations
as “evaluation contexts” is developed in [Fel87]. A more implementation-oriented view of con-
tinuations can also be taken, but there is a potential point of confusion.5

4Depending on the setting, there is some freedom to choose whether a piece of context is kept internal
to, or passed as an argument to, a continuation. For instance, delaying the construction of a continuation
may allow a piece of context to be kept internally rather than be passed as an argument. An example of
this appears in Chapter 3, and this flexibility is used in an entirely different fashion in Chapter 5.

5In continuation-based compilation [App92, KKR+86, Ste78], a continuation is commonly repre-
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The self-contained nature of continuations, and their extremely narrow interface also allows a
very abstract view to be taken. Type-theoretically, we can define a continuation type constructor
which, for any typeT, forms the type

¬T

of T-accepting continuations. We could then provide terms to construct and invoke continuations
of these types. This line of development is taken in [DHM91, Thi97] and while we view this as
the conceptually correct abstract path, in order to facilitate more direct reuse of existing linear
logic and typing work, we use a functional representation of the type of continuations:

¬T
def= T → R

Here, the parameter-passing aspect of continuations is modeled by the ordinary, intuitionistic,
function type(·) → (·); and so ordinaryλ-abstraction and -application can be used to construct
and invoke continuations. Treating the type of resultsR for the return type of continuations as
if abstract (discussed below), is intended to capture how, once invoked, a continuation runs all
the way to “the end,” that is, invoking a continuation does not return an intermediate result but
instead produces the final result, or answer, of the entire computation.

Results, that is, elements ofR, represent the effect of executing a program as viewed from
outside the program. So for a programming language with an output facility, the result type could
be represented as a (possibly infinite) sequence of the output values (possibly terminated with an
indicator of program termination) and would have an operation to add a value to a sequence. The
result type should be abstract since programs are not directly privy to their surroundings’ view
of their actions, among other reasons. If no operations on the result type are needed, then a free
type identifier, or a type with no elements, can be used. Intuitively, the sense of abstraction we
mean here is that the result type is treated uniformly: a computation cannot branch on, or even
freely produce, values of result type.

Note that since we treat the result type abstractly, we do not want to form closed terms of
typeR, and so a program must be provided with a means of producing a result. Almost univer-
sally, this is accomplished by parameterizing programs with atoplevel(or initial ) continuation,
which the program invokes to terminate. This continuation contains operating system, say, code
in which R is concrete. So in the output example above, noR-operation to indicate program
termination is needed, since when a program terminates it will invoke its toplevel continuation,
which can manipulate the representation ofR directly. In other words, the toplevel continuation
is theR-operation for termination.

A continuation semanticsof a programming language is a semantics where the meaning of
each piece of code maps its control context to the meaning of the whole computation. Hence,
the control context is an abstraction of the effect of executing “the rest of the computation.” For
many languages, the control context can be uniformly represented as a continuation, so the two
are often conflated and “continuation semantics” is named as it is. Some authors also prefer
to define the term “continuation” to mean what we have termed control context. However, we
will consider some languages where the control context is represented by several continuations,
and so it is necessary to distinguish between continuations and control contexts in general. In

sented as a particular sort of closure, and invoking a continuation is effected by setting up the arguments
in the machine registers and then jumping to the code referenced by the closure. An absolutely crucial
point, however, is that continuations are viewed “deeply,” as in the difference between deep and shallow
copying of linked data structures. This means that if an identifier references a continuation closure which
references another continuation closure (as part of the control environment, for instance), and so on, then
the continuation denoted by the identifier is (represented by) the entire list of continuation closures, not
just the first one. This may seem pedantic, but the linear type system we will present will be used to en-
sure properties such as “continuations are not copied,” and in doing so it takes the deep view. To facilitate
handling pieces of control context shallowly, we use delimited continuations, see Chapter 5.
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particular, we will consider many cases in which the continuations do not represent an abstraction
of the effect of executing “the rest of the computation.”

Often, a continuation semantics takes the form of atransformation(or translation or compila-
tion) from the programming language under study, called thesourcelanguage, to an appropriate
semantic metalanguage (or intermediate language) with well-understood meaning (or implemen-
tation), called thetarget language. Such acontinuation-passing style(CPS) transformation makes
all transfers of control explicit and uniform using continuations. The range of aCPStransforma-
tion, as a language, is sometimes referred to simply asCPS.

1.4.2 Refining with linearity

The usual typedλ-calculus is the standard choice for the target language of aCPStransformation.
The range of the transformation will inhabit certain target language types, and arefinedsemantics
can be given by using more restrictive, but still sufficiently expressive, versions of the exercised
target types. For a typed source language, the exercised types will beCPSversions of the source
language types, while untyped source languages are treated as if universally typed. So, even
if the control behavior of the source language (the patterns of control-flow exhibited by source
programs) is independent of typing issues, analysis of the control behavior can use types in the
target language.

Aiming to define restricted target types, we use aλ-calculus target language which includes
both ordinary (intuitionistic) and restricted (linear or affine) function types. Alinear function,
very roughly, can neither duplicate nor discard its parameter, while anaffine function, very
roughly, cannot duplicate, but can discard, its parameter [Gir87]. Unfortunately, there is some
divergence in the literature on the terminology used to describe where linearity resides. Some
authors refer to the parameter of a function of typeA ( B as being linear (respectively, affine),
rather than the function itself. We are following Girard’s original usage: a function of type
A ( B is a linear (respectively, affine) function, and so the parameter isusedlinearly (respec-
tively, affinely). In the context of semantics or typing, we often use the termsrefinedor restricted
to mean either linear or affine.

This choice of target language enables us to restrict to linear/affine use of control contexts by
strengthening key intuitionistic types of the standard semantics to linear/affine analogues. The
chief effect of this restriction is the resulting inability to invoke a continuation multiple times, an
ability which is crucial to the expressive power of unconstrained continuations [RT99, Thi99b,
Thi00]. As mentioned above, this refinement of types, restricting the use of control contexts, is
an exploitation of the stylized use of continuations that many control behaviors exhibit.

1.5 Motivations

While we do not intend to offer a thorough motivation of constraining control behavior by linearly
typing CPS, let alone justifying why one might care aboutCPSor continuation semantics to begin
with, we will detail some surface scratches.

From the beginning, it has been recognized thatCPS is more expressive in terms of control
behavior than most source languages. From this recognition there has been a thread in the lit-
erature presenting ideas about continuation usage, usually under the tag-line “one continuation
[identifier] is enough” [CHO99, Dan92, Dan94, Dan00, DDP00, DL92, DP95, FSDF93, SF93].
Formalization of such ideas about continuation usage, some old and some new, with restricted
type systems is a central aspect of this work. This focus on static typing sets our approach
apart from earlier work on constraining the power of continuations [BWD96, FH85], where the
constraints generally take the form of assertions, checked at runtime, which ensure a program’s
dynamic behavior obeys certain invariants. Relying on a static type system yields many of the
usual advantages (static checkability, unnecessity of runtime checks, etc.) and disadvantages
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(loss of expressiveness, etc.) of static typing. Also, since “used linearly” and “invoked exactly
once” are not the same, as discussed in Section 3.4, the results from prior work in this vein do
not immediately carry over.

But why formalize? And why with type systems? There may be an argument that formaliza-
tion is self-motivating, but we do not want to appeal to it.

1.5.1 Conceptual subtleties

The first reason is a traditional one: formalization can help us identify and understand the concep-
tual subtleties. In particular, if control constructs use continuations in a stylized, restricted, way,
then we may hope to better understand these constructs by studying the typing properties of their
semantics. An example of this is contained in the observation that first-class continuations break
linear typing, while exceptions do not. Another example is the importance of the distinction be-
tween the notions of “control context” and “continuation” we will argue for in Chapter 5. And,
as in Thielecke’s [Thi02], we will also see that the semantics of binding is immensely important
to the semantics of control; in our case, to the admissibility of refined interpretations.

1.5.2 Mechanized reasoning

Recently a more pragmatic motivation for formalization has arisen, and one which motivates
formalizing ideas with type systems. Increasing degrees of reasoning about programs are being
mechanized. For instance, witness the trend: C [KR88], ML [MTHM97], Proof Carrying Code
[Nec97], and beyond [App01]. In order to support this, the properties to be reasoned about must
be expressed in a language which tools can handle, instead of the informal and highly undecid-
able language of mathematical discourse. For type preserving or certifying compilers (for in-
stance [MWCG99, NL98, TMC+96]); or other automated (not necessarily automatic) checkers,
analyzers, or verifiers; knowing a property holds, even with a proof, is not enough: the property
must be captured by the tool’s formalism. If an inexpressible property is taken advantage of, then
at some point the tool will require reasoning outside its formal system, causing problems. Hence
more formality is needed.

A chief goal of this study of restrictingCPS with linear or affine type systems is to provide
some background and foundation for this sort of formalization of useful properties. One instance
we present is a precise characterization of the range of theCPStransformation using an affine type
system. Here, by precise we mean that all terms in the target language come from some term in
the source language. This provides a sort of completeness, or fullness, result (no junk) which,
while not the most theoretically desirable due to a heavy restriction on types and its syntactic
nature, ought to be good enough to reduce loss of precision in compiler analyses. But the point is
that the junk-free target language is defined with a type system; that is, in a way quite accessible
to tools.

As an example of a property this formalization may allow to be exploited, in a certifying
compiler which wishes to stack-allocate activation records, the type systems of the intermediate
languages must be tight enough to exclude all programs which violate this discipline. Unlike in
a standard compiler, it is not sufficient to simply “know” that none of the intermediate language
programs which actually come from earlier stages of the compiler will exhibit such behavior: in
a certifying compiler the stage which makes this assumption will generate code which fails to
typecheck, and hence no proof of the generated code can be produced.

1.5.3 Loss of precision

In a way, this formalization for mechanized reasoning is an instance of the general problem of loss
of precision when translating toCPS. For instance, consider a compiler or other program analysis
or verification system. HereCPS can be very useful since it provides a uniform mechanism
for all control flow and some language features such as higher-order procedures become much
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more manageable. This simplification comes at a price in precision, however, since the standard,
unrestricted,CPS is usually (much) more expressive than the fragment needed to interpret the
source language in question. Often this loss of precision is unacceptable. Use of a linear or affine
type system forCPSrestricts the target language, reducing its expressiveness and, in turn, the loss
of precision.

In fact, in recent work, Zdancewic and Myers use a nearly identical system to prove secure
information flow in a higher-order, imperative language [ZM02]. The constrained use of contin-
uations is crucial to their proof, providing an instance where linear continuation usage recovers
enough precision.

1.6 Contributions

The path we take in exploring restricted use of control contexts is driven primarily by the char-
acter of the semantics involved, rather than by established language features or constructs. We
consider various control constructs in order to have the simplest possible languages with which
to think about the semantics. A result of this is that some of the languages we consider are rather
odd, but we end with familiar—if drastically simplified—control constructs. It also cannot be
denied that our choices of source languages have been influenced by our motivations in the realm
of mechanized reasoning for Proof Carrying Code, Typed Assembly Language, etc.

As a result of our focus on form of semantics over form of language, we view the primary
contribution of this work to be not the restricted treatments of particular language constructs or
features, but a collection of ideas on how to treat semantics of various forms. We have aimed for
sufficiently broad coverage of semantic forms to allow others to treat the control constructs of
their interest by analogy with a language with similar semantic form.

We now briefly summarize in anticipation by giving the type (or domain) which drives each
interpretation, and highlight the concepts and pitfalls associated with each.

procedures, simply-typed

S→ T
def= (T → R)︸ ︷︷ ︸

return
continuation

( S→ R︸ ︷︷ ︸
call

continuation

procedures, untyped
D

def= µD. (D → R)︸ ︷︷ ︸
return

continuation

( D → R︸ ︷︷ ︸
call

continuation

The semantics for the simply-typed and untyped incarnations of procedures are very sim-
ilar: in both cases the key is a type of continuation transformers which forces the return
continuation to be used linearly. This restriction exactly captures the stylized use inherent
in the procedure call and return mechanism: Once a procedure returns to a call site, that
site will not be returned to again; and once a procedure is called, it will return (or diverge).

Recursion in the untyped case introduces two potential pitfalls: Do recursive calls
result in a continuation being invoked more than once? And: Does divergence lead to
ignoring a continuation, requiring affine typing instead of linear? In short: No. This is our
first encounter with the fact that, for continuations, “used linearly” and “invoked exactly
once” have wildly different meanings.

In both cases, we prove soundness. The transformation is standard in both cases and
so computational adequacy is not a question. We consider completeness for the untyped
case, which generalizes to the simply-typed case.
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exceptions
D

def= µD. (D → R)︸ ︷︷ ︸
return

continuation

& (D → R)︸ ︷︷ ︸
handler

continuation

( D → R︸ ︷︷ ︸
call

continuation

This semantics is the first where the notions of control context and continuation do not
coincide. Here the control context is an additive pair of the return and handler continuations
rather than just the return continuation. Again, the restricted typing exactly captures the
stylization inherent in the source language: When a procedure is called, it may either return
normally or raise an exception, but not both.

As with procedures, we consider soundness and completeness, while adequacy would
be a slight extension of existing work.

procedures, delimited continuation interpretation

D
def= µD. (D → (D → R)︸ ︷︷ ︸

toplevel continuation

( R)

︸ ︷︷ ︸
return

delimited continuation

( D → (D → R)︸ ︷︷ ︸
toplevel continuation

( R

︸ ︷︷ ︸
call

delimited continuation

This semantics makes the implicit dependence of a continuation on the toplevel continu-
ation explicit in the types. This is accomplished by using delimited continuations, which
take a toplevel continuation as an argument rather than depend on it through the environ-
ment. This distinction is not particularly revealing in the case of procedures, but we rely
on it crucially in later interpretations.

first-class continuations

D
def= µD. (D → (D → R) ( R)︸ ︷︷ ︸

return
delimited continuation

→ D → (D → R) ( R︸ ︷︷ ︸
call

delimited continuation

Using this type, we interpretcall/cc andabort while using continuations linearly, though
use of delimited continuations is unrestricted. This semantics serves to drive home the
importance of the distinction between control contexts and continuations. Since the return
delimited continuation is part of the control context, and its use is unrestricted, we can
interpret full first-class control. So there is a potential pitfall where, unless the entire
control context is correctly identified and restricted, linear typing need not be a restriction
at all.

simple command language
(S → R)︸ ︷︷ ︸
current

continuation

( S → R

In preparation for treating more interesting command languages, we show how a simple
command language with essentially no control structure admits a linear interpretation using
this semantics. In this case we prove soundness and adequacy.
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forward jumps
& (S → R)︸ ︷︷ ︸

labeled
continuations

& (S → R)︸ ︷︷ ︸
current

continuation

( S → R

Technically, this semantics is just a mild extension of that used for exceptions, which
roughly corresponds to having multiple sorts of exceptions. It may not be apparent from the
type, but the primary point of this semantics is to treat nested scopes binding continuations
which are passed downward only. One point to note is that the additive tuple of labeled
continuations is a sort of environment, and would generally be made implicit. But to give
a linear interpretation the labeled continuations and current continuation must be treated
symmetrically, forcing an explicit environment semantics. As usual, we prove soundness
and adequacy.

backward jumps
(S → R)︸ ︷︷ ︸
labeled

continuation

& (S → R)︸ ︷︷ ︸
current

continuation

( S → R

While this type is not very interesting, it suffices to allow investigation of explicit recur-
sion rather than the recursion implicit in the self-application of untyped procedures. The
semantic difference is that the former naturally leads to recursively defined continuations,
while the latter involves only recursive continuation transformers. But recursive continu-
ations break linear typing, so we must partially specify the result type and instead define
recursive delimited continuations (which here are just continuation transformers). But care
must be taken to choose the control context correctly, which leads to taking a fixed-point
of a term of type

((S → R) ( S → R) ( (S → R) ( S → R

Here it is not immediately obvious that the principal( must not be an→. Addition-
ally, taking fixed-points at this type requires a fixed-point combinator with nonstandard
type. Finally, this semantics requires an affine, rather than linear, type system. We prove
soundness and adequacy.

coroutines
K︸︷︷︸

running
delimited

continuation

( K

where
K

def= µK.S → K︸︷︷︸
blocked

delimited
continuation

( (S → K ( R)︸ ︷︷ ︸
shared continuation

( R

This semantics is the first in which (delimited) continuations are upward, that is, arguments
to other (delimited) continuations. For this reason,K must be recursive. In this semantics
the upward (delimited) continuations play the role of a control store, interpreting (two)
coroutines. The use of delimited continuations here is crucial. Since there are two corou-
tines, each with its control state represented by a continuation, if undelimited continuations
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were used, then the toplevel continuation would have to be shared between them, which
linear typing is not happy with. Instead we use delimited continuations which allow us to
separate out the toplevel continuation and pass it back and forth between the coroutines
as they are active, avoiding the need to actually share it. This semantics is affine since
the control state of one coroutine must be discarded when the other terminates. We prove
soundness and adequacy.

stored global labels, and dynamically-assigned labels

(N → K)︸ ︷︷ ︸
label

environment

& K︸︷︷︸
current

continuation

( K

We use this semantics for two interpretations. The main issue in the first is how to treat
computed jumps. In previous semantics, where the control environment was represented
with an additive tuple, computed jumps could not be expressed since projections from such
tuples rely on compile-time substitution. So instead we use an intuitionistic function type
with equivalent typing restrictions.

In the second, the goal is to come as close to providing a control store with a semantics
which manipulates a control environment. We do this by considering a language with
nested blocks of dynamically-assigned (or fluidly-bound) labels, which is very similar to a
stripped-down multiple-exceptions mechanism.

stored commands
K︸︷︷︸

current
continuation

( K

where
K

def= µK. S︸︷︷︸
data
store

→ (N → K ( K)︸ ︷︷ ︸
code
store

→ R

This semantics has a store component involving continuations, but the key is that it is
commands, that is, continuation transformers, rather than continuations, which are stored.
The significance of the distinction is that commands are just inert data, while continuations
encode control points, and hence a code store is not part of the control context and need
not be used in a restricted fashion.

mutable labels
K︸︷︷︸

current
continuation

( K

where
K

def= µK. S︸︷︷︸
data
store

→ ⊗n K︸ ︷︷ ︸
control
store

( R

Finally, we consider a semantics similar to that used for coroutines but with a more general
control store. The point of considering this semantics is primarily to illustrate the difficulty
a source language has of meeting its constraints. As a result, while the source language
of mutable labels can express coroutines, it is unsafe and all the operations on the control
store must move, and never copy, the stored labels.
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Chapter 2

Procedures, Simply-Typed

In this chapter we expand the illustration of the central idea of this work presented in Chapter 1 by
fleshing out the treatment of simply-typedλ-calculus and arguing that it is sound (typechecks).
We present the basic details and intuitions of the linear type system of the target language, and
of theCPStransformation into it. The conceptual core of the chapter, however, is the explanation
of how linearity corresponds to the stylized usage of continuations implicit in the procedure call
and return mechanism.

Chapter 3 generalizes this treatment to untypedλ-calculus, however, since doing so requires
the additional complication of recursion and recursive types, we first introduce the ideas in the
simply-typed setting. Also, explicitly describing the correspondence between types in the source
and target languages may be helpful to some readers.

2.1 Source Language

The source language is simply-typed, left-to-right, call-by-valueλ-calculus. This language is
entirely standard and so we only briefly summarize the formulation of its syntax and type system
we use. (Additionally, various uninterestingλ-calculus technicalities of this language carry over
from the definition of the target language given in Appendix A.)

2.1.1 Syntax

The syntax of terms is given by the grammar

M ::= terms

| x identifier

| λx. M abstraction

| M M application

Convention:The body of an abstraction extends as far to the right as possible, soλx. M N parses
to λx. (M N) rather than(λx. M) N. Application is left-associative, soM N O parses to(M N) O
rather thanM (N O).

As an example, consider the term:1(
λdouble. double (λy. y− 12) 66

) (
λ f . λx. f ( f x)

)
(2.1)

1We use an integer base type in the example, despite not treating it formally.
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which first bindsdouble to the doubling function and then calls it with the decrement-by-12
function and66. Oncedouble is called, the decrement-by-12 function is called with66. Then54
is returned to the inner call site, at which point the decrement-by-12 function is called again, but
now with 54. Finally, 42 is returned to the outer call site, and again returned to the original site
from whichdouble was called.

2.1.2 Type system

The syntax of types is given by the grammar

T ::= types

| N base type

| T → T procedure type

Convention: The procedure type constructor is right-associative, soS→ T → U parses to
S→ (T → U) rather than(S→ T) → U .

At this point we include a base type simply to keep the type system from collapsing to a
degenerate case, and so do not provide any base values or operations.

The judgmentΓ ` M : T states thatM is a well-typed term of typeT in contextΓ (which is
a finite set of typings such that no identifier is the subject of more than one typing)2:

[ID] Γ , x : T ` x : T [ABS]
Γ , x : S` M : T

Γ ` λx. M : S→ T
[APP]

Γ ` M : S→ T Γ ` N : S

Γ ` M N : T

2.2 Target Language(= R + (·) → (·) + (·) ( (·))

The target language is a formulation of linear type theory based onDILL [BP97], which is a
presentation of linear typing that allows a pleasantly direct description of(·) → (·) (which does
not rely on decomposition through!(·)). To interpret simply-typedλ-calculus we do not need
product types, recursive types, etc., and so defer their introduction until they are needed. (We
present the entire target language, and various technicalities, in Appendix A.)

2.2.1 Syntax

The syntax of terms is given by the grammar

M ::= terms

| x identifier

| λx. M (ordinary, intuitionistic) abstraction

| δx. M restricted (linear) abstraction

| M M (ordinary, intuitionistic) application

| M M restricted (linear) application

Convention:Restricted abstraction and restricted application follow conventions similar to ab-
straction and application.

2See Section A.3 for details on contexts, typings, and subjects.
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In Chapter 3 we will present this language’s equational theory, but for now an informal de-
scription of the intended semantics suffices. Ordinary abstraction and application is the usual,
intuitionistic, call-by-name one. Linear abstraction and application is operationally equivalent to
the intuitionistic version, the difference is in typing only. We useδ to form linear abstractions
since the linear abstractions we shall use are commonly continuation transformers, which are
effectively the difference, ordelta, between two continuations.3

2.2.2 Type system

The syntax of types is given by the grammar

A, P ::= types

| N base type

| R result (answer) type

| A→ A (ordinary, intuitionistic) function type

| P ( P restricted (linear) function type

Convention:The restricted function type constructor follows the same conventions, and has the
same precedence, as the ordinary function type constructor.

The reason we use two type metaidentifiers,A andP, will be explained in Chapter 3. The
distinction has to do with recursion and is irrelevant for the moment since we have not yet intro-
duced recursive types.

The judgmentΓ ; ∆ ` M : A states thatM is a well-typed term of typeA in contextΓ ; ∆:

[ID] Γ , x : A ; − ` x : A [RID] Γ ; x : P ` x : P

[ABS]
Γ , x : A ; ∆ ` M : B

Γ ; ∆ ` λx. M : A→ B
[APP]

Γ ; ∆ ` M : A→ B Γ ; − ` N : A

Γ ; ∆ ` M N : B

[RABS]
Γ ; ∆ , x : P ` M : Q

Γ ; ∆ ` δx. M : P ( Q
[RAPP]

Γ ; ∆ ` M : P ( Q Γ ; ∆′ ` N : P

Γ ; ∆ , ∆′ ` M N : Q

The abstraction rules,[ABS] and [RABS], show that typings are added to whichever zone is
appropriate to the abstraction: intuitionistic zone for intuitionistic abstraction and linear zone
for linear abstraction. The most significant restriction of the system is made by[APP]: the argu-
ment to an intuitionistic function cannot depend on any controlled resources (identifiers in the
linear zone). Since an intuitionistic function’s use of its parameter is unconstrained, the func-
tion may duplicate (or discard) its parameter; and if the argument were to contain a controlled
resource, then duplicating (discarding) the parameter would result in duplicating (discarding) the
controlled resource as well. In[RAPP], the restriction that the operator and operand depend on
disjoint controlled resources is also crucial to prohibiting duplication. Finally,[ID] requires the
linear zone to be empty and[RID] requires the linear zone to be a singleton; which is essential to
prevent discarding of controlled resources.

Taken together, these restrictions preclude Contraction and Weakening in the linear zone,
meaning that

3Although the technical definition differs, conceptually this notion of difference is similar to that in
[MQ94], so this slight overloading of the term “difference” seems justified.
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[RCONT]
Γ ; ∆ , x : A , y : A ` M : B

Γ ; ∆ , x : A ` M[y 7→ x] : B
[RWEAK]

Γ ; ∆ ` M : B

Γ ; ∆ , x : A ` M : B

arenotadmissible rules. On the other hand, Contraction and Weakening in the intuitionistic zone

[CONT]
Γ , x : A , y : A ; ∆ ` M : B

Γ , x : A ; ∆ ` M[y 7→ x] : B
[WEAK]

Γ ; ∆ ` M : B

Γ , x : A ; ∆ ` M : B

are built into the system and we will often implicitly contract or weaken intuitionistic zones.
Also, note that since contexts are built from sets (which are unordered), the Exchange rules

[EXCH]
Γ , y : B , x : A , Γ′ ; ∆ ` M : C

Γ , x : A , y : B , Γ′ ; ∆ ` M : C
[REXCH]

Γ ; ∆ , y : B , x : A , ∆′ ` M : C

Γ ; ∆ , x : A , y : B , ∆′ ` M : C

are built into the system.

2.3 RefinedCPS Transformation

TheCPStransformation is Fischer’s [Fis93] continuation-first transformation cast in terms of the
linear target language. As expected, the interpretation revolves around the treatment of proce-
dures. In this case, the control context of each source term is a continuation which represents
the computation which will occur once the term’s value has been computed. A procedure may
be called from many different sites in the code (for instance, the two call sites off in (2.1)),
and so its body may be executed in the context of different continuations, potentially one for
each call site. This is significant since it means that a procedure’sreturn continuation, the con-
tinuation which should be invoked once the procedure’s body has been executed, is unknown at
CPS transformation-time.4 Hence, the interpretation of a procedure is parameterized by its return
continuation.

From adirect style(DS), as opposed toCPS, point of view, the control context of a procedure
call is commonly represented as a call stack referenced by a return address.5 Implicit in the pro-
cedure call mechanism is the fact that knowledge of the return address is transmitted from the
caller to the callee through the store. That is, inDS the control context is passed statefully, and so
CPS is simply making this information-flow visible at the level of types.

More formally, the transformation of types [MW85], shown in Figure 2.1, indicates that the
base types in the source and target languages are essentially identical

N
def= N

and that source procedures are interpreted bycontinuation transformers6

S→ T
def= (T → R)︸ ︷︷ ︸

return
continuation

( S→ R︸ ︷︷ ︸
call

continuation

4Duplicating code would allow this continuation to be determined, but this technique is unrealistic and
does not work in the presence of recursion.

5Taking the implementation-oriented view of a continuation as a list of continuation closures, if this
list is stack-allocated, then the traditional call stack reemerges [Dan00].

6Several types isomorphic to this are also standard and discussed in Section 3.7.
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which map continuations to continuations. TheCPS version of a procedure first accepts a re-
turn continuation. After the return continuation, the argument proper is accepted and execution
proceeds. So we refer to the continuation resulting from parameterizing a procedure with its
return continuation as thecall continuation. When the value to be returned has been computed,
the return continuation is invoked with it, at which point the computation represented by the re-
turn continuation will occur. SoCPSdecomposes the procedure call mechanism into two jumps
with arguments: one from the caller to the callee for the call, passing the argument; and one
from the callee to the caller for the return, passing the return value. Further discussion of this
decomposition can be found in [Thi99a].

TheCPStransformation proper maps a source judgment

Γ ` M : T

to a target judgment
Γ ; − ` M : (T → R) ( R

using the transformation of types discussed above, the transformation of contexts given in Fig-
ure 2.1 which simply transforms all the types in the context, and the transformation of terms
discussed below.

As indicated above, terms of typeT are interpreted with the type(T → R) ( R, essentially
treating them as a sort of thunk:T-returning parameterless procedures. That is, if a unit type
1 was added to the source language, the type ofT-returning parameterless procedures would
be1 → T, and theCPSversion of this would then be(T → R) ( 1 → R, which is isomorphic
to (T → R) ( R. This interpretation is somewhat roundabout and leads to many “adminis-
trative” redexes [Plo75]; and there exist more direct and refined “compacting” transformations
[DF92, HL93, SF93]. However, the other transformations are more complicated, and further-
more, conducting our analysis on such a transformation would likely necessitate a multilevel
type system in the target language. Issues of administrative redexes are orthogonal to our analy-
sis and the use of a multilevel type system forCPShas been investigated elsewhere [PP00, PY01],
so we prefer simple, if somewhat indirect, transformations.

Concretely, the transformation of terms is shown in Figure 2.1. TheCPStransformation of an
identifier

x
def= δk. k x

being a value, accepts the return continuation and immediately passes it theCPS version of the
identifier, which is simply the identifier itself since we have a substitution-based call-by-value
semantics. That is, since the semantics is substitution-based, identifiers are used only to direct
substitution, and since the semantics of the source is call-by-value, onlyCPSvalues will be sub-
stituted for (intuitionistic) identifiers.

TheCPStransformation of an abstraction

λx. M
def= δk. kδh. λx. M h

also a value, accepts the return continuation and immediately passes it theCPS version of the
abstraction. The immediacy of this invocation corresponds to the fact that evaluating a value is
trivial. This invocation effects the return jump in the decomposition of the procedure call mech-
anism. TheCPSversion of an abstraction first accepts the return continuationh, yielding another
continuation. This is the call continuation, which effects the call jump in the decomposition of
the procedure call mechanism when invoked with the argumentx. The bodyM is then executed
with the return continuationh: M h.

Finally, the transformation of an application

M N
def= δk. M λm. N λn. m k n m /∈ fi(N)
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Figure 2.1RefinedCPSof Simply-Typedλ-calculus

Types

N
def= N

S→ T
def= (T → R)︸ ︷︷ ︸

return

( S→ R︸ ︷︷ ︸
call

Contexts

x1 : T1 , . . . , xn : Tn
def= x1 : T1 , . . . , xn : Tn (n≥ 0)

Terms

Γ ` M : T transforms to Γ ; − ` M : (T → R) ( R

x
def= δk. k x

λx. M
def= δk. kδh. λx. M h

M N
def= δk. M λm. N λn. m k n m /∈ fi(N)

Programs

− ` M : N transforms to − ; − ` xMy : (N → R) ( R

xMy
def= M

accepts the return continuationk and then executesM with continuationλm. N λn. m k n, which,
when invoked with the valuem computed byM, executesN with continuationλn. m k n, which,
when invoked with the valuen computed byN, applies the operatorm to its return continuation
k, yielding the call continuationm k which is then invoked with the argumentn.

Once theCPS transformation has been defined, the semantics of closed terms of base type,
that is, programs, is trivial (although we have not included any syntax to form them). As usual,
we interpret source programs by results parameterized by a toplevel continuation:

(N → R)︸ ︷︷ ︸
toplevel

continuation

( R

The semantics is shown in Figure 2.1. The reason for stating this semantics is that it makes clear
that programs are not self-contained but instead depend on the operating system, say, to provide
them with a way to terminate by jumping back into the operating system with an argument.

2.4 Soundness

We now argue that the interpretation presented in the previous section is sound, meaning that the
transformation obeys the stated typing constraints.

Proposition 1 (Soundness) 1. For any source term M, ifΓ ` M : T, then

Γ ; − ` M : (T → R) ( R
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2. For any source program M, if− ` M : N, then

− ; − ` xMy : (N → R) ( R

The key to the soundness of the linear typing is the fact that the transformation never attempts
to form aCPS value or transformed term which depends on a continuation. In other words, the
linear zone of the context of anyCPS value or transformed term will be empty. Given this, the
linearity constraints of the application rules are immediately satisfied since, in the types used
by the transformation, the arguments of intuitionistic functions areCPSvalues, as are the linear
functions.

The transformation has this property because source procedures always return to the site from
which they were last called, that is, they always return to their return continuations. Further,
continuations are notreified, or named by source identifiers [FW84]. This ensures that the ability
of source procedures to contain free identifiers does not lead to free source identifiers referring to
continuations, and hence does not lead to free intuitionistic identifiers referring to continuations
in the target. So there are no continuations a procedure needs to know about: it will be given a
return continuation and that is enough, and hence the linear zone is empty.

No attempt to discard a continuation is made since every procedure must return by invoking
its return continuation, there is simply nothing else for the procedure to do: it cannot loop since
the source language is simply-typed and its return continuation is the only jump destination it
knows of.

Note that linear use of continuations arises in the target not because of any explicit linearity in
the source, but due to the stylized use of the implicit continuations. This is similar to O’Hearn and
Reynolds’s work [OR00], where linearity and polymorphism arise in the target of a translation
from Algol; this prevents the state from being treated, semantically, as if it were first-class.

Proof

1. By structural induction on the source derivation:

[ID]: The source derivation is of form

Γ , x : T ` x : T

and the target derivation is immediate:

Γ , x : T ; k : ¬T ` k : ¬T Γ , x : T ; − ` x : T

Γ , x : T ; k : ¬T ` k x : R

Γ , x : T ; − ` δk. k x : ¬T ( R

[ABS]: The source derivation is of form

···
Γ , x : S` N : T

Γ ` λx. N : S→ T

and hence the induction hypothesis ensures

Γ , x : S ; − ` N : ¬T ( R
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from which the target derivation follows:

Γ ; k : ¬S→ T ` k : ¬S→ T

Γ , x : S ; − ` N : ¬T ( R Γ , x : S ; h : ¬T ` h : ¬T

Γ , x : S ; h : ¬T ` N h : R

Γ ; h : ¬T ` λx. N h : ¬S

Γ ; − ` δh. λx. N h : ¬T ( ¬S

Γ ; k : ¬S→ T ` kδh. λx. N h : R

Γ ; − ` δk. kδh. λx. N h : ¬S→ T ( R

[APP]: The source derivation is of form

···
Γ ` N : S→ T

···
Γ ` O : S

Γ ` N O : T

and hence both
Γ ; − ` N : ¬S→ T ( R

and
Γ ; − ` O : ¬S( R

are ensured by the induction hypothesis. LetΓ′ = Γ , m : S→ T andΓ′′ = Γ′ , n : S,
and the target derivation is

Γ ; − ` N : ¬S→ T ( R

Γ′ ; − ` O : ¬S( R

Γ′′ ; − ` m : ¬T ( ¬S Γ′′ ; k : ¬T ` k : ¬T

Γ′′ ; k : ¬T ` m k : ¬S Γ′′ ; − ` n : S

Γ′′ ; k : ¬T ` m k n : R

Γ′ ; k : ¬T ` λn. m k n : ¬S

Γ′ ; k : ¬T ` O λn. m k n : R

Γ ; k : ¬T ` λm. O λn. m k n : ¬S→ T

Γ ; k : ¬T ` N λm. O λn. m k n : R

Γ ; − ` δk. N λm. O λn. m k n : ¬T ( R

2. Immediate. �

2.5 Conclusion

Simply-typed, call-by-value,λ-calculus provides a context in which to see the basic idea of
refining a continuation semantics by forcing linear use of continuations with a minimum of fuss.
After recalling theλ-calculus, and introducing the core of the linear target language, we have
seen that the linear type system is permissive enough to allow restricting the return continuations
in the standardCPStransformation to linear usage:

S→ T
def= (T → R)︸ ︷︷ ︸

return
continuation

( S→ R︸ ︷︷ ︸
call

continuation
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Intuitively, this is because once a procedure returns to a call site, that site will not be returned
to again; and once a procedure is called, it will return (or diverge). And technically, because
the transformation never attempts to form aCPSvalue or transformed term which depends on a
continuation.
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Chapter 3

Procedures, Untyped

In Chapter 2 we gave a treatment of simply-typedλ-calculus which demonstrated the idea of
linear use of control contexts. However, the typed nature of the source language has very little
impact on control behavior, so we add recursion to the target language and give a very similar
interpretation of untypedλ-calculus. The primary conceptual goal is to explain how linearity
is happy with recursion. In addition to soundness, in this chapter we consider a form of com-
pleteness. This shows how control behavior not present in the source language is disallowed by
linearity in the target language, ensuring that linear use of control contexts does indeed constrain
the source language and interpretation.

3.1 Source Language

We again consider call-by-value, left-to-rightλ-calculus—the source language of Chapter 2—but
now without the typing discipline. As before, this language is entirely standard and so we only
briefly summarize the formulation we use.

3.1.1 Syntax

In order to state the operational semantics, we reformulate the syntax making the distinction
between value terms and general terms explicit in the grammar:

V ::= values

| x identifier

| λx. M abstraction

M ::= terms

| V value

| M M application

As an example of the sort of behavior possible with the lifting of the simple typing discipline,
consider the following (tail-recursive) program for computing5 factorial:

(λfact . fact 5)((
λY. λn.Y (λloop. λn. λa. n � a 8 loop n−1 a∗n) n1

)(
(λZ. Z Z) (λz. λ f . f λx. λy. z z f x y)

)) (3.1)
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Here we have used integers and a conditional if-zero construct ((·) � (·) 8 (·)) instead of Church
encodings for legibility. The point to note is that recursion is not primitive in the language,
instead the recursive procedure is defined using self-application viaY, a Church-style call-by-
value fixed-point combinator for two arguments.

3.1.2 Operational semantics

The big-step operational semantics is given by the judgementM ⇓ V which states that termM
evaluates to valueV:

[VAL ] V ⇓ V [ABS]
M0 ⇓ λx. M2 M1 ⇓ V1 M2[x 7→V0] ⇓ V0

M0 M1 ⇓ V0

3.2 Target Language(+= X + µX. (·))

The target language is extended with recursive types to accommodate the recursion implicit in the
untyped source language. We will also need to make reference to the target language’s equational
theory when considering adequacy.

3.2.1 Equational theory

The equational theory is generated in the usual way from the axioms

(λx. M) N
βη= M[x 7→ N]

x /∈ fi(M)
λx. M x

βη= M

(δx. M) N
βη= M[x 7→ N]

x /∈ fi(M)
δx. M x

βη= M

Note that the fullβ andη laws hold in the target language, despite the call-by-value evaluation
order of the source language, sinceCPS is evaluation order independent [Mor93, Plo75].

3.2.2 Recursive types

We extend the grammar of types of Section 2.2 with productions for type identifiers and recursive
types, and reformulate the grammar to make the distinction between type metaidentifiersA and
P, which we will discuss shortly:

P ::= pointed types

| R result type

| A→ P function type

| P ( P restricted function type

| X type identifier

| µX. P recursive type

A ::= types

| N base type

| A→ A nonrecursive function type

| P pointed type
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Convention:As in an abstraction term, the body of a recursive type extends as far to the right as
possible, soµX. P ( Q parses toµX. (P ( Q) rather than(µX. P) ( Q.

TypesP are pointed while typesA are not necessarily. Pointed types are those for which
recursion is allowed. In particular, primitive types used to treat atomic data (such asN) should
not be pointed in aCPSlanguage. This is because the result type is, as discussed in Chapter 1, an
abstraction of a program’s computational effects. Thus, effects occur only at typeR, simplifying
the interpretation of the other type constructors; For instance, call-by-name and call-by-value
coincide. With the addition of recursion comes divergence, which should not occur at typeN.
At times it is useful to have inert values of function type, so we include a type of nonrecursive
functionsA→ A.

The inclusion of recursive types, and hence type identifiers, makes writing syntactically cor-
rect but meaningless types possible, so some extra machinery is required to ensure the types we
use are meaningful. This can be done (following [AF96]) by defining the usual equality on types
and extending the typing rules of Section 2.2 with a formal version of

[REC]
Γ ; ∆ ` M : B

B = A
Γ ; ∆ ` M : A

The details are standard and presented in Section A.3.

3.3 RefinedCPS Transformation

Since the source language is untyped, the form of theCPS transformation is slightly different.
Previously, source types were transformed to target types. But now there are no source types
and so we define a single target typeD which will interpret all source values. Similarly, source
contexts are not transformed; instead all intuitionistic identifiers in the target will have typeD.
And so instead of transforming source judgments to target judgments, we now transform each
source term

M

to the target judgment

x1 : D , . . . , xn : D ; − ` M : (D → R) ( R

where{x1, . . . , xn} ⊇ fi(M) for somen≥ 0.
The driving aspect of the transformation is the type used to interpret value terms (procedures)

D
def= µD. (D → R)︸ ︷︷ ︸

return
continuation

( D → R︸ ︷︷ ︸
call

continuation

(3.2)

which effectively definesD to be the least solution of the domain isomorphism

D ∼= (D → R) ( D → R

The typeD corresponds extremely closely to the transformation of the procedure type in
Chapter 2. We no longer say anything about the types of the data which is passed, but the
handling of continuations is unchanged. With this interpretation, the transformation on terms,
given in Figure 3.1, is equivalent to that in Chapter 2, but we reformulate it since the syntactic
categories of values and terms are now distinct, although their transformations are mutually re-
cursive. The target terms are identical in the typed and untyped transformations, it is only the
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Figure 3.1RefinedCPSof Untypedλ-calculus

Value Terms

D
def= µD. (D → R)︸ ︷︷ ︸

return

( D → R︸ ︷︷ ︸
call

pxq
def= x

pλx. Mq def= δk. λx. M k

Terms

(D → R)︸ ︷︷ ︸
return

( R

V
def= δk. k pVq

M N
def= δk. M λm. N λn. m k n m /∈ fi(N)

Programs

(D → R)︸ ︷︷ ︸
toplevel

( R

xMy
def= M

types in the target judgments which are different. Hence the explanations of the intuitions behind
this transformation carry over directly from Chapter 2.

The interpretation of programs using type1

(D → R)︸ ︷︷ ︸
toplevel

continuation

( R

is trivial, see Figure 3.1.

3.4 Soundness

Now that we distinguish between values and terms, the soundness of the transformation of each
depends on the other.

1Instead of the typeD we define, we really ought to instead use a type such as

µD.N + ((D → R) ( D → R)

This would allow us to give an interpretation of toplevel programs using the type

(N → R) ( R

as in Chapter 2, which isolates the operating system from the interpretation of control behavior of the
source language. As it stands, the operating system has to know about how we handle procedures in order
to extract any information from the value passed to the toplevel continuation. But using such a type would
significantly complicate the presentation of the transformation for very little conceptual gain.
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Proposition 2 (Soundness)For any source term M, if{x1, . . . , xn} ⊇ fi(M) for some n≥ 0,
then

1.
x1 : D , . . . , xn : D ; − ` M : (D → R) ( R

and, if M is a value, then

x1 : D , . . . , xn : D ; − ` pMq : D

2.
x1 : D , . . . , xn : D ; − ` xMy : (D → R) ( R

The soundness proof is straightforward, perhaps deceptively so, since it does not address
the relationship between recursion and linearity very explicitly. The key point is that continua-
tions are not themselves recursive in this interpretation. If they were, then invoking a continu-
ation would eventually result in the continuation being invoked again, recursively, which would
break the linear typing.2 Instead, continuation transformers are recursive, which is not problem-
atic since the interpretation does not constrain their use. Concretely, the transformation of the
self-application of an identifier (such as that in (3.1))

f f
βη= δk. f k f

shows that, in the target language, recursion (even tail-) is effected by a sort of self-application
in which a continuation transformerf is passed to a continuationf k which is obtained from
f itself. If we were to uncurry the type of continuation transformers, a call tof would directly
pass itself as one of the arguments. The important point here is that self-application in the source
language does not imply that continuation transformers are nonlinear functions; that is, it is
entirely possible for the continuationf k to be a nonlinear function, without forcingf to be a
nonlinear function. The typing derivation of self-application in the target language

f : D ; − ` f : D
D = ¬D ( ¬D

f : D ; − ` f : ¬D ( ¬D f : D ; k : ¬D ` k : ¬D

f : D ; k : ¬D ` f k : ¬D f : D ; − ` f : D

f : D ; k : ¬D ` f k f : R

f : D ; − ` δk. f k f : ¬D ( R

shows how the recursive type must be unfolded once to type the operand occurrence off , rein-
forcing that it is continuation transformers, not continuations, which are recursive.

On the other hand, recursion allows a term to diverge without ever invoking its return con-
tinuation, but this in no way violates linear typing. To understand this, it is essential to realize
that a continuation which is “used linearly” is not necessarily “invoked exactly once,” nor vice
versa. Here, “use” is referring to the static type system, while “invoke” is referring to the dy-
namic operational behavior, and the relationship between the two is not immediately obvious.
Linear typing can only make statements about dynamic behavior indirectly. Linear typing makes
direct constraints at the level of environment handling, which then imply properties about the
dynamic behavior, but the indirectness of this connection thwarts many intuitions about the dy-
namic behavior of linearly typed code. So the non-discarding property of linear typing roughly
means not that every continuation will be invoked, but that no continuation will become garbage.

2Later, in Section 8.2.2, we will attempt to define continuations recursively, and will witness the break-
age of linearity concretely.
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In this light, the ability of a program to diverge without ever invoking its return continuation is
unproblematic.

Proof

1. LetΓ = x1 : D , . . . , xn : D and proceed by structural induction on the syntax ofM:

[V]: Therefore the induction hypothesis ensures

Γ ; − ` pVq : D

from which the target derivation follows:

Γ ; k : ¬D ` k : ¬D Γ ; − ` pVq : D

Γ ; k : ¬D ` k pVq : R

Γ ; − ` δk. k pVq : ¬D ( R

[N O]: Therefore the induction hypothesis ensures

Γ ; − ` N : ¬D ( R

and
Γ ; − ` O : ¬D ( R

Let Γ′ = Γ , m : D , n : D, and the target derivation is

Γ ; − ` N : ¬D ( R

Γ , m : D ; − ` O : ¬D ( R

Γ′ ; − ` m : D
D = ¬D ( ¬D

Γ′ ; − ` m : ¬D ( ¬D Γ′ ; k : ¬D ` k : ¬D

Γ′ ; k : ¬D ` m k : ¬D Γ′ ; − ` n : D

Γ′ ; k : ¬D ` m k n : R

Γ , m : D ; k : ¬D ` λn. m k n : ¬D

Γ , m : D ; k : ¬D ` O λn. m k n : R

Γ ; k : ¬D ` λm. O λn. m k n : ¬D

Γ ; k : ¬D ` N λm. O λn. m k n : R

Γ ; − ` δk. N λm. O λn. m k n : ¬D ( R

Note thatD is unfolded once.

Now supposeM = V for some valueV and proceed by cases on the syntax ofV:

[x]: x = xi for 1 ≤ i ≤ n and the target derivation is immediate:

Γ ; − ` x : D

[λx. N]: Therefore the induction hypothesis ensures

Γ , x : D ; − ` N : ¬D ( R
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from which the target derivation follows:

Γ , x : D ; − ` N : ¬D ( R Γ , x : D ; k : ¬D ` k : ¬D

Γ , x : D ; k : ¬D ` N k : R

Γ ; k : ¬D ` λx. N k : ¬D

Γ ; − ` δk. λx. N k : ¬D ( ¬D
¬D ( ¬D = D

Γ ; − ` δk. λx. N k : D

Note thatD is folded once.

2. Immediate. �

3.5 Adequacy

Since theCPS transformation is standard but for typing, the computational adequacy, that is, the
correctness of the computed results, is standard.

Proposition 3 (Adequacy) For any closed source term M and any target term K, M⇓ V if and
only if M K

βη= K pVq andxMy K
βη= K pVq.

Proof Modulo slight differences in setting, by the proof of Plotkin’s Simulation Theorem
[Plo75]. �

3.6 Completeness

Proposition 2 establishes the correctness of the refinement of the standard semantics resulting
from restricting to linear use of control contexts. We have not yet, however, argued that this
refinement is tight in any way. That is, we would like evidence that a discipline of linearly used
control contexts in the target forces target terms to exhibit only control behavior which is possible
in the source.

An example consequence of the restrictions imposed by the refined interpretation, stated
informally, is:

Once a procedure returns, it will not return again until it is called again.

This control-flow property is captured by making theCPSversions of such procedures inexpress-
ible. More concretely, using the standard (unrefined) version of (3.2)

D
def= µD. (D → R) → D → R

and recalling the example from Section 1.2, we have in the target

− ; − ` λr. r λk. λz. kλh. λx. k x : (D → R) → R

This term is the standardCPSversion of (“comes from”)

return/cc
def= λz. call/ccλk. k

and exhibits the backtracking behavior characteristic of first-class continuations. But this control
behavior is not expressible in the source language without first-class continuations [Thi99b]. So
the standard interpretation ofλ-calculus isjunky, meaning that there are terms (of the appropriate
type) in the target language which do not come from any source term.
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On the other hand, using the refined interpretation of procedures

D
def= µD. (D → R) ( D → R

the judgment
− ; − ` δr. r δk. λz. kδh. λx. k x : (D → R) ( R

is not derivable, primarily because it involves theCPSversion of a value,δh. λx. k x, with a free
continuation,k. This is a demonstration of a main way a discipline of linearly used control
contexts limits expressive power. The use of values in the source language is not constrained,
and so they are interpreted by target types whose use is also unconstrained, and theCPSversions
of source values end up being arguments of intuitionistic functions; usually continuations. The
linear type system—the[APP] rule in particular—then ensures such arguments do not have any
free control context identifiers. So the preclusion ofCPSvalues containing control contexts is a
central characteristic of the system.

The source language analogue of the absence ofCPSvalues with free control context identi-
fiers is the absence of reified upward control contexts. In a source language with procedures, a
value isupward if it is returned or stored [FWH01]. In the presence of other control constructs,
this definition must be altered accordingly. For instance, in a language with exceptions, a value
raised as an exception is also upward. Conversely, a value isdownwardif it is not upward. So
intuitively, if control contexts are both reified and upward in the source language, then there will
beCPSvalues with free control context identifiers, and hence the source language will not admit
a discipline of linearly used control contexts.

Rather than argue that there are no junk terms whatsoever, we prove a somewhat less general
result:

Proposition 4 (No Junk) If Γ ; − s̀ M : (D → R) ( R, then there exists a source term N such
that M

βη= N.

(Note that
βη= is a very fine equality, and hence similar properties will hold of coarser (contextual)

equivalence relations.)
This result is not fully general due to the use of a specialized typing judgment(·) ; (·) s̀ (·) : (·)

rather than the full(·) ; (·) ` (·) : (·). However, later work by others has extended this result to the
general case, see Section 12.2.

The specialized judgment characterizes the range, not the codomain, of theCPS trans-
formation. This is accomplished by “carving out” a sublanguage of the target by restrict-
ing the form of types to those theCPS transformation actually exercises. Subterms of
M in Γ ; − ` M : (D → R) ( R may be very “non-CPS” or may exhibit essentially un-
constrained control behavior in the process of producing a term of an appropriate type.
In other words,Γ ; − ` M : (D → R) ( R constrainsM to use types—and hence exhibit
behavior—appropriate to procedures at toplevel but its subterms are not so constrained, while
Γ ; − s̀ M : (D → R) ( R constrainsM and its subterms equally. In this way we rule out not
only essentially unconstrained control behaviors, but also control behaviors such as exceptions
(Chapter 4) or coroutines (Chapter 9) which are interpretable using control contexts linearly but
with different types than those used to interpret procedures. Intuitively, this specialization of
types fixes the form of control contexts, and Proposition 4 then asserts that using these control
contexts linearly, no control behavior beyond that expressible with procedures is possible. Be-
havior arising from exceptions or coroutines, say, is precluded since they require control contexts
of different form, but this is not the case for first-class continuations, whose behavior is ruled out
by linearity.

The carved sublanguage is more like a compiler intermediate language than is the full target
language since programs in the difference are likely to cause later compilation stages to be un-
pleasantly surprised, to say the least. So, from an implementation point of view it is not at all
obvious that the more general completeness result has any value beyond the specialized one.
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Note that while Proposition 4 ensures that the control behavior expressible in the carved sub-
language is not more than that expressible in the source, it does not imply the impossibility of
an interpretation of a language with first-class continuations, say, which uses control contexts
linearly. While we strongly believe that a conceptually reasonable interpretation of first-class
continuations which uses control contexts linearly does not exist, we are not optimistic that a
satisfactory theoretical analysis of this is possible. Attacking this problem would lead into an
expressiveness tar pit, due to Gödel encodings and so on. Defining what qualifies as a “good in-
terpretation” would be a very significant task, and though one can learn much from such attempts
[BL96, Fel91, Lan98], we have not yet seen one which is exempt from criticism. So the ques-
tion of the existence of an interpretation of first-class continuations would change to the question
of the existence of a characterization of “good interpretation” which allows an interpretation of
first-class continuations.

3.6.1 Target sublanguage

With the overall plan laid, we proceed to define the target sublanguage by restricting the form of
types to only those used by theCPStransformation.

The syntax of terms is unchanged from that in Section 2.2.1, and the equational theory is
unchanged from that in Section 3.2.1. Since the interpretation in Section 3.3 revolves around the
type

D
def= µD. (D → R) ( D → R

the syntax of types is built from it:

A, P ::= types

| D → R continuation type

| D | (D → R) ( D → R continuation transformer types (3.3)

| (D → R) ( R “program” type

| R result type

Note that there is only a single type identifier, and only a single unfolding of the recursive con-
tinuation transformer type is needed, or allowed.

The typing rules of Section 3.2.2 specialized to the restricted form of types are

Γ ; ∆ , k : ¬D s̀ k : ¬D
Γ , x : D ; ∆ s̀ M : R

Γ ; ∆ s̀ λx. M : ¬D

Γ ; ∆ s̀ M : ¬D ( ¬D Γ ; ∆′
s̀ N : ¬D

Γ ; ∆ , ∆′
s̀ M N : ¬D

Γ , x : D ; ∆ s̀ x : D
Γ ; ∆ , k : ¬D s̀ M : ¬D

Γ ; ∆ s̀ δk. M : ¬D ( ¬D

Γ ; ∆ s̀ M : ¬D ( ¬D

Γ ; ∆ s̀ M : D

Γ ; ∆ s̀ M : D

Γ ; ∆ s̀ M : ¬D ( ¬D

Γ ; ∆ , k : ¬D s̀ M : R

Γ ; ∆ s̀ δk. M : ¬D ( R

Γ ; ∆ s̀ M : ¬D Γ ; − s̀ N : D

Γ ; ∆ s̀ M N : R

Γ ; ∆ s̀ M : ¬D ( R Γ ; ∆′
s̀ N : ¬D

Γ ; ∆ , ∆′
s̀ M N : R
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Observation 5 Γ ; ∆ s̀ M : A if and only ifΓ ; ∆ ` M : A and all types which appear in the
derivation of the latter judgment are in the type language defined by (3.3).

Note that all the derivations we have presented so far satisfy this property.

Observation 6 If Γ ; ∆ s̀ M : A, then∆ = − or ∆ = k : ¬D.

Note that this indicates that with the restricted form of types, affine, linear, and ordered linear
typing all coincide.3

Taking this special form of contexts into account, we can further specialize the presentation
of the typing rules:

[KI D] Γ ; k : ¬D s̀ k : ¬D [KA BS]
Γ , x : D ; k : ¬D s̀ M : R

Γ ; k : ¬D s̀ λx. M : ¬D

[KA PP]
Γ ; − s̀ M : ¬D ( ¬D Γ ; k : ¬D s̀ N : ¬D

Γ ; k : ¬D s̀ M N : ¬D

[DID] Γ , x : D ; − s̀ x : D [DABS]
Γ ; k : ¬D s̀ M : ¬D

Γ ; − s̀ δk. M : ¬D ( ¬D

[DFOLD]
Γ ; − s̀ M : ¬D ( ¬D

Γ ; − s̀ M : D
[DUNFOLD]

Γ ; − s̀ M : D

Γ ; − s̀ M : ¬D ( ¬D

[PABS]
Γ ; k : ¬D s̀ M : R

Γ ; − s̀ δk. M : ¬D ( R

[RAPPK]
Γ ; k : ¬D s̀ M : ¬D Γ ; − s̀ N : D

Γ ; k : ¬D s̀ M N : R

[RAPPP]
Γ ; − s̀ M : ¬D ( R Γ ; k : ¬D s̀ N : ¬D

Γ ; k : ¬D s̀ M N : R

3.6.2 Extracting the range ofCPS

As an aside, from this specialized type system we can extract a grammar where we have one
syntactic category for terms of each type:

K ::= k | λx. R | D K ¬D

D ::= x | δk. K D = ¬D ( ¬D

P ::= δk. R ¬D ( R

R ::= K D | P K R

If we drawk from a singleton set of identifiers which is disjoint from the set of identifiers from
which x is drawn, then the type system and syntax are equivalent. That is, a term will be an ele-
ment of a syntactic category if and only if there is a judgment proving the term has the associated
type.

3Note, however, that while we only consider continuation usage, Polakow and Pfenning [PP00] also
distinguish continuation arguments from function arguments, and refine the treatment of the former using
an ordered system. An unordered system such as ours will not suffice for such analyses.
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Sabry and Felleisen’s analysis of the range ofCPS [SF93] led them to nearly the same syn-
tax. The only difference is that their transformation does not introduce “administrative” redexes
[Plo75], and so syntactic categoryP is not needed, but toplevel programs must be treated spe-
cially. This is interesting since Sabry and Felleisen analyzed the syntax of the output of theCPS

transformation, while we have analyzed the types of the output of theCPS transformation, ob-
taining the same result (modulo “administrative” redexes). So this work can be seen as a logical
reconstruction of (part of) Sabry and Felleisen’s: their methods are syntactic, or even lexical
(one continuation identifier is enough), while our starting point is a domain isomorphism with,
crucially, a restricted (affine or linear) function space constraining continuation usage.

3.6.3 DS transformation

The proof of Proposition 4 is essentially given by aDS transformation. TheDS transformation
takes terms in the carved-out target sublanguage to the source language and is, in a sense, inverse
to theCPStransformation.

The transformation of programsPL(·)M is defined mutually recursively withKL(·)M, DL(·)M,
andRL(·)M, which transform continuations, continuation transformers, and results, respectively:

KLkM def= λx. x

KLλx. MM def= λx.RLMM
KLM NM def= λx.KLNM (DLMM x) x /∈ fi(M N)

DLxM def= x

DLδk. MM def= KLMM

PLδk. MM def= RLMM

RLM NM def= KLMMDLNM
RLM NM def= KLNMPLMM

For comparison, if we modify Sabry and Felleisen’sDS transformation by allowing the
introduction of administrative redexes and eliminating the use of substitution, we obtain the
same transformation except that Sabry and Felleisen’s does not include clauses forPLδk. MM or
RLM NM since their language does not include administrative redexes and they handle toplevel
programs specially.

To understand the idea behind this transformation, note that continuations accept an argu-
ment, do some computation converting the argument into another value, and then invoke their
parent continuation with the new value. So each continuation can be characterized by the func-
tion from values to values sitting inside it, together with its parent continuation. The driving idea
of the DS transformation is that a continuation is transformed into this function and instead of
continuations referring to their parent continuations by name (a continuation depends on exactly
one other continuation, Observation 6), theDS transforms of continuations are just composed.
For example, in the continuation

(δk. M) N
βη= M[k 7→ N]

M is a continuation which refers to its parent continuationN using the namek. When this
continuation is invoked with an argument,M will convert the argument into another value and
then invokeN with it. In DS, we have

KL(δk. M) NM = λx.KLNM (KLMM x)
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from which we see thatKLMM will accept argumentx and then convert it into another value; but
instead of explicitly invoking the parent continuation,KLMM x returns to the argument position of
an application of the transformation of the parent continuation. In other words, explicit manipu-
lation of control contexts has been replaced by introduction of implicit control contexts, simply
undoing the effect of theCPStransformation.

3.6.4 No junk

TheDS transformation is useful (and correct) only because it is inverse to theCPStransformation.

Lemma 7 (Inverseness) 1. If Γ ; k : ¬D s̀ M : ¬D, thenKLMM N
βη= N δk. M.

2. If Γ ; − s̀ M : D or Γ ; − s̀ M : ¬D ( ¬D , thenDLMM N
βη= N M.

3. If Γ ; − s̀ M : ¬D ( R, thenPLMM βη= M.

4. If Γ ; k : ¬D s̀ M : R, thenRLMM βη= δk. M.

With this result, no junk is immediate:

Proof [Proposition 4] Let N = PLMM and the result follows by Lemma 7. �

Proof [Lemma 7] By induction on the derivation of the judgment:

[KI D]: ThereforeM = k. Hence

KLkM N = λx. x N

= (δk. kpλx. xq) N
βη= N pλx. xq

= N δk. λx. x k

= N δk. λx. (δk. k pxq) k
βη= N δk. λx. k pxq

= N δk. λx. k x
βη= N δk. k

[KA BS]: ThereforeM = λx. M′ andΓ , x : D ; k : K s̀ M′ : R. Hence

KLλx. M′M N = λx.RLM′M N

= δk. k pλx.RLM′Mq N
βη= N pλx.RLM′Mq

= N δk. λx.RLM′M k
βη= N δk. λx. (δk. M′) k by the induction hypothesis
βη= N δk. λx. M′

[KA PP]: ThereforeM = M′ N′, Γ ; − s̀ M′ : K ( K, andΓ ; k : K s̀ N′ : K. Hence
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KLM′ N′M N

= λx.KLN′M (DLM′M x) N

= (δk. k pλx.KLN′M (DLM′M x)q) N
βη= N pλx.KLN′M (DLM′M x)q

= N δk. λx.KLN′M (DLM′M x) k

= N δk. λx. (δk.KLN′M λm.DLM′M x λn. m k n) k
βη= N δk. λx.KLN′M λm.DLM′M x λn. m k n
βη= N δk. λx.KLN′M λm.DLM′M x (m k)
βη= N δk. λx. (λm.DLM′M x (m k)) δk. N′ by the induction hypothesis
βη= N δk. λx.DLM′M x ((δk. N′) k)
βη= N δk. λx.DLM′M x N′

= N δk. λx. (δk.DLM′M λm. x λn. m k n) N′

βη= N δk. λx.DLM′M λm. x λn. m N′ n
βη= N δk. λx.DLM′M λm. x (m N′)
βη= N δk. λx. (λm. x (m N′)) M′ by the induction hypothesis
βη= N δk. λx. x (M′ N′)
= N δk. λx. (δk. k pxq) (M′ N′)
βη= N δk. λx. M′ N′ pxq

= N δk. λx. M′ N′ x
βη= N δk. M′ N′

[DID]: ThereforeM = x. Hence

DLxM N = x N

= (δk. k pxq) N
βη= N pxq

= N x

[DABS]: ThereforeM = δk. M′ andΓ ; k : K s̀ M′ : K. Hence

DLδk. M′M N = KLM′M N
βη= N δk. M′ by the induction hypothesis

[DFOLD]: ThereforeΓ ; − s̀ M : K ( K. Hence

DLMM N
βη= N M by the induction hypothesis
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[DUNFOLD]: ThereforeΓ ; − s̀ M : D. Hence

DLMM N
βη= N M by the induction hypothesis

[PABS]: ThereforeM = δk. M′ andΓ ; k : K s̀ M′ : R. Hence

PLδk. M′M = RLM′M
βη= δk.RLM′M k
βη= δk. (δk. M′) k by the induction hypothesis
βη= δk. M′

[RAPPK]: ThereforeM = M′ N′, Γ ; k : K s̀ M′ : K, andΓ ; − s̀ N′ : D. Hence

RLM′ N′M = KLM′MDLN′M

= δk.KLM′M λm.DLN′M λn. m k n
βη= δk.KLM′M λm.DLN′M (m k)
βη= δk. (λm.DLN′M (m k)) δk. M′ by the induction hypothesis
βη= δk.DLN′M ((δk. M′) k)
βη= δk.DLN′M M′

βη= δk. M′ N′ by the induction hypothesis

[RAPPP]: ThereforeM = M′ N′, Γ ; − s̀ M′ : K ( R, andΓ ; k : K s̀ N′ : K. Hence

RLM′ N′M = KLN′MPLM′M

= δk.KLN′M λm.PLM′M λn. m k n
βη= δk.KLN′M λm.PLM′M (m k)
βη= δk. (λm.PLM′M (m k)) δk. N′ by the induction hypothesis
βη= δk.PLM′M ((δk. N′) k)
βη= δk.PLM′M N′

βη= δk. M′ N′ by the induction hypothesis �

3.7 Other CPS Transformations

We should emphasize that the preceding analysis is not dependent on the Fischer transformation.
Instead of a continuation-first transformation, we could use a continuation-second transformation
[Mor93, Plo75, Rey98a] without affecting the validity of the technical results, but a continuation-
first transformation admits a briefer presentation in which only a single type of continuations is
needed, and continuations of this type represent control contexts. With continuation-second or
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uncurried transformations, there is an additional type of continuations which are not part of the
control context, and hence are not used linearly.

More explicitly, in the type used by the unrefined continuation-second transformation

D
def= µD. D → (D → R) → R

control contexts are represented by continuations of typeD → R, just as in the continuation-first
transformation, while the continuations of type(D → R) → R are not part of the control context.
So in the refined version

D
def= µD. D → (D → R) ( R

only the former type of continuations is used linearly. Similarly, in the type used by the unrefined
uncurried transformation

D
def= µD. (D× (D → R)) → R

control contexts are again represented by continuations of typeD → R while the continuations
of type(D× (D → R)) → R are not part of the control context, and hence not used linearly in
the refined version4

D
def= µD. (!D⊗ (D → R)) ( R

Note that in both of these alternate interpretations, continuations which do not represent a
control context taking continuation arguments which do represent a control context arise. This
is because these former continuations are constructed before the control context of their code
is known, and so they must accept a continuation argument. Hence, using continuation trans-
formers in the standard interpretation is effectively a technique of delaying the construction of
continuations until after the parent continuation is available: that is (ignoring the data context),
the standard interpretation has dynamically created continuations which contain their parent con-
tinuations, while the alternate interpretations have statically created (by the transformation) con-
tinuations with dynamically determined parent continuations. This is an example of the flexi-
bility between keeping control context internal to continuations or accepting it as an argument
mentioned in Chapter 1.

3.8 Conclusion

Building on the previous chapter, here we have seen that adding recursion to the source language
does not present any technical problems: the linear type system still admits the standardCPS

transformation but with the return continuations restricted to linear usage:

D
def= µD. (D → R)︸ ︷︷ ︸

return
continuation

( D → R︸ ︷︷ ︸
call

continuation

But intuitively there are two questions:

1. Don’t recursive calls result in “using” a continuation more than once?

2. Doesn’t divergence result in ignoring a continuation, thereby “using” it zero times?

The answer to the first lies in the fact that recursion in this language is obtained by using untyped
procedures to unwind to the fixed-point, and hence it is procedures, not continuations, which get

4We have not included!(·) and(·)⊗ (·) types in the target language at this point, but here knowing the
analogy is sufficient. In Section 10.9 we add(·)⊗ (·).
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“used” more than once. As for the second, the answer is that “used linearly” simply doesnot
mean “invoked exactly once”.

In this chapter we also established that the restriction to linear usage is actually effective, in
that all the control behaviors inCPSwhich do not correspond to aλ-calculus term are ruled out
by the linear interpretation. That is, the types and linear system exactly capture the range (not
codomain) of theCPS transformation. This is shown by “carving out” the range ofCPSbased on
the syntax of the type interpreting procedures, and then using aDS transformation inverse to the
CPStransformation to witness the isomorphism.
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Chapter 4

Exceptions

In this chapter we give an interpretation of exceptions which follows a discipline of linearly used
control contexts. This offers a demonstration of the applicability of the technique to a quite
expressive source language which provides much more flexible control behavior than procedures
alone. Here we first see control contexts which are not simply a single continuation. We interpret
these control contexts with an additive product,(·) & (·), which we use to express controlled
sharing of continuations, and is central to much of the development in later chapters. The main
conceptual point of this interpretation is how the sharing provided by(·) & (·) is sufficient to
interpret exceptions, while the pattern of continuation usage entailed by exceptions does not
violate the constraints which come with the sharing provided by(·) & (·). In this chapter we also
prove no junk to demonstrate that linearity eliminates all extraneous control behaviors in not only
the simplest case of procedures.

4.1 Source Language

In realistic presentations of exceptions, their typing properties are rather complex, and vary from
language to language. So to eliminate complexity orthogonal to our concerns and study the
jumping aspect of exceptions, we focus on an untyped source language withraise and handle
primitives.

4.1.1 Syntax

We extend the syntax of terms from Section 3.1.1 with exception handling primitives:

V ::= · · · values

| M handle install exception handler

| raise raise exception

Convention:The body of ahandle term extends as far to the left as possible, soM N handle
parses to(M N) handle rather thanM (N handle).

Note that “handle” is syntactically ill-formed, “M handle” is a special form, not an appli-
cation, and cannot be formulated as such.
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4.1.2 Operational semantics

Intuitively, M handle is a procedure which accepts a procedure, installs it as an exception han-
dler, executesM, and then removes the previously installed exception handler. That is, exceptions
raised during the execution ofM will be handled by the argument exception handler. On the other
hand,raise is a procedure which accepts an exception, aborts the computation up to the point
where the nearest enclosing exception handler was installed, and then applies the exception han-
dler to the exception. In a simply-typed setting the exception-handling primitives could be typed
by the rules

Γ ` raise : E → T

Γ ` M : T

Γ ` M handle : (E → T) → T

whereE is the type of exceptions.
Before formally stating the operational semantics, which is an extension of the big-step se-

mantics of Section 3.1.2, we illustrate with several examples.1 If the body of ahandle expression
evaluates to a value, the handler is ignored:

42 handleλe. e+ 1 ⇓ 42

On the other hand, if the body raises a value, the handler is applied to it:

raise 41 handleλe. e+ 1 ⇓ 42

When the body raises a value, any unevaluated portion of the body is ignored and the handler is
applied immediately:

1− (raise 41) handleλe. e+ 1 ⇓ 42
raise (raise 41) handleλe. e+ 1 ⇓ 42

When the body of ahandle expression raises, the nearest enclosing handler is applied:

raise 13 handleλe. e+ 29 handleλe. e+ 1 ⇓ 42

When the body of a handler raises, the next enclosing handler is applied:

raise 13 handleλe. raise (e+ 28) handleλe. e+ 1 ⇓ 42

Finally, a characteristic feature of exceptions: When a value is raised, it is thedynamicallyen-
closing handler which is applied. Thestatically (or lexically) enclosing handler, the nearest
enclosing handler in the program code, has no significance. Hence when the body of ahandle
expression evaluates to a value, the handler is forgotten and will never be applied:

raise handleλe. e− 1 ⇓ raise raise 41 handleλe. e+ 1 ⇓ 42

(λ f . f 41 handleλe. e+ 1) (raise handleλe. e− 1) ⇓ 42

So, there is no connection betweenraise andλe. e− 1 underlined above. Instead,raise refers
to the nearest enclosing handler when a value is raised, namelyλe. e+ 1.

Formally, as in [BK01], the big-step operational semantics is given by two mutually recursive
judgments:M ⇓ V which states that termM evaluates to valueV, andM ⇑ V which states that
evaluation of termM raises exception valueV. The rules forM ⇓ V are an extension of those in
Section 3.1.2.

1Though we have not treated numeric constants and operations, we make use of them in the illustra-
tions.
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[HANDLE1]
M0 ⇓ M2 handle M1 ⇓ V1 M2 ⇓ V0

M0 M1 ⇓ V0

[HANDLE2]
M0 ⇓ M2 handle M1 ⇓ V1 M2 ⇑ V2 V1 V2 ⇓ V0

M0 M1 ⇓ V0

[RAISE]
M0 ⇓ raise M1 ⇓ V

M0 M1 ⇑ V
[PROP1]

M0 ⇑ V

M0 M1 ⇑ V
[PROP2]

M0 ⇓ V1 M1 ⇑ V0

M0 M1 ⇑ V0

[PROP3]
M0 ⇓ λx. M2 M1 ⇓ V1 M2[x 7→V1] ⇑ V0

M0 M1 ⇑ V0

[PROP4]
M0 ⇓ M2 handle M1 ⇓ V1 M2 ⇑ V2 V1 V2 ⇑ V0

M0 M1 ⇑ V0

4.2 Target Language(+= (·) & (·))

To treat exceptions we add an additive (as opposed to multiplicative) product to the target lan-
guage. The additive product essentially enable us to express constraints such as either of two
resources may be used, but not both.

4.2.1 Syntax

We extend the grammar of terms of Section 2.2 with the productions

M ::= · · · terms

| 〈M, M〉 additive pair

| πi additive projection i ∈ {0, 1}

In addition, in Section A.1 we define the following syntactic sugar:

| δ〈x0, x1〉. M restricted additive pattern match

Convention: &-pairing is right-associative, so〈M, N, O〉 parses to〈M, 〈N, O〉〉 rather than
〈〈M, N〉, O〉. Pattern match terms parse like abstractions.

4.2.2 Equational theory

Additive pairs,〈M, M〉, and projections,πi , differ from the standard multiplicative versions in
typing, but operationally and equationally they are equivalent. So we add the following to the
axioms of Section 3.2:

πi 〈M0, M1〉
βη= Mi 〈π0 M, π1 M〉 βη= M

And, in Section A.2 we define the following axiom for the syntactic sugar:

(δ〈x0, x1〉. M) 〈M0, M1〉
βη= M[x0, x1 7→M0, M1]
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4.2.3 Type system

The grammar of types of Section 3.2 is extended by

P ::= · · · pointed types

| P & P additive product type

Convention:The additive product type constructor is right-associative, soP & Q & R parses to
P & (Q & R) rather than(P & Q) & R. The precedence of(·) & (·) is higher than(·) → (·) and
(·) ( (·), soP & Q ( Rparses to(P & Q) ( R rather thanP & (Q ( R).

The typing rules of Section 3.2 are extended with

[APAIR]
Γ ; ∆ ` M : P Γ ; ∆ ` N : Q

Γ ; ∆ ` 〈M, N〉 : P & Q
[APROJi] Γ ; − ` πi : P0 & P1 ( Pi

And, in Section A.3 we define judgments with&-pairs in the context for the syntactic sugar, and
derive the following axiom:

[RAPID] Γ ; 〈x0, x1〉 : P0 & P1 ` xi : Pi

These rules ensure that both factors in a&-pair depend on the same linear identifiers, but
when one factor is projected from the&-pair, there is no way to access the other. So individual
factors of a&-pair may be duplicated and discarded within a&-pair, but the&-pair itself may
not. For instance, we have

− ; x : P & Q ` 〈π0 x, π0 x〉 : P & P

in which the left factor is duplicated and the right is discarded within a&-pair, but neither

− ; x : (P ( Q) & P ` π0 x (π1 x) : Q

nor
y : A ; x : P & Q ` y : A

is derivable since a&-pair is duplicated in the first judgment and discarded in the second.
When a&-pair is the argument to an intuitionistic function it can be duplicated and discarded

freely, in which case(·) & (·) is simply the usual Cartesian product.

4.3 RefinedCPS Transformation

As the examples in Section 4.1.2 show, evaluating an expression will result in either returning or
raising a value. Hence the control context can be represented as two continuations: return and
handler. Just as in the interpretation ofλ-calculus, the return continuation represents the return
address, and so returning from a procedure is interpreted by invoking the return continuation.
Likewise, the current exception handler is represented as the handler continuation, and so raising
an exception is interpreted by invoking the handler continuation with the exception. Since an
expression cannot both return and raise, only one of the return and handler continuations will
be invoked. And since an expression must either return or raise, one of the return and handler
continuations must be invoked. So if we take the control context to be a&-pair of the return and
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handler continuations, the typing behavior of additive products precisely captures the possible
operational behavior. Conceptually, a&-pair of continuations is two continuations which may
share some internal control environment. Linear use of these&-pairs means that (one and) only
one continuation may (and must) be used, so in particular, invoking one continuation passing the
other as the argument is disallowed. In later chapters we will see that this idea generalizes to
&-tuples, and the interpretation ofλ-calculus can be seen as simply a degenerate case.

Formally, we interpret source procedures with the type

D
def= µD. (D → R)︸ ︷︷ ︸

return
continuation

& (D → R)︸ ︷︷ ︸
handler

continuation

( D → R︸ ︷︷ ︸
call

continuation

which we somewhat abusively refer to as a type ofcontinuation transformerssince it maps mul-
tiple continuations to another continuation. We sometimes use the abbreviation

T
def= (D → R) & (D → R)

A version of this interpretation for a simply-typed source language can be derived from a
direct semantics, following [Mog91]. That is, we start with

(A→ B)∗ = A∗ → B∗ + E

followed by a standard continuation semantics, which gives us

A∗ → B∗ + E = (B∗ + E → R) ( A∗ → R

and finally, a manipulation using the isomorphism

B∗ + E → R ∼= (B∗ → R) & (E → R)

yields
A∗ → B∗ + E = (B∗ → R) & (E → R) ( A∗ → R

The double-barreled [KYD98, Thi02] transformations of terms and of values, given in Fig-
ure 4.1, are mutually recursive. The transformation ofraise

praiseq
def= δ〈r, h〉. λx. h x

accepts return and handler continuations, then an argument, and then invokes the supplied han-
dler continuation with the argument, discarding (the unshared part of) the return continuation.
Similarly, the transformation of a value

V
def= δ〈r, h〉. r pVq

discards the handler continuation. On the other hand, the transformation ofM handle

pM handleq
def= δ〈r, h〉. λx. M 〈r, λm. x 〈r, h〉m〉 x /∈ fi(M)

accepts return and handler continuations, then an argument exception handler procedure, and
then evaluates the body with the same return continuation but installs a new handler continuation
obtained from applying the handler procedure to the return and handler continuations, sharing
the return continuation. Similarly, the transformation of an application
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M N
def= δ〈r, h〉. M 〈λm. N 〈λn. m 〈r, h〉n, h〉, h〉 m /∈ fi(N)

shares the handler continuation. The following equalities better explicate the symmetries between
returning and raising and between application and exception handler installation:

V
def= δ〈r, h〉. r pVq

raiseV
βη= δ〈r, h〉. hpVq

M N
def= δ〈r, h〉. M 〈λm. N 〈λn. m 〈r, h〉n, h〉, h〉 m /∈ fi(N)

M handleN
βη= δ〈r, h〉. N 〈λn. M 〈r, λm. n 〈r, h〉m〉, h〉 n /∈ fi(M)

We try to give a feel for the jumpy flavor of this semantics with the following example:

x(raise y) handleλe. H
βη= δ〈r, h〉. (λm. (λe. H 〈r, h〉) y) x m /∈ fi(λe. H)

Herex andy are free identifiers which an environment will give values to. TheCPSversion, when
given return and handler continuations, throws away the value ofx, bindse to the value ofy, and
then runs the body of the handler procedure in the control context of the original term. Notice
that the value ofx is never applied to anything, as would be the case ifraise y was interpreted
as returning some special value which a cooked application knew to pass upward. Instead the
interpretation ofraise y jumps past the remaining code directly to the handler. So while this
semantics is in some sense equivalent to the+ E semantics mentioned earlier, in another sense
it is very different.

The interpretation of programs using the type

(D → R)︸ ︷︷ ︸
toplevel

continuation

( R

is slightly less trivial than the others we have presented, see Figure 4.1. Here we have, mostly
arbitrarily, chosen to pass unhandled exceptions to the toplevel continuation.
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Figure 4.1RefinedCPSof Exceptions

Value Terms

D
def= µD. (D → R)︸ ︷︷ ︸

return

&(D → R)︸ ︷︷ ︸
handler

( D → R︸ ︷︷ ︸
call

pxq
def= x

pλx. Mq def= δ〈r, h〉. λx. M 〈r, h〉
praiseq

def= δ〈r, h〉. λx. h x
pM handleq

def= δ〈r, h〉. λx. M 〈r, λm. x 〈r, h〉m〉 x /∈ fi(M)

Terms

(D → R)︸ ︷︷ ︸
return

&(D → R)︸ ︷︷ ︸
handler

( R

V
def= δ〈r, h〉. r pVq

M N
def= δ〈r, h〉. M 〈λm. N 〈λn. m 〈r, h〉n, h〉, h〉 m /∈ fi(N)

Programs

(D → R)︸ ︷︷ ︸
toplevel

( R

xMy
def= δk. M 〈k, k〉

4.4 Soundness

The soundness statement and proof are very similar to those in Chapter 3.

Proposition 8 (Soundness)For any source term M, if{x1, . . . , xn} ⊇ fi(M) for some n≥ 0,
then

1.
x1 : D , . . . , xn : D ; − ` M : (D → R) & (D → R) ( R

and if M is a value, then

x1 : D , . . . , xn : D ; − ` pMq : D

2.
x1 : D , . . . , xn : D ; − ` xMy : (D → R) ( R

Proof Let Γ = x1 : D , . . . , xn : D.

1. Proceed by structural induction on the syntax ofM:

[V]: Therefore the induction hypothesis ensures

Γ ; − ` pVq : D
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from which the target derivation follows:

Γ ; 〈r, h〉 : T ` r : ¬D Γ ; − ` pVq : D

Γ ; 〈r, h〉 : T ` r pVq : R

Γ ; − ` δ〈r, h〉. r pVq : T ( R

[N O]: Therefore the induction hypothesis ensures

Γ ; − ` N : T ( R

and
Γ ; − ` O : T ( R

Let Γ′ = Γ , m : D, Γ′′ = Γ′ , n : D and we have

Γ ; − ` N : T ( R

Γ′ ; − ` O : T ( R

Γ′′ ; − ` m : D

Γ′′ ; − ` m : T ( ¬D Γ′′ ; 〈r, h〉 : T ` 〈r, h〉 : T

Γ′′ ; 〈r, h〉 : T ` m 〈r, h〉 : ¬D Γ′′ ; − ` n : D

Γ′′ ; 〈r, h〉 : T ` m 〈r, h〉n : R

Γ′ ; 〈r, h〉 : T ` λn. m 〈r, h〉n : ¬D Γ′ ; 〈r, h〉 : T ` h : ¬D

Γ′ ; 〈r, h〉 : T ` 〈λn. m 〈r, h〉n, h〉 : T

Γ′ ; 〈r, h〉 : T ` O 〈λn. m 〈r, h〉n, h〉 : R

Γ ; 〈r, h〉 : T ` λm. O 〈λn. m 〈r, h〉n, h〉 : ¬D Γ ; 〈r, h〉 : T ` h : ¬D

Γ ; 〈r, h〉 : T ` 〈λm. O 〈λn. m 〈r, h〉n, h〉, h〉 : T

Γ ; 〈r, h〉 : T ` N 〈λm. O 〈λn. m 〈r, h〉n, h〉, h〉 : R

Γ ; − ` δ〈r, h〉. N 〈λm. O 〈λn. m 〈r, h〉n, h〉, h〉 : T ( R

Now supposeM = V for some valueV and proceed by cases on the syntax ofV:

[x]: x = xi for 1 ≤ i ≤ n and the target derivation is immediate:

Γ ; − ` x : D

[λx. N]: Therefore the induction hypothesis ensures

Γ , x : D ; − ` N : T ( R

from which the target derivation follows:

Γ , x : D ; − ` N : T ( R Γ , x : D ; 〈r, h〉 : T ` 〈r, h〉 : T

Γ , x : D ; 〈r, h〉 : T ` N 〈r, h〉 : R

Γ ; 〈r, h〉 : T ` λx. N 〈r, h〉 : ¬D

Γ ; − ` δ〈r, h〉. λx. N 〈r, h〉 : T ( ¬D

Γ ; − ` δ〈r, h〉. λx. N 〈r, h〉 : D
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[N handle]: Therefore the induction hypothesis ensures

Γ ; − ` N : T ( R

Let Γ′ = Γ , x : D, Γ′′ = Γ′ , m : D and we have

Γ′ ; − ` N : T ( R

Γ′ ; 〈r, h〉 : T ` r : ¬D

Γ′′ ; − ` x : D

Γ′′ ; − ` x : T ( ¬D Γ′′ ; 〈r, h〉 : T ` 〈r, h〉 : T

Γ′′ ; 〈r, h〉 : T ` x 〈r, h〉 : ¬D Γ′′ ; − ` m : D

Γ′′ ; 〈r, h〉 : T ` x 〈r, h〉m : R

Γ′ ; 〈r, h〉 : T ` λm. x 〈r, h〉m : ¬D

Γ′ ; 〈r, h〉 : T ` 〈r, λm. x 〈r, h〉m〉 : T

Γ′ ; 〈r, h〉 : T ` N 〈r, λm. x 〈r, h〉m〉 : R

Γ ; 〈r, h〉 : T ` λx. N 〈r, λm. x 〈r, h〉m〉 : ¬D

Γ ; − ` δ〈r, h〉. λx. N 〈r, λm. x 〈r, h〉m〉 : T ( ¬D
T ( ¬D = D

Γ ; − ` δ〈r, h〉. λx. N 〈r, λm. x 〈r, h〉m〉 : D

[raise]: The target derivation is immediate:

Γ , x : D ; 〈r, h〉 : T ` h : ¬D Γ , x : D ; − ` x : D

Γ , x : D ; 〈r, h〉 : T ` h x : R

Γ ; 〈r, h〉 : T ` λx. h x : ¬D

Γ ; − ` δ〈r, h〉. λx. h x : T ( ¬D

Γ ; − ` δ〈r, h〉. λx. h x : D

2. By 1 we have
Γ ; − ` M : (D → R) & (D → R) ( R

from which the target derivation follows

Γ ; − ` M : ¬D & ¬D ( R

Γ ; k : ¬D ` k : ¬D Γ ; k : ¬D ` k : ¬D

Γ ; k : ¬D ` 〈k, k〉 : ¬D & ¬D

Γ ; k : ¬D ` M 〈k, k〉 : R

Γ ; − ` δk. M 〈k, k〉 : ¬D ( R
�

4.5 Completeness

The completeness result and development for the language of exceptions is very similar to that
for λ-calculus and so we tersely present the technicalities.

Proposition 9 (No Junk) If Γ ; − s̀ M : (D → R) & (D → R) ( R, then there exists a source
term N such that M

βη= N.
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4.5.1 Target sublanguage

As with procedures, we define a sublanguage of the general target language by restricting the
form of types to only those used by theCPStransformation.

The syntax of terms and the equational theory are unchanged from Section 4.2. Since the
interpretation in Section 4.3 revolves around the type

D = µD. (D → R) & (D → R) ( D → R

the syntax of types is built from it:

A, P ::= types

| D → R continuation type

| (D → R) & (D → R) continuation&-pair type

| D | (D → R) & (D → R) ( D → R continuation transformer types (4.1)

| (D → R) & (D → R) ( R program type

| R result type

The typing rules of Section 4.2 specialized to the restricted form of types are

Γ , x : D ; ∆ s̀ M : R

Γ ; ∆ s̀ λx. M : ¬D

Γ ; ∆ s̀ M : T ( ¬D Γ ; ∆′
s̀ N : T

Γ ; ∆ , ∆′
s̀ M N : ¬D

Γ ; t : T s̀ t : T

Γ ; ∆ s̀ M : ¬D Γ ; ∆ s̀ N : ¬D

Γ ; ∆ s̀ 〈M, N〉 : T

Γ , x : D ; − s̀ x : D
Γ ; ∆ , t : T s̀ M : ¬D

Γ ; ∆ s̀ δt. M : T ( ¬D Γ ; − s̀ πi : T ( ¬D

Γ ; ∆ s̀ M : T ( ¬D

Γ ; ∆ s̀ M : D

Γ ; ∆ s̀ M : D

Γ ; ∆ s̀ M : T ( ¬D

Γ ; ∆ , t : T s̀ M : R

Γ ; ∆ s̀ δt. M : T ( R

Γ ; ∆ s̀ M : ¬D Γ ; − s̀ N : D

Γ ; ∆ s̀ M N : R

Γ ; ∆ s̀ M : T ( R Γ ; ∆′
s̀ N : T

Γ ; ∆ , ∆′
s̀ M N : R

Observation 10 Γ ; ∆ s̀ M : A if and only ifΓ ; ∆ ` M : A and all types which appear in the
derivation of the latter judgment are in the type language defined by (4.1).

Note that all the derivations we have presented so far satisfy this property.

Observation 11 If Γ ; ∆ s̀ M : A, then∆ = − or ∆ = t : T.

Taking this special form of contexts into account, we can further specialize the presentation
of the typing rules:
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[KA BS]
Γ , x : D ; t : T s̀ M : R

Γ ; t : T s̀ λx. M : ¬D
[KA PP]

Γ ; − s̀ M : T ( ¬D Γ ; t : T s̀ N : T

Γ ; t : T s̀ M N : ¬D

[TID] Γ ; t : T s̀ t : T [TPAIR]
Γ ; t : T s̀ M : ¬D Γ ; t : T s̀ N : ¬D

Γ ; t : T s̀ 〈M, N〉 : T

[DID] Γ , x : D ; − s̀ x : D [DABS]
Γ ; t : T s̀ M : ¬D

Γ ; − s̀ δt. M : T ( ¬D
[DPROJi] Γ ; − s̀ πi : T ( ¬D

[DFOLD]
Γ ; − s̀ M : T ( ¬D

Γ ; − s̀ M : D
[DUNFOLD]

Γ ; − s̀ M : D

Γ ; − s̀ M : T ( ¬D

[PABS]
Γ ; t : T s̀ M : R

Γ ; − s̀ δt. M : T ( R

[RAPPK]
Γ ; t : T s̀ M : ¬D Γ ; − s̀ N : D

Γ ; t : T s̀ M N : R

[RAPPP]
Γ ; − s̀ M : T ( R Γ ; t : T s̀ N : T

Γ ; t : T s̀ M N : R

4.5.2 DS transformation

The DS transformation of programsPL(·)M is defined mutually recursively withKL(·)M, T L(·)M,
DL(·)M, andRL(·)M, which transform continuations, continuation&-pairs, continuation transform-
ers, and results, respectively:

KLλx. MM def= λx.RLMM
KLM NM def= λx. T LNM[DLMM x] x /∈ fi(M N)

T LtM def= []
T L〈M, N〉M def= (λy. λx. x y) [] handle (λe. λx.KLNM e)KLMM x /∈ fi(N)

DLxM def= x

DLδt. MM def= KLMM
DLπ0M

def= λx. x

DLπ1M
def= raise

PLδt. MM def= RLMM

RLM NM def= KLMMDLNM
RLM NM def= T LNM[PLMM]

Where[] is a “hole” in a term and we writeM[N] for the result of filling the hole inM with
N. Note that this is not equivalent to abstraction and application since we fill the hole with an
application in the clause forKLM NM and the fullβ law is not valid in the source language, only
β-value is valid.

The key of thisDS transformation, like the one in Section 3.6.3, is the transformation of
control contexts: here continuation&-pairs instead of continuations. The idea here is also to



58 Chapter 4. Exceptions

replace explicit manipulation of control contexts by introduction of implicit control contexts, but
now the control contexts are more complicated. For instance

KL(δt. M) 〈R, H〉M = λz. (λy. λx. x y) (KLMM z) handle (λe. λx.KLHM e)KLRM

puts theDS transformation of continuationM in the context of not only an application (eventually)
to the transformation of its return continuation, but also an exception handler built from theDS

transformation of the handler continuation. Care must be taken to ensure that exceptions raised
whenKLRM is called are not handled by the newly installed handler, which would not be properly
dealt with by

λz. (λy.KLRM y) (KLMM z) handleλe.KLHM e

Also, the abstraction ony may seem superfluous but without it the body of thehandle is a value,
which results in the newly installed handler being uninstalled immediately.

4.5.3 No junk

Lemma 12 (Inverseness) 1. If Γ ; 〈r, h〉 : T s̀ M : ¬D thenKLMM 〈R, H〉 βη= Rδ〈r, h〉. M.

2. If Γ ; 〈r, h〉 : T s̀ M : T thenT LMM[N] βη= δ〈r, h〉. N M.

3. If Γ ; − s̀ M : D or Γ ; − s̀ M : T ( ¬D thenDLMM 〈R, H〉 βη= R M.

4. If Γ ; − s̀ M : T ( R thenPLMM βη= M.

5. If Γ ; 〈r, h〉 : T s̀ M : R thenRLMM βη= δ〈r, h〉. M.

Proof By induction on the derivation of the judgment:

[KA BS]: ThereforeM = λx. M′ andΓ , x : D ; 〈r, h〉 : T s̀ M′ : R. Hence

KLλx. M′M 〈R, H〉 = λx.RLM′M 〈R, H〉
= (δ〈r, h〉. r pλx.RLM′Mq) 〈R, H〉
βη= Rpλx.RLM′Mq

= Rδ〈r, h〉. λx.RLM′M 〈r, h〉
βη= Rδ〈r, h〉. λx. (δ〈r, h〉. M′) 〈r, h〉 by the induction hypothesis
βη= Rδ〈r, h〉. λx. M′

[KA PP]: ThereforeM = M′ N′, Γ ; − s̀ M′ : T ( ¬D, andΓ ; 〈r, h〉 : T s̀ N′ : T. Hence



4.5. Completeness59

KLM′ N′M 〈R, H〉
= λx. T LN′M[DLM′M x] 〈R, H〉
= (δ〈r, h〉. r pλx. T LN′M[DLM′M x]q) 〈R, H〉
βη= Rpλx. T LN′M[DLM′M x]q

= Rδ〈r, h〉. λx. T LN′M[DLM′M x] 〈r, h〉
βη= Rδ〈r, h〉. λx. (δ〈r, h〉.DLM′M x N′) 〈r, h〉 by the induction hypothesis
βη= Rδ〈r, h〉. λx.DLM′M x N′

= Rδ〈r, h〉. λx. (δ〈r, h〉.DLM′M 〈λm. x 〈λn. m 〈r, h〉n, h〉, h〉) N′

βη= Rδ〈r, h〉. λx. (δ〈r, h〉.DLM′M 〈λm. x 〈m 〈r, h〉, h〉, h〉) N′

= Rδ〈r, h〉. λx. (δ〈r, h〉.DLM′M 〈λm. (δ〈r, h〉. r pxq) 〈m 〈r, h〉, h〉, h〉) N′

βη= Rδ〈r, h〉. λx. (δ〈r, h〉.DLM′M 〈λm. m 〈r, h〉 pxq, h〉) N′

= Rδ〈r, h〉. λx. (δ〈r, h〉.DLM′M 〈λm. m 〈r, h〉 x, h〉) N′

βη= Rδ〈r, h〉. λx. (δ〈r, h〉. (λm. m 〈r, h〉 x) M′) N′ by the induction hypothesis
βη= Rδ〈r, h〉. λx. (δ〈r, h〉. M′ 〈r, h〉 x) N′

= Rδ〈r, h〉. λx. (δt. M′ t x) N′

βη= Rδ〈r, h〉. λx. M′ N′ x
βη= Rδ〈r, h〉. M′ N′

[TID]: ThereforeΓ ; 〈r, h〉 : T s̀ M : T = Γ ; t : T s̀ t : T. Hence

T LtM[N] = [][N]
= N
βη= δt. N t

[TPAIR]: ThereforeM = 〈M′, N′〉, Γ ; 〈r, h〉 : T s̀ M′ : ¬D, andΓ ; 〈r, h〉 : T s̀ N′ : ¬D. Hence

T L〈M′, N′〉M[N]

= (((λy. λx. x y) []) handle (λe. λx.KLN′M e)KLM′M)[N]

= ((λy. λx. x y) N) handle (λe. λx.KLN′M e)KLM′M

= δ〈r, h〉. ((λy. λx. x y) N) handleλe. λx.KLN′M e

〈λm.KLM′M 〈λn. m 〈r, h〉n, h〉, h〉
βη= δ〈r, h〉. ((λy. λx. x y) N) handleλe. λx.KLN′M e

〈λm.KLM′M 〈m 〈r, h〉, h〉, h〉
βη= δ〈r, h〉. ((λy. λx. x y) N) handleλe. λx.KLN′M e 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉

by the induction hypothesis

= δ〈r, h〉. (δ〈r, h〉. ((λy. λx. x y) N) handle

〈λm. λe. λx.KLN′M e 〈λn. m 〈r, h〉n, h〉, h〉)
〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉
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βη= δ〈r, h〉. (δ〈r, h〉. ((λy. λx. x y) N) handle

〈λm. λe. λx.KLN′M e 〈m 〈r, h〉, h〉, h〉)
〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉

βη= δ〈r, h〉. ((λy. λx. x y) N) handle

〈λm. λe. λx.KLN′M e 〈m 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉, h〉, h〉
= δ〈r, h〉. ((λy. λx. x y) N) handle

〈λm. (δ〈r, h〉. r pλe. λx.KLN′M eq)
〈m 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉, h〉, h〉

βη= δ〈r, h〉. ((λy. λx. x y) N) handle
〈λm. m 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq, h〉

= δ〈r, h〉. (δ〈r, h〉. r p((λy. λx. x y) N) handleq)
〈λm. m 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq, h〉

βη= δ〈r, h〉. (λm. m 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq)
p((λy. λx. x y) N) handleq

βη= δ〈r, h〉. p((λy. λx. x y) N) handleq

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

= δ〈r, h〉. (δ〈r, h〉. λx. (λy. λx. x y) N 〈r, λm. x 〈r, h〉m〉)
〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

βη= δ〈r, h〉. (δ〈r, h〉. λx. (λy. λx. x y) N 〈r, x 〈r, h〉〉)
〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. λy. λx. x y 〈λm. N 〈λn. m 〈r, h〉n, h〉, h〉)
〈r, x 〈r, h〉〉)

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq
βη= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. λy. λx. x y 〈λm. N 〈m 〈r, h〉, h〉, h〉) 〈r, x 〈r, h〉〉)

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. (δ〈r, h〉. r pλy. λx. x yq) 〈λm. N 〈m 〈r, h〉, h〉, h〉)
〈r, x 〈r, h〉〉)

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

βη= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. (λm. N 〈m 〈r, h〉, h〉) pλy. λx. x yq)
〈r, x 〈r, h〉〉)

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

βη= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. N 〈pλy. λx. x yq 〈r, h〉, h〉) 〈r, x 〈r, h〉〉)
〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. N 〈(δ〈r, h〉. λy. λx. x y 〈r, h〉) 〈r, h〉, h〉)
〈r, x 〈r, h〉〉)

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq
βη= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. N 〈λy. λx. x y 〈r, h〉, h〉) 〈r, x 〈r, h〉〉)

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. N 〈λy. (δ〈r, h〉. r pλx. x yq) 〈r, h〉, h〉)
〈r, x 〈r, h〉〉)

〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq
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βη= δ〈r, h〉. (δ〈r, h〉. λx. (δ〈r, h〉. N 〈λy. r pλx. x yq, h〉) 〈r, x 〈r, h〉〉)
〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

βη= δ〈r, h〉. (δ〈r, h〉. λx. N 〈λy. r pλx. x yq, x 〈r, h〉〉)
〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉 pλe. λx.KLN′M eq

βη= δ〈r, h〉. (λx. N 〈λy. (λm. m 〈r, h〉 δ〈r, h〉. M′) pλx. x yq

, x 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉) pλe. λx.KLN′M eq

βη= δ〈r, h〉. (λx. N 〈λy. pλx. x yq 〈r, h〉 δ〈r, h〉. M′

, x 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉) pλe. λx.KLN′M eq

βη= δ〈r, h〉. N 〈λy. pλx. x yq 〈r, h〉 δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈λy. (δ〈r, h〉. λx. x y 〈r, h〉) 〈r, h〉 δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. (λx. x y 〈r, h〉) δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈λy. (λx. (δ〈r, h〉. x 〈λm. y 〈λn. m 〈r, h〉n, h〉, h〉) 〈r, h〉)

δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. (λx. (δ〈r, h〉. x 〈λm. y 〈m 〈r, h〉, h〉, h〉) 〈r, h〉) δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. (λx. x 〈λm. y 〈m 〈r, h〉, h〉, h〉) δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈λy. (λx. (δ〈r, h〉. r pxq) 〈λm. y 〈m 〈r, h〉, h〉, h〉) δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. (λx. (λm. y 〈m 〈r, h〉, h〉) pxq) δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. (λx. y 〈pxq 〈r, h〉, h〉) δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈λy. (λx. y 〈x 〈r, h〉, h〉) δ〈r, h〉. M′

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. y 〈(δ〈r, h〉. M′) 〈r, h〉, h〉

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. y 〈M′, h〉, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈λy. (δ〈r, h〉. r pyq) 〈M′, h〉

, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈λy. M′ pyq, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈λy. M′ y, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈M′, pλe. λx.KLN′M eq 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈M′, (δ〈r, h〉. λe. λx.KLN′M e 〈r, h〉) 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈M′, λe. λx.KLN′M e 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
= δ〈r, h〉. N 〈M′, λe. (δ〈r, h〉. r pλx.KLN′M eq) 〈λm. m 〈r, h〉 δ〈r, h〉. M′, h〉〉
βη= δ〈r, h〉. N 〈M′, λe. (λm. m 〈r, h〉 δ〈r, h〉. M′) pλx.KLN′M eq〉
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βη= δ〈r, h〉. N 〈M′, λe. pλx.KLN′M eq 〈r, h〉 δ〈r, h〉. M′〉
= δ〈r, h〉. N 〈M′, λe. (δ〈r, h〉. λx.KLN′M e 〈r, h〉) 〈r, h〉 δ〈r, h〉. M′〉
βη= δ〈r, h〉. N 〈M′, λe. (λx.KLN′M e 〈r, h〉) δ〈r, h〉. M′〉
βη= δ〈r, h〉. N 〈M′, λe.KLN′M e 〈r, h〉〉
= δ〈r, h〉. N 〈M′, λe. (δ〈r, h〉.KLN′M 〈λm. e 〈λn. m 〈r, h〉n, h〉, h〉) 〈r, h〉〉
βη= δ〈r, h〉. N 〈M′, λe. (δ〈r, h〉.KLN′M 〈λm. e 〈m 〈r, h〉, h〉, h〉) 〈r, h〉〉
βη= δ〈r, h〉. N 〈M′, λe.KLN′M 〈λm. e 〈m 〈r, h〉, h〉, h〉〉
= δ〈r, h〉. N 〈M′, λe.KLN′M 〈λm. (δ〈r, h〉. r peq) 〈m 〈r, h〉, h〉, h〉〉
βη= δ〈r, h〉. N 〈M′, λe.KLN′M 〈λm. m 〈r, h〉 peq, h〉〉
= δ〈r, h〉. N 〈M′, λe.KLN′M 〈λm. m 〈r, h〉e, h〉〉
βη= δ〈r, h〉. N 〈M′, λe. (λm. m 〈r, h〉e) δ〈r, h〉. N′〉 by the induction hypothesis
βη= δ〈r, h〉. N 〈M′, λe. (δ〈r, h〉. N′) 〈r, h〉e〉
βη= δ〈r, h〉. N 〈M′, λe. N′ e〉
βη= δ〈r, h〉. N 〈M′, N′〉

[DID]: ThereforeM = x. Hence

DLxM 〈R, H〉 = x 〈R, H〉
= (δ〈r, h〉. r pxq) 〈R, H〉
βη= Rpxq

= R x

[DABS]: ThereforeM = δ〈r, h〉. M′ andΓ ; 〈r, h〉 : T s̀ M′ : ¬D. Hence

DLδ〈r, h〉. M′M 〈R, H〉 = KLM′M 〈R, H〉
βη= Rδ〈r, h〉. M′ by the induction hypothesis

[DPROJ0]: ThereforeM = π0. Hence

DLπ0M 〈R, H〉 = λx. x 〈R, H〉
= (δ〈r, h〉. r pλx. xq) 〈R, H〉
βη= Rpλx. xq

= Rδ〈r, h〉. λx. x 〈r, h〉
= Rδ〈r, h〉. λx. (δ〈r, h〉. r pxq) 〈r, h〉
βη= Rδ〈r, h〉. λx. r pxq

= Rδ〈r, h〉. λx. r x
βη= Rδ〈r, h〉. r

= Rδt. π0 t
βη= Rπ0
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[DPROJ1]: ThereforeM = π1. Hence

DLπ1M 〈R, H〉 = raise 〈R, H〉
= (δ〈r, h〉. r praiseq) 〈R, H〉
βη= Rpraiseq

= Rδ〈r, h〉. λx. h x
βη= Rδ〈r, h〉. h

= Rδt. π1 t
βη= Rπ1

[DFOLD]: ThereforeΓ ; − s̀ M : T ( ¬D. Hence

DLMM 〈R, H〉 βη= R M by the induction hypothesis

[DUNFOLD]: ThereforeΓ ; − s̀ M : D. Hence

DLMM 〈R, H〉 βη= R M by the induction hypothesis

[PABS]: ThereforeM = δ〈r, h〉. M′ andΓ ; 〈r, h〉 : T s̀ M′ : R. Hence

PLδ〈r, h〉. M′M = RLM′M
βη= δ〈r, h〉. M′ by the induction hypothesis

[RAPPK]: ThereforeM = M′ N′, Γ ; 〈r, h〉 : T s̀ M′ : ¬D, andΓ ; − s̀ N′ : D. Hence

RLM′ N′M

= KLM′MDLN′M

= δ〈r, h〉.KLM′M 〈λm.DLN′M 〈λn. m 〈r, h〉n, h〉, h〉
βη= δ〈r, h〉.KLM′M 〈λm.DLN′M 〈m 〈r, h〉, h〉, h〉
βη= δ〈r, h〉.KLM′M 〈λm. m 〈r, h〉N′, h〉 by the induction hypothesis
βη= δ〈r, h〉. (λm. m 〈r, h〉N′) δ〈r, h〉. M′ by the induction hypothesis
βη= δ〈r, h〉. (δ〈r, h〉. M′) 〈r, h〉N′

βη= δ〈r, h〉. M′ N′

[RAPPP]: ThereforeM = M′ N′, Γ ; − s̀ M′ : T ( R, andΓ ; 〈r, h〉 : T s̀ N′ : T. Hence

RLM′ N′M = T LN′M[PLM′M]
βη= δ〈r, h〉.PLM′M N′ by the induction hypothesis
βη= δ〈r, h〉. M′ N′ by the induction hypothesis �



64 Chapter 4. Exceptions

Proof [Proposition 9] Let N = PLMM and the result follows by Lemma 12. �

4.6 Conclusion

In this chapter we have seen that the treatment and results of procedures extends to a source
language with exceptions. This demonstration that restricted typing ofCPSapplies to a language
with quite expressive control behavior begins to demonstrate the veracity of the technique.

Technically, the main point is that the interpretation of procedures:

D
def= µD. (D → R)︸ ︷︷ ︸

return
continuation

& (D → R)︸ ︷︷ ︸
handler

continuation

( D → R︸ ︷︷ ︸
call

continuation

uses linear logic’s additive product to allow one of two continuations to be “used,” but not both.
This is our first encounter with the more general issue that it is notcontinuations, but control
contextssuch as&-pairs of continuations, which should have their use restricted.
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Chapter 5

Delimited Continuations, and Control Contexts
versus Continuations

The main goal of this chapter is to explain the uncommon but crucial distinction we make be-
tween control contexts and continuations. This distinction is necessary since the role each pa-
rameter of a semantics (an environment, a store, a current continuation, etc.) plays, rather than
its type, is of primary concern. Hence we focus on restricted use of control contexts, which are
defined by the role they play, rather than continuations, which are defined independently as des-
tinations of jumps. To demonstrate the importance of this distinction, we give an interpretation
of first-class continuations (call/cc andabort) which uses continuations linearly, but control
contexts nonlinearly. What this demonstrates is that care must be taken to ensure that the entire
control context is used linearly by an interpretation, or else linearity says virtually nothing. In
other words, linear typing is a tool but not itself a solution.

The key aspect of this interpretation is that control contexts are represented not as contin-
uations, as is usual, but as a continuation (which is used linearly) together with a delimited
continuation (which is used nonlinearly). We will discuss them more fully later, but in short a
delimited continuation representspart of a computation, rather than a computation “to the end”
as an undelimited continuation represents. As several later interpretations are based on delimited
continuations, we first introduce them in their own right.

Unlike most presentations of delimited continuations (similar to, or also known as: com-
posable continuations, partial continuations, functional continuations, and subcontinuations, see
Section 5.5), we consider them only in the target language, independent of any delimited contin-
uation control construct in the source. Since we do not consider any such operations, we never
need tocomposedelimited continuations (as is done in e.g. [DF90]), and so given that the ability
to do so is one of the primary characteristics of delimited continuations, our use of them here
is somewhat degenerate. By giving a delimited continuation interpretation ofλ-calculus, we in-
troduce the technical formulation of delimited continuations we use, and present some related
techniques and ideas we will use in Section 5.4 and later chapters.

5.1 Delimited Continuations

When a continuation is invoked, it performs some computation and then invokes its parent con-
tinuation, which in turn performs some computation and then invokes its parent continuation,
and so on. So, conceptually, there are two parts to a continuation: the “first part,” and the “rest
part” (the parent continuation). (Recall that we have come across this intuition already: it was
crucial to theDS transformations of Section 3.6.3 and Section 4.5.2.) More generally, a continua-
tion can be split not only at the parent continuation, but also at the parent’s parent, some number
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of times removed. In this case, the continuation is split in to a delimited continuation which is
the composition ofn-many “first parts”, and an undelimited continuation which is the parent’s
parent,n-times removed.

For a concrete example of some delimited continuations (what theyare, but nothowto obtain
them), consider the following Scheme program which uses delimited continuations explicitly:

(define (fact-dcps n k t)
(if (= n 0)

(k 1 t)
(fact-dcps
(- n 1)
(lambda (x t) (k (* n x) t))
t)))

(define (fact-cps’ n k)
(fact-dcps n (lambda (x t) (t x)) k))

To avoid conjuring this program out of thin air, we show the analogous program in standardCPS,
which uses undelimited continuations:

(define (fact-cps n k)
(if (= n 0)

(k 1)
(fact-cps
(- n 1)
(lambda (x) (k (* n x))))))

In the former program, each continuation takes an extra argument: the toplevel continuation. That
is, each undelimited continuation in the latter program has been split into a delimited continuation
together with the toplevel (undelimited) continuation. Thus far technically we have ignored such
potential divisions and simply treated continuations atomically, but we now consider these “first
parts,” that is, delimited continuations, separately.

Note that while we relate these programs usingη-equivalence, we do not mean to imply
thatη is generally the way to transit from programs manipulating undelimited continuations to
programs using delimited continuations. Instead, theCPS transformation should be applied the
CPSversion to yield the delimited continuation-passing version [DF90]. So, while the previous
example suffices to demonstrate some inhabitants of the type of delimited continuations, the
following (taken from [BBD04b], but simplified to the original problem in [Dan89], and written
in Scheme) is a more appropriate example of delimited continuations used “in anger,” where they
actually buy something operationally rather than just reorganize code:

(define (prefixes-cps xs t)
(letrec ((visit

(lambda (xs d k)
(if (not (pair? xs))

(k ’())
(let ((c (lambda (vs h) (d (cons (car xs) vs) h))))
(c ’() (lambda (vs)

(visit (cdr xs) c
(lambda (vss) (k (cons vs vss)))))))))))

(visit xs (lambda (vs k) (k vs)) t)))

This function returns a list of all the prefixes of the argument list, so(prefixes-cps ’(1 2 3 4)

t) passes((1) (1 2) (1 2 3) (1 2 3 4)) to t. Note that the auxiliaryvisit function’s sec-
ond argument is a delimited continuation, and its third argument is an undelimited continuation.
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In this program, use of delimited continuations is much more significant as it allows sharing of
the control which constructs the common parts of the list prefixes. Each delimited continuation
represents a list prefix and, when invoked with a list and a continuation, constructs the prefix onto
the given list and then invokes the continuation on the prefixed list. The key here is how each
delimited continuation representing a certain prefix is shared by all the delimited continuations
representing longer prefixes. This is accomplished in the code by invoking delimited continua-
tion c with a continuation which itself refers toc. In this way,c is used once to construct the
prefix it represents, and then later by its continuation, potentially many times, to construct the
longer prefixes. See [BBD04b] for a full discussion and explanation.

Intuitively, a delimited continuation, like a continuation, is the destination of a jump with
arguments,1 but unlike a continuation, a delimited continuation represents only part of a com-
putation while the remainder is represented by a continuation argument which the delimited
continuation accepts.2 So invoking either a continuation or a delimited continuation results in
performing some computation and then invoking a continuation. The difference is that with a
continuation, the second continuation is an indivisible part of the first, while with a delimited
continuation, the continuation is an argument of the delimited continuation.

For example, the undelimited continuation involved in the computation of(fact-cps 3 k)

(lambda (x)
((lambda (x)

((lambda (x)
(k
(* 3 x)))

(* 2 x)))
(* 1 x)))

βη= (lambda (x) (k (* 3 (* 2 (* 1 x)))))

contains its parent/toplevel continuation,k, while the corresponding delimited continuation in-
volved in the computation of(fact-cps’ 3 k)

(lambda (x t)
((lambda (x t)

((lambda (x t)
((lambda (x t) (t x))
(* 3 x) t))

(* 2 x) t))
(* 1 x) t))

βη= (lambda (x t) (t (* 3 (* 2 (* 1 x)))))

contains no continuation, and instead accepts the toplevel continuation as an argument,t. Also
note how the “first parts” of three continuations are composed together above, particularly evi-
dently in theβ-contracted versions.

At the level of types, for a continuation of typeS→ R which contains a continuation of type
T → R

Γ , k : T → R ` M : S→ R

1Note, however, that in presentations of delimited continuations in the source language, when invoked,
a delimited continuation iscomposedwith the continuation of the invocation site, and so the continuation
argument of a delimited continuation is implicitly taken to be the current continuation of the invocation
site. In this case, invoking a delimited continuation has no abortive effect since the current continuation
remains intact, and hence is, in a way, unlike a jump.

2In [Dan88, DF89, DF90, DF92], what we call “delimited continuations” are termed “continuations,”
and our “continuations” are termed “meta-continuations.”
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the corresponding delimited continuation will have typeS→ (T → R) → R and will not contain
any (free) continuations:

Γ ` λx. λk. M x : S→ (T → R) → R

So the implicit dependence of a continuation on another continuation through the context is
changed to the explicit dependence of a delimited continuation on an argument continuation.
The crucial point of our use of delimited continuations is that decomposing a continuation into
delimited and undelimited portions allows the two pieces to be treated separately in the type
system. So if the two pieces are manipulated in different ways, then more accurate restricted
typings may be possible.

Note that while delimited continuations are continuations, conceptually (they are destinations
of jumps) and at the level of types (they are maps to the result type), in discussions where both
delimited and undelimited continuations are involved, we use the term “continuation” to refer
not to either an undelimited or delimited continuation, but to only the undelimited continuations
under consideration. This is entirely a matter of convenience for discussion, since with an abstract
result type, one never knows if a continuation is actually delimited in some way hidden by the
abstractness of the result type.

5.2 Refined Delimited Continuation Interpretation of Procedures

We introduce our use of delimited continuations by giving an alternate presentation of Chapter 3’s
interpretation of the untypedλ-calculus, one which primarily manipulates delimited continua-
tions rather than (undelimited) continuations. Recall that in Section 3.3, value terms (procedures)
were interpreted with the type (where we have renamedR to R′)

µD. (D → R′)︸ ︷︷ ︸
return

continuation

( D → R′︸ ︷︷ ︸
call

continuation

and terms with the type
(D → R′)︸ ︷︷ ︸

return
continuation

( R′

SinceR′ is abstract, the transformation remains correct with any result type. In particular, par-
tially specifying the result type to

R′ def= (D → R)︸ ︷︷ ︸
toplevel

continuation

( R

leads to an interpretation of procedures using the type3

D
def= µD. (D → (D → R)︸ ︷︷ ︸

toplevel continuation

( R)

︸ ︷︷ ︸
return

delimited continuation

( D → (D → R)︸ ︷︷ ︸
toplevel continuation

( R

︸ ︷︷ ︸
call

delimited continuation
3We use a combination of continuation-first and continuation-second styles here to remain consistent

with our other interpretations while still being able to benefit fromη-reductions to simplify terms which
do not manipulate the toplevel continuation.
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and an interpretation of terms using the type

(D → (D → R)︸ ︷︷ ︸
toplevel continuation

( R)

︸ ︷︷ ︸
return

delimited continuation

( (D → R)︸ ︷︷ ︸
toplevel

continuation

( R

In this interpretation, the call and return continuations of the old interpretation are replaced
with delimited continuations. The usual return continuation can be obtained from a return delim-
ited continuationRand toplevel continuationT by

λx. R x T

So this new interpretation of procedures is simply explicating how a return continuation is made
up of the toplevel continuation together with a delimited continuation. In other words, this inter-
pretation uses a different representation of control contexts: the control context of a procedure
call is now represented not directly by a return continuation, but by a return delimited continua-
tion and the toplevel continuation.

Another point to note about this interpretation is thatCPSprocedures accept the toplevel con-
tinuation and then pass it on to the return delimited continuation. So the toplevel continuation
is now essentially a piece of global state, although it is never modified. The toplevel contin-
uation is passed to each delimited continuation so that it may terminate the computation, but a
delimited continuation does not “own” the toplevel continuation like an undelimited continuation
owns its parent continuation: a delimited continuation and the toplevel continuation are divisible
and independently manipulable, unlike an undelimited continuation which indivisibly contains
the toplevel continuation. This opens up the possibility of having several delimited continua-
tions around without duplicating the toplevel continuation, which is precisely what we need in
Chapter 9.

Since all we have done is further specify the result type, the transformation on terms, shown in
Figure 5.1, is simply a linearη-expansion of the transformation in Section 3.3. Hence Soundness
and Adequacy also hold for this interpretation.

The interpretation of toplevel programs using the type

(D → R)︸ ︷︷ ︸
toplevel

continuation

( R

shown in Figure 5.1, simply installs the “empty” delimited continuation (theunit of delimited
continuation composition) as the return delimited continuation since, at toplevel, the return con-
tinuation essentially is the toplevel continuation. While not as immediate as for the transforma-
tion on terms, Soundness and Adequacy results for this interpretation are straightforward exten-
sions of those in Chapter 3.
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Figure 5.1Refined Delimited Continuation Interpretation of Untypedλ-calculus

Value Terms

D
def= µD. (D → (D → R) ( R)︸ ︷︷ ︸

return

( D → (D → R) ( R︸ ︷︷ ︸
call

pxq
def= x

pλx. Mq def= δr. λx. M r
βη= δr. λx. δt. M r t

Terms

(D → (D → R) ( R)︸ ︷︷ ︸
return

( (D → R)︸ ︷︷ ︸
toplevel

( R

V
def= δr. r pVq βη= δr. δt. r pVq t

M N
def= δr. M (λm. N (λn. m r n)) βη= δr. δt. M (λm. δt. N (λn. δt. m r n t) t) t

m /∈ fi(N)

Programs

(D → R)︸ ︷︷ ︸
toplevel

( R

xMy
def= δt. M (λm. δt. t m) t

5.3 Control Contexts versus Continuations

In the preceding chapters we have given refined continuation semantics by imposing a discipline
of linearly used control contexts. In doing so we have made an uncommon distinction between
control contexts and continuations, but so far we have not provided much justification for this
distinction. In short, we distinguish control contexts and continuations because trying to provide
refined continuation semantics by imposing a discipline of linearly used continuations is not very
meaningful in general. The interpretation of exceptions, in which control contexts are&-pairs
of continuations, contained the first hints that a discipline of linearly used continuations might
not be quite right, but in Section 5.4 we provide much more convincing evidence in the form
of an interpretation ofcall/cc andabort which uses continuations, but not control contexts,
linearly. The conclusion we draw from this is that only restricting the use of continuations, and
not worrying about control contexts, does not necessarily constrain the control behavior of the
source language.

A related point is that the syntactic form of a type, and hence whether it is a type of contin-
uations or not, does not indicate whether its elements ought to be used linearly or nonlinearly.4

Instead it is the role played by the elements which is significant. For instance, in Section 3.3,
procedures are interpreted with a type of continuation transformers

(D → R) ( D → R

4Our focus on types as opposed to abstract data types is immaterial. That is, the control contextADT

and continuationADT would need to be distinguished, and the signature of the control contextADT would
depend upon the language under consideration, while the continuationADT ’s signature need not.
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and, in the previous section, delimited continuations have type

D → (D → R) ( R

We could easily have represented delimited continuations with a type of continuation transform-
ers, it is merely a technical convenience to use the type above instead. That is, ifD referred
to the same type in both these types, they would be isomorphic. Note that this is a significant
qualification, however, since if delimited rather than undelimited continuations are used, then
the type of proceduresmustbe likewise “bumped up.” So procedures and delimited continua-
tions may appear quite similar at the level of types (though never identical), but it is important
to appreciate the very different roles they play. Continuation transformers were used to interpret
source procedures, and hence they were part of the data context, and used nonlinearly. Delimited
continuations, on the other hand, were used to represent part of the control context in Section 5.1,
and were used linearly.

5.4 Delimited Continuation Interpretation of First-Class Continuations

We now present an interpretation of first-class continuations, as employed in the example in
Section 1.2. The key aspect of this interpretation, as mentioned earlier, is that control contexts
are represented not as continuations, as is usual, but as a continuation (which is used linearly)
together with a delimited continuation (which is used nonlinearly). The types used to interpret
source value terms

D
def= µD. (D → (D → R) ( R)︸ ︷︷ ︸

return
delimited continuation

→ D → (D → R) ( R︸ ︷︷ ︸
call

delimited continuation

and terms
(D → (D → R) ( R)︸ ︷︷ ︸

return
delimited continuation

→ (D → R)︸ ︷︷ ︸
toplevel

continuation

( R

are the same as those used in Section 5.2 except that now delimited continuations may be used
nonlinearly, but (undelimited) continuations must still be used linearly. The transformation of
terms, shown in Figure 5.2, is standard except for the clause forabort, since none of the others
manipulate the toplevel continuation and hence are insensitive to changing from a return contin-
uation to a return delimited continuation. Forabort, the standard transformation would be

pabortq = λr. λx. x

which violates the abstractness of the result type by requiringR = D. Less drastically, at least
an injection fromD into R is needed. Using delimited continuations allows a transformation

pabortq
def= λr. λx. δt. t x

which instead uses the toplevel continuation to inject elements ofD into R, preserving abstract-
ness.

Finally, toplevel programs are interpreted in Figure 5.2 using the type

(D → R)︸ ︷︷ ︸
toplevel

continuation

( R
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Figure 5.2Delimited Continuation Interpretation of First-Class Continuations

Value Terms

D
def= µD. (D → (D → R) ( R)︸ ︷︷ ︸

return

→ D → (D → R) ( R︸ ︷︷ ︸
call

pxq
def= x

pλx. Mq def= λr. λx. M r
βη= λr. λx. δt. M r t r /∈ fi(λx. M)

pcall/ccq
def= λr. λx. x r λs. r

βη= λr. λx. δt. x r (λs. λx. δt. r x t) t
pabortq

def= λr. λx. δt. t x

Terms

(D → (D → R) ( R)︸ ︷︷ ︸
return

→ (D → R)︸ ︷︷ ︸
toplevel

( R

V
def= λr. r pVq βη= λr. δt. r pVq t r /∈ fi(V)

M N
def= λr. M λm. N (m r) βη= λr. δt. M (λm. δt. N (λn. δt. m r n t) t) t m, r /∈ fi(M N)

Programs

(D → R)︸ ︷︷ ︸
toplevel

( R

xMy
def= δt. M (λm. δt. t m) t

5.5 Background and Related Work

The first incarnation of delimited continuations is probably Stoy and Strachey’sRun[] andFin-
ish[] routines inOS6 [SS72]. Roughly,Run[] specifies where the current continuation is split
into delimited and undelimited continuations, andFinish[] discards the delimited continuation.

While people have been programming inCPS with essentially delimited continuations
since the early days during the 1970’s and 1980’s, Felleisen [Fel87] defined the firstDS op-
erator for delimiting control. This definition, and those in the resulting line of research
[Fel88, FFDM87, FWFD88, HDA94, Joh87, JD88, SF90], are independent ofCPS, and are ex-
plained in terms of additional notions, for instance, by an algebra of activation frames [FWFD88].
Danvy and Filinski [Dan88, DF89, DF90, DF92] developed alternate control operators where de-
limited continuations are a natural generalization ofCPS itself.5 Linking the two lines, Danvyet.
al. [DN01, Dan04] have shown that the representations of delimited continuations in the former
line (for instance, evaluation contexts) can be mechanically obtained as defunctionalized versions
of the representation of the latter line (continuation functions). Also, Shan [Sha04] has shown
that Felleisen’s operators are macro-expressible by Danvy and Filinski’s, by using recursive con-
tinuations, but not undelimited continuations or state.

Apart from the refinement with linearity, our presentation of delimited continuations in the
target language, and the interpretation here, follows from Danvy and Filinski’s. This approach

5A generalization which, as Danvy and Filinski note [DF90], can be seen as a realization of the idea
alluded to in the footnote on page 9 of [SW74].
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is the simpler, more appropriate fit for our purposes, and also results in static-binding of control
delimiters, rather than the dynamic-binding based methods of determining where to split the
current continuation found in the other line of development.

Like us, Friedman and Sabry [FS02] also use delimited continuations only as a tool in the
target language, but toward different ends. Thielecke [Thi03] uses delimited continuations in the
target language to interface between restricted and unrestricted continuation-passing in a mixed
linear/non-linearCPStransformation.

5.6 Conclusion

In this chapter we first saw how to adapt the interpretation of procedures to one representing the
control context with delimited, rather than standard undelimited, continuations:

D
def= µD. (D → (D → R)︸ ︷︷ ︸

toplevel continuation

( R)

︸ ︷︷ ︸
return

delimited continuation

( D → (D → R)︸ ︷︷ ︸
toplevel continuation

( R

︸ ︷︷ ︸
call

delimited continuation

Since in Chapter 3 procedures were interpreted with continuation transformers (a type of contin-
uations, or one isomorphic to a type of continuations), restricting all continuation types to linear
usage cannot generally be sound, despite this interpretation’s use of linearly-used delimited con-
tinuations.

On the other hand, we also gave an interpretation of first-class continuations:

D
def= µD. (D → (D → R) ( R)︸ ︷︷ ︸

return
delimited continuation

→ D → (D → R) ( R︸ ︷︷ ︸
call

delimited continuation

which uses undelimited continuations linearly, but delimited continuations nonlinearly. So re-
stricting the use of too few continuation types (delimited continuations are isomorphic to a type
of continuations) leads to a sound interpretation ofcall/cc, demonstrating that the linearity is
effecting no restriction on control behavior whatsoever.

In summary: All the continuation types cannot be used linearly, and if too few are, things go
horribly wrong. So instead, a particular semantics’ representation of the control context must be
identified, and then linear use analyzed.

Some, particularly those experienced with continuations or continuation semantics, may scoff
at this point, thinking that of course one must choose the right notion of “continuation” for the
situation at hand. While we agree, it remains that there is a semantic distinction between the
notions of “destination of a jump” (which we term continuation) and “abstraction of the effect
of the rest of the computation” (which we term control context). In some cases the two may
coincide (for instance, they do for standardCPS semantics of theλ-calculus), but in general,
control contexts are intimately tied to the language and particular semantics under consideration,
while continuations can be defined once, irrespective of each particular language or semantics.
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Chapter 6

A Simple Command Language

At this point we have presented the basic ideas of linearly used control contexts, but the line
between which semantics and language features admit such interpretations and which do not
is not particularly clear. We will now analyze the issues in more detail, sharpening the line.
While we have used higher-order functional languages to present the basic ideas, continuing
to do so would be highly inconvenient and artificial since we will need to explore languages
with various binding and scoping mechanisms, various kinds of store, and various distinctions
between different sorts of code. None of these fit well with extensions ofλ-calculus, so we now
shift to using a simple command language as the vehicle of our analysis.

Before considering any interesting control behavior, we briefly present an interpretation of a
simple command language with virtually trivial control behavior. In following chapters we will
extend this language in several independent directions, so it is convenient to present it on its own.

6.1 Source Syntax

The syntax of the source language is given by the grammar

E ::= expressions

| n numeric literal

| *n dereference

| E == E numeric equality

C ::= commands

| n = E assignment

| skip no-op

| C;C sequence

| if(E) {C} conditional

wheren is a number. Here we are not concerned with issues of naming and binding and so forgo
variables and instead work directly with locations, which we simply take to be numbers. For
a simple example, the following command tests whether the contents of locations1 and2 are
unequal, and if so swaps them using location3 as a temporary:

if(*1 != *2) {3 = *1; 1 = *2; 2 = *3}

We give a standard direct semantics of this language shortly, but first we need to make some
slight extensions to the target language.
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6.2 Target Language(+= N)

Since numbers are central to the simple command language, we now admit that the target base
type N is a type of numbers and flesh out the target language with numeric literals, numeric
equality, and a test for zero. This is all straightforward.

6.2.1 Syntax

We extend the syntax with the productions

M ::= · · · terms

| n numeric literal

| M
n= M numeric equality

| M � M 8 M conditional (if zero)

Convention: Numeric equality has lower precedence than application, soM N
n= O parses to

(M N) n= O rather thanM (N n= O). The conditional has lower precedence than numeric equality,
soM

n= N � O 8 P parses to(M n= N) � O 8 P rather thanM
n= (N � O 8 P).

For convenience, the numbers in the target language are taken to be the same numbers as in
the source language.

6.2.2 Equational theory

We extend the equational theory with the following axioms:

n
n= n

βη= 1
m 6= n

m
n= n

βη= 0

0 � M 8 N
βη= M

n 6= 0
n � M 8 N

βη= N n � M 8 M
βη= M

Note that numeric equality encodes “true” and “false” as1 and0, and that the conditional tests
for 0, not “true.”

6.2.3 Type system

We extend the type system with the axiom and rules

[NL IT] Γ ; − ` n : N
[NEQ]

Γ ; ∆ ` M : N Γ ; ∆′ ` N : N

Γ ; ∆ , ∆′ ` M
n= N : N

[NCOND]
Γ ; ∆ ` M : N Γ ; ∆′ ` N : A Γ ; ∆′ ` O : A

Γ ; ∆ , ∆′ ` M � N 8 O : A

Note how the two branches of the conditional share the same linear zone, just as the two factors
of a&-pair do.

6.3 Direct Semantics

Expressions are pure, so it is simplest to give a direct denotational semantics. The semantics
of commands, on the other hand, is given by a big-step execution relation. In anticipation of
relating the direct and continuation semantics, we use the target language as the metalanguage
for defining the direct semantics.
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6.3.1 States

Assignment in the source language necessitates the use of states. As usual, states map locations
to values, which, in our case, are both numbers:

S
def= N → N

In Section A.1 we define some metalanguage syntactic sugar for manipulating states:

M ::= · · · terms

| S[N] lookup

| [S| N: M] extension

Convention:State lookup has higher precedence than application, soM S[N] parses toM (S[N])
rather than(M S)[N].
And, in Section A.3 we derive typing rules for this sugar:

[LOOKUP]
Γ ; ∆ ` S : N → A Γ ; − ` N : N

Γ ; ∆ ` S[N] : A

[EXTEND]
Γ ; ∆ ` S : N → A Γ ; − ` N : N Γ ; ∆ ` M : A

Γ ; ∆ ` [S| N: M] : N → A

These rules are more general than we need at this point, but in later chapters we will also use this
sugar for (state-like) environments.

6.3.2 Expressions

Expressions have numeric value and may depend on the state, so they are interpreted with the
type

S → N

and the semantics is

LnM def= λs. n

L*nM def= λs. s[n]
LE0 == E1M

def= λs. LE0M s
n= LE1M s

Proposition 13 (Soundness)For any expression E

− ; − ` LEM : S → N

Proof By structural induction on the syntax of the expression. �
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6.3.3 Commands

The semantics of commands is given by an execution relation,(·) ⇓ (·), which relates a command
and a state to a state:

n = E, s⇓ [s | n: LEM s] skip, s⇓ s
C0, s⇓ s′ C1, s′ ⇓ s′′

C0;C1, s⇓ s′′

C, s⇓ s′
LEM s

βη= n 6= 0
if(E) {C}, s⇓ s′

LEM s
βη= 0

if(E) {C}, s⇓ s

6.4 RefinedCPS Transformation

The interpretation we present is a refined version of, essentially, the continuation semantics given
in [Rey98b]. The same interpretation of expressions as the direct semantics is used, but com-
mands are given meaning by aCPStransformation.

In this simple language, once execution of a command finishes there is only a single way for
the computation to proceed: to execute the lexically “next” command. So a command’s control
context is represented by a single command continuation, which abstracts the effect of the com-
putation ensuing from execution of the next command. Commands simply execute, producing a
new state without any other effects, and so the type of command continuations is

S → R

Using this, commands are interpreted with the type

(S → R)︸ ︷︷ ︸
current

continuation

( S → R

which is a refinedCPS version of the type of state transformers,S → S. The transformation is
shown in Figure 6.1.
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Figure 6.1RefinedCPSof Simple Command Language

Expressions

S → N

LnM def= λs. n

L*nM def= λs. s[n]
LE0 == E1M

def= λs. LE0M s
n= LE1M s

Commands

(S → R)︸ ︷︷ ︸
current

( S → R

n = E
def= δk. λs. k [s | n: LEM s]

skip
def= δk. k

βη= δk. λs. k s

C0;C1
def= δk.C0 (C1 k) βη= δk. λs.C0 (λs.C1 k s) s

if(E) {C}
def= δk. λs. LEM s� k s8 C k s

6.5 Soundness

Since execution of a command can proceed in only one way, the soundness of this refined inter-
pretation is similar to, but simpler than, that of interpretations in previous chapters.

Proposition 14 (Soundness)For any command C

− ; − ` C : (S → R) ( S → R

Proof By structural induction on the syntax of the command. �

As before, technically the proof is basically self-evident. Conceptually, assignment is not
problematic since the state is simply updated and passed to the current command continuation.
skip is similar but the state is not modified. For sequencing, once the first command has been
executed, there is no choice but to execute the second. After evaluating the test of a conditional
command there is a choice of how to proceed, that is, there are two command continuations
involved. Both of these continuations depend on the conditional command’s current continuation,
but this is not a problem since the branches of a target language conditional share the same
restricted resources. This is very similar to how we dealt with the sharing needed between return
and handler continuations using a&-pair in Chapter 4.

6.6 Adequacy

Since we make no distinction between(·) → (·) and(·) ( (·) operationally, the refinedCPS se-
mantics behaves the same as the standard one. And since the big-step direct semantics of the
source is standard, there are no surprises regarding computational adequacy.

Proposition 15 (Adequacy) For any command C and state s, if

C, s⇓ s′

then for any target term K
C K s

βη= K s′

Proof By structural induction on the derivation of the big-step judgment. �
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6.7 Conclusion

Largely to set up upcoming languages and interpretations, we have seen how a simple command
language with wholly uninteresting control behavior admits a refined interpretation using the
type:

(S → R)︸ ︷︷ ︸
current

continuation

( S → R
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Chapter 7

Forward Jumps

A criticism of Chapter 4 is that there is only one sort of exceptions, and hence the flexibility of the
possible control behavior the semantics must cope with is not what it ought to be. In this chapter
we show that this in not an inherent limitation of linear use of control contexts by interpreting a
language which allows many alternate jump destinations. Semantically, this corresponds to using
a&-tuple rather than&-pair of continuations, and so is technically just a mild extension.

In the source language, the jump destinations are introduced by nested blocks binding labels
which are jumped to withgoto. This allows us to amend the situation of not having ventured
outside the realm of structured programming with the source languages we have thus far inter-
preted with linear use of control contexts. There are two essentially independent aspects of this
interpretation which we address separately in the next two chapters and later combine in Chap-
ter 11. The first aspect is how nested blocks which bind labels are handled, which is the subject
of this chapter. The second is how looping introduced by labeled jumping is handled, which is
the subject of the next chapter.

Other than the “unstructured” nature of control flow introduced bygoto, an additional point
to note is that with the addition of labels, part of the control context is nowreified, that is, named
(by labels) in the source language [FW84]. However, since labels cannot be stored, they are not
first-class, and so this point is not as significant as it might at first seem. That is, the ability
to name continuations does not necessarily provide the ability to manipulate them as values,
and so naming continuations does not necessarily grant the dramatic increase in expressiveness
which first-class continuations provide. But the interpretation of labeled jumps which respects a
discipline of linearly used control contexts does demonstrate that the connection between source
identifiers and target identifiers need not be tight, and hence Contraction and Weakening of source
identifiers (which may refer to pieces of control context) does not necessitate Contraction and
Weakening of restricted target identifiers (which refer to control contexts).

7.1 Source Syntax

We now look at how to treat an environment of labels by extending the source language of
Section 6.1 with labeledforward jumps. We call these jumps forward since they are to code
which has not yet been executed, and hence no looping is introduced. Labels are a kind of name
and so we introduce blocks to bind them and delimit their scope.

From a programmer’s perspective, we would like blocks which bind multiple labels,
{C0; l1:C1; · · · ; ln:Cn}, but if we had single-label blocks,{C0; l:C1}, we could express multi-
label blocks,{{ · · · {C0; l1:C1}; · · · }; ln:Cn}. Furthermore, since the second command in a
single-label block has nothing to do with the scope of the label, we can avoid handling sequenc-
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ing twice (both in sequence commands and in blocks) by eliminating sequencing from blocks,
defining a block{C l:} such that{C0 l:};C1 has the same intended meaning as{C0; l:C1}

would. So we extend the syntax of commands from Section 6.1 with the productions

C ::= · · · commands

| goto l jump

| {C l:} block

wherel is drawn from a set of labels.
As a simple example, although the conditional command in the simple command language

has no “else branch” facility, the following command expresses the idiom using forward jumps:

{if(E) {Cthen; goto l};Celse l:}

A block {C l:} binds the labell in scopeC. As usual, we work up to renaming of bound
identifiers, which are labels here. Jumping to an unbound label is an error. Blocks are similar to a
first-order binding form ofcall/cc. That is,{C l:} is similar tocall/ccλk. M. One difference
is that jumps tok carry arguments while those tol do not, but in the imperative language data
can be passed through the store, so this difference is immaterial. Very significant, however, is
that there is no way forl to escapeC, while k could certainly escape fromM, as demonstrated by
return/cc in Section 3.6. This is a consequence of the fact that labels are not first-class while,
with call/cc, continuations are. A result is that in the language of forward jumps, continuations
are not upward, only downward. The implications the absence of upward continuations has on
the refined interpretation are discussed below.

This language also provides the rudiments of a multiple exceptions mechanism since, with
many labels there are many jump destinations, (possibly labeled) code between agoto command
and the jump destination can be jumped over, and, nesting of blocks allows shadowing of outer
bindings of a label. To properly capture the dynamic nature of exceptions, however, labels should
be bound dynamically rather than statically, as they are here.1 But since this language has no
procedures, subroutines, etc., static and dynamic binding coincide.

7.2 Target Language(+= 1 + &n (·))

Before defining the semantics of the source language, some target language syntactic sugar for
n-ary &-tuples built from&-pairs is convenient. And in order to do so, we must first introduce
the unit type in the target language.

7.2.1 Syntax

We extend the grammar of terms of Section 2.2:

M ::= · · · terms

| 〈〉 unit constant

| λ〈〉. M unit consumer

| δ〈〉. M restricted unit consumer

And, in Section A.1 we define the following syntactic sugar:

1Later, in Chapter 11, when we combine this treatment with recursion and other features, we will
address this concern and give a version where labels are bound dynamically.
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| 〈M〉 unary&-tuple

| πn
i n-ary additive product projection 0 ≤ i < n

| λ〈x, . . . , x〉. M n-ary additive pattern match

| δ〈x, . . . , x〉. M n-ary restricted additive pattern match

| [〈M, . . . , M〉 | i: M] n-ary&-tuple extension

Convention:Unit consumers follow conventions similar to those for abstractions. When it is
clear from context, we generally omitn and writeπi for πn

i . Pattern match terms parse like
abstractions.

7.2.2 Equational theory

We add the following to the axioms of Section 3.2:

(λ〈〉. M) 〈〉 βη= M (δ〈〉. M) 〈〉 βη= M

And, in Section A.2 we define the following axiom for the syntactic sugar:

(δ〈x0, . . . , xn−1〉. M) 〈M0, . . . , Mn−1〉
βη= M[x0, . . . , xn−1 7→M0, . . . , Mn−1]

7.2.3 Type system

The grammar of types of Section 3.2 is extended by

P ::= · · · pointed types

| 1 unit type

and, in Section A.3 we define the following syntactic sugar:

| &n P n-ary additive product type

Convention:When it is clear from context, we generally omitn and write& P for &n P.

The typing rules of Section 3.2 are extended with

[UNIT] Γ ; − ` 〈〉 : 1

[ABSUNIT]
Γ ; ∆ ` M : P

Γ ; ∆ ` λ〈〉. M : 1 → P
[RABSUNIT]

Γ ; ∆ ` M : P

Γ ; ∆ ` δ〈〉. M : 1 ( P

And, in Section A.3 we derive the following axioms for the syntactic sugar:

[APROJin] Γ ; − ` πn
i : &n P ( P



7.3. StandardCPSTransformation 83

7.3 StandardCPS Transformation

So far we have given direct semantics of the various source languages under consideration, but
a direct semantics for labeled jumps is hard to come by unless one works very concretely and
essentially defines an abstract random access machine and compiles to it. ButCPS is the most
convenient abstraction of a random access machine which introduces very little intuitive or se-
mantic gap, so we will present a standard continuation semantics of the source as well as a refined
one.

This interpretation is essentially a reformulation of the semantics given by Strachey and
Wadsworth [SW74], specialized to the more restricted source language. We use a direct seman-
tics of expressions—that of Section 6.3.2—since they arepure(meaning that expressions cannot
modify the state or alter control flow) in the language considered, which is not the case in Stra-
chey and Wadsworth’s language, and so they use a continuation semantics for expressions. It
could be argued that the purity of expressions is artificial, but for our purposes here, little would
be gained by not taking advantage of this simplification. And it could also be argued that at some
level (operations on registers in aRISC machine, for instance), it makes perfect sense to consider
pure expressions.2

Commands are interpreted with the type

& (S → R)︸ ︷︷ ︸
labeled continuations

(environment)

→ (S → R)︸ ︷︷ ︸
current

continuation

→ S → R (7.1)

where in addition to the current continuation, there is one continuation for each label in scope.
Note that while the type of this environment is a&-tuple of continuations, in the transformation
we select continuations from this&-tuple by label. So essentially we have a mapping from
labels to continuations, which looks much more like a standard environment. We could interpret
commands more concisely by handling the environment implicitly, using the type

(S → R)︸ ︷︷ ︸
current

continuation

→ S → R

but the explicit environment is more true to [SW74] and closer to the refined interpretation we
give later.

The transformation is parameterized by a nonrepetitive sequence~l of the labels in scope:

n = E~l
def= λ〈~l〉. λk. λs. k [s | n: LEM s]

skip~l
def= λ〈~l〉. λk. k

C0;C1~l
def= λ〈~l〉. λk.C0~l 〈~l〉 (C1~l 〈~l〉 k)

if(E) {C}~l
def= λ〈~l〉. λk. λs. LEM s� k s8 C~l 〈~l〉 k s

goto l~l
def= λ〈~l〉. λk. l

{C l:}~l
def= λ〈~l〉. λk.C~l ,l 〈~l , k〉 k l /∈ ~l

Computationally, the first four clauses are very similar to the transformation in Section 6.4.
The only difference is that the label environment must be passed along like the current continu-
ation, but these clauses do not manipulate any of the labeled continuations. The transformation

2Additionally, in Chapter 11, we use a continuation semantics of expressions.
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of a block adds the label to the sequence of labels in scope for the body command, and passes
the current continuation as both the newly labeled continuation and the current continuation. The
transformation ofgoto is analogous to that ofskip, except that the continuation associated with
the label is invoked instead of the current continuation.

Note that since we identify commands up to renaming of bound labels, the side condition of
the clause for blocks can always be satisfied. Also, jumping to an unbound label, an error in the
source language, results in an open target term. It is necessary to parameterize the transformation
because the transformation of a command must abstract over the labels in scope, but which labels
have scope including the command being transformed cannot be determined from the command
alone. An implicit environment interpretation would not require this added complexity but would
instead rely on substitution.

Proposition 16 (Soundness)For any command C, if the nonrepetitive sequence of labels
~l = l1, . . . , ln (for some n≥ 0) contains the free labels of C, then

l1 : S → R , . . . , ln : S → R ; − ` C~l : &n (S → R) → (S → R) → S → R

Proof By structural induction on the syntax of the command. �

7.4 RefinedCPS Transformation

A command’s control context consists of the labeled continuations and the current continuation.
A first crack at a version of (7.1) which uses the control context linearly could be

& (S → R)︸ ︷︷ ︸
labeled

continuations

( (S → R)︸ ︷︷ ︸
current

continuation

( S → R

but this does not work because it treats the current and labeled continuations differently, while
in the source language they are invoked in essentially the same way. This can be seen by noting
that “skip” means “goto the current continuation,” and hence the fact that the current continua-
tion is not named while the labeled continuations are does not imply that they are manipulated
differently. So, similar to Section 4.3, we treat accepting the labeled and current continuation
arguments symmetrically by combining them all in a&-tuple and interpret commands with the
type

& (S → R)︸ ︷︷ ︸
labeled

continuations

& (S → R)︸ ︷︷ ︸
current

continuation

( S → R

Notice that handling the labeled and current continuations symmetrically has eliminated the op-
tion of handling the label environment implicitly, since doing so would require handling the
current continuation implicitly, which is problematic because an implicit environment depends
on substitution, while the current continuation is unnamed and effectively bound dynamically.

The transformation does not differ from the standard one computationally, the differences are
all a result of the change in the type used to interpret commands. As before, the transformation is
parameterized by a nonrepetitive sequence~l of the labels in scope, see Figure 7.1. Again, since
we identify commands up to renaming of bound labels, the side condition of the clause for blocks
can always be satisfied.
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Figure 7.1RefinedCPSof Forward Jumps

Expressions

S → N

LnM def= λs. n

L*nM def= λs. s[n]
LE0 == E1M

def= λs. LE0M s
n= LE1M s

Commands

& (S → R)︸ ︷︷ ︸
labels

&(S → R)︸ ︷︷ ︸
current

( S → R

n = E~l
def= δ〈~l , k〉. λs. k [s | n: LEM s]

skip~l
def= δ〈~l , k〉. k

C0;C1~l
def= δ〈~l , k〉.C0~l 〈~l ,C1~l 〈~l , k〉〉

if(E) {C}~l
def= δ〈~l , k〉. λs. LEM s� k s8 C~l 〈~l , k〉 s

goto l~l
def= δ〈~l , k〉. l

{C l:}~l
def= δ〈~l , k〉.C~l ,l 〈~l , k, k〉 l /∈ ~l

7.5 Soundness

The typing techniques employed by the interpretation in the previous section are very similar to
those used in Chapter 4. The common problem which using&-product addresses is allowing
construction and invocation of multiple continuations which share a continuation. In particular,
notice how the two occurrences ofk in the transformation of a block now occur within a&-tuple,
allowing linear typechecking. Similarly for the two occurrences of~l in the transformation of a
sequence. Also, the transformations ofskip andgoto do not require Weakening since one of the
factors of the&-tuple is kept.

Earlier, we discussed how continuations are only used in a downward, not upward, fashion
in this interpretation. This characteristic is crucial to the soundness of this interpretation. First,
notice how the transformation manipulates the&-tuple of labeled and current continuations in an
environment-like, rather than a state-like, fashion. That is, the&-tuple is passed “down” to each
of a command’s subcommands, but never returned back “up” by passing it to a continuation. The
&-tuple may be extended, but the extension is only active for the command under consideration;
in other words,&-tuple extension introduces a local binding rather than performs an assignment.
Also, whenever an individual continuation is projected from the&-tuple, the rest of the&-tuple
is no longer needed since other subcommands will have been passed their own&-tuple. This
is significant because if the source language required upward continuations, a&-tuple would be
needed after a continuation had been projected from it, which would break linearity. This does
not mean that control constructs which require upward continuations cannot be interpreted with
linear use of control contexts, but a different attack is needed, which we demonstrate in Chapter 9
where we give an interpretation of coroutines.

Another possibility is to have continuations which are upward not because they are used
as pieces of state (as in the interpretation of coroutines, as we will see) but because they are
expressed values (which would occur if we allowed labels as expressions). Semantically, these
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two situations are much the same since either as expressed values or as part of a control store,
upward continuations are arguments to other continuations. We explore these possibilities in
Chapter 10.

Proposition 17 (Soundness)For any command C, if the nonrepetitive sequence of labels
~l = l1, . . . , ln (for some n≥ 0) contains the free labels of C, then

− ; − ` C~l : &n (S → R) & (S → R) ( S → R

Proof By structural induction on the syntax of the command. �

7.6 Adequacy

The difference between the standard and refined interpretations is some uncurrying and restrict-
ing an (·) → (·) to a (·) ( (·). Neither of these changes is computationally significant and so
adequacy is unproblematic.

Proposition 18 (Adequacy) For any command C, term K, terms~K = K1, . . . , Kn, and non-
repetitive sequence of labels~l = l1, . . . , ln (for some n≥ 0)

C~l 〈~K, K〉 βη= C~l 〈~K〉K

Proof By structural induction on the syntax of the command. �

7.7 Conclusion

In this chapter we have seen how to a language with forward jumps, to code not already exe-
cuted. This restriction allows us to dodge the complication of loops (until next chapter) while
investigating the treatment of nested scopes binding continuations. The interpretation:

& (S → R)︸ ︷︷ ︸
labeled

continuations

& (S → R)︸ ︷︷ ︸
current

continuation

( S → R

uses a&-tuple of continuations to represent the control environment. The primary point is that,
for such a language, a semantics with only an environment suffices, and the continuations are
passed only “downward.”

Since we already knew how to treat exceptions using a&-pair, technically this is only a slight
extension.
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Chapter 8

Backward Jumps

In Chapter 7 we considered some issues of label scope and binding, and the basic mechanics
of jumping. The other primary aspect of interpretinggoto is handling the possibility of jump-
ing backwards—to previously executed code—which introduces the potential for looping. We
came across this issue in the interpretation of untypedλ-calculus in Chapter 3 and dodged the
difficulties since the standard interpretation did not rely on recursive continuations; that is, recur-
sion was present at the level of continuation transformers rather than continuations. The setting
of this chapter, however, is not so accommodating: the standard interpretation as introduced by
Strachey and Wadsworth [SW74] does make use of recursive continuations, and the gentlest re-
finement breaks linearity. This forces us to use an interpretation which uses recursive delimited
continuations (or continuation transformers) instead of recursive continuations.

8.1 Source Language

In this chapter we will only be concerned with issues of looping, not binding and scoping of
labels which was handled in Chapter 7. So we extend the source language of Section 6.1, in an
independent direction from the extension of Section 7.1, with programs which bind a label whose
scope is the entire program.

8.1.1 Syntax

We extend the syntax of Section 6.1 with the productions

C ::= · · · commands

| goto l jump

P ::= l:C programs

wherel is the single label.
To get a feel for the intended semantics, note that executing1

l: if(*0 != 0) {0 = *0 - 1; goto l}

decrements the contents of location0 until it reaches0, or, if 0 contained a negative number to
start with, diverges.

1Though we do not treat them formally, in this example we make use of numeric inequality and sub-
traction primitives.



88 Chapter 8. Backward Jumps

8.1.2 StandardCPS transformation

As for the language of forward jumps in Chapter 7, a direct semantics of labeled jumping is
inconvenient and we instead give a standard continuation semantics of the source. As in Sec-
tion 7.3, this interpretation is essentially a reformulation of the semantics given by Strachey
and Wadsworth [SW74], specialized to the more restricted source language. As before, we use
a direct semantics of expressions and handle the environment explicitly. Also, Strachey and
Wadsworth handle recursion implicitly, while we handle it explicitly.

Other than the absence of blocks and the fact that there is only a single label in the environ-
ment, the transformation is the same as that in Section 7.3. Commands are interpreted with the
type

(S → R)︸ ︷︷ ︸
labeled

continuation

→ (S → R)︸ ︷︷ ︸
current

continuation

→ S → R

and the transformation is

n = E
def= λl . λk. λs. k [s | n: LEM s]

skip
def= λl . λk. k

C0;C1
def= λl . λk.C0 l (C1 l k)

if(E) {C}
def= λl . λk. λs. LEM s� k s8 Cl k s

goto l
def= λl . λk. l

Instead of blocks, the source language now includes programs, which are interpreted with the
type

(S → R)︸ ︷︷ ︸
toplevel

continuation

→ S → R

and the transformation is

l:C
def= λt.Y λl .Cl t (8.1)

where

Y
def= (λz. λx. x(z z x))λz. λx. x(z z x) : (P→ P) → P
βη= λx. x(Y x)

is a standard Church-style call-by-name least fixed-point combinator (see Lemma 35). Note that
Y is a self-application of a term of typeµZ. Z → (P→ P) → P, but since we use equirecursive
types in the target language, we can use the same term as in untypedλ-calculus. (Instead of
definingY to be a particularλ-term, we could just add a constant to the target language corre-
sponding to the least fixed-point finder in the denotational model. But, since we will later need to
consider nonstandard fixed-point combinators for refined typing purposes, it is clearer to use ex-
plicit λ-terms. Also, since we will need fixed-point combinators at nonstandard types, explicitly
defining them asλ-terms provides much greater confidence in their existence, which is otherwise
not immediately clear.)

Here we see that a program accepts its toplevel continuation and produces a continuation
which is obtained by recursively passing itself, and then passing the toplevel continuation, to
the body. So in the body of the program, the label is bound to the continuation representing the
whole program.
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Proposition 19 (Soundness) 1. For any command C

− ; − ` C : (S → R) → (S → R) → S → R

2. For any program P

− ; − ` P : (S → R) → S → R

Proof

1. By structural induction on the syntax of the command.

2. Follows from 1. �

8.2 RefinedCPS Transformation

8.2.1 Commands

The refined interpretation of commands is merely a simplification of the interpretation of Sec-
tion 7.4 to handle only a single label. Hence commands are now interpreted with the type

(S → R)︸ ︷︷ ︸
labeled

continuation

& (S → R)︸ ︷︷ ︸
current

continuation

( S → R

and the transformation is shown in Figure 8.1.

8.2.2 Programs

As is probably expected, programs are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R (8.2)

First attempt: unsound

An attempt at a refined analogue of the standard transformation is

l:C = δt.Y◦ δl .C 〈l , t〉 (8.3)

(whereY◦, which we define later, is a least fixed-point combinator of type(P ( P) → P). But,
although the dynamic behavior of this interpretation is linear in its use oft, as can be more easily
seen by rewriting (8.3)

l:C t = C 〈l:C t, t〉

the free continuation,t, in the argument toY◦ in (8.3) forces linear typechecking to fail.
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Second attempt: sound (and adequate), but wrong definition of control context
We can work around this problem by moving up a level in the types to close the argument toY:

l:C = Y λx. δt.C 〈x t, t〉 (8.4)

The difference between (8.4) and (8.3) is that in (8.3) the toplevel is accepted and immediately
buried in a recursive continuation, while in (8.4) we form a recursive delimited continuation.
Here, unlike in Chapter 5, it is more convenient to represent delimited continuations with the
type

(S → R) ( S → R

rather than with the type
S → (S → R) ( R

The recursive delimited continuation formed in (8.4) does not contain any continuation, but in-
stead accepts the toplevel continuation and subsequently passes it on to each recursive call. This
avoids creating a closure with a piece of control context inside, which the restricted type system
is not happy with.

A result of moving up a level in the types is that different backward jumps correspond to
distinctcontinuations, which are generated by fixed-point unwinding. So although there may be
many jumps to the label, each continuation is only invoked once. To make this concrete, it is
helpful to consider an example of the effect of unwinding. Explicitly, unwinding (8.4) twice we
have

l:C = δt.C 〈C 〈

second︷ ︸︸ ︷
(Y λx. δt.C 〈x t, t〉) t, t〉︸ ︷︷ ︸

first

, t〉

From this we see that jumps from the first occurrence ofC will invoke the continuation la-
beled “first,” while jumps from the second occurrence ofC will invoke the continuation labeled
“second.”

This treatment of recursion is very similar to the handling of recursion in untypedλ-calculus
in Chapter 3 where continuation transformers are self-applied to unwind to a fixed-point, but
continuations are not recursive. The difference here is that we explicitly take a fixed-point in the
transformation, rather than rely on self-application in the source language programs. While (8.4)
typechecks with the right type at toplevel:

Proposition 20 (Soundness)For any program P

− ; − ` P : (S → R) ( S → R

if we consider the types of the subterms of (8.4), we see that this interpretation—like the interpre-
tation of first-class continuations in Section 5.4—restricts the use of part of the control context
(the toplevel continuation), but does not restrict the use of another part (the recursive delimited
continuation), making the meaningfulness of Proposition 20 dubious at best.2

It is obvious that (8.4) does not restrict the use of the recursive delimited continuation,x, but
it is not as apparent thatx is actually part of the control context. It helps to consider what happens
at the level of types by thinking of “moving up a level in the types” as “partially specifying the
result type.” In (8.4), the type ofλx. δt.C 〈x t, t〉 is

((S → R) ( S → R) → (S → R) ( S → R

2This point was overlooked in the previous presentation of this work [BORT02].
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Changing from continuation-first to continuation-second form, this is isomorphic to

(S → (S → R) ( R) → S → (S → R) ( R

or equivalently

(S → R′) → S → R′ where R′ def= (S → R) ( R (8.5)

This is similar to the type
(S → R) ( S → R (8.6)

which we attempted to giveδl .C 〈l , t〉 in (8.3), but with a more specified result type.
But (8.5) is not simply (8.6) with a more refined result type since use of the argument contin-

uation is unrestricted in (8.5). So, “moving up a level in the types” from (8.3) to (8.4) corresponds
not only to “partially specifying the result type” fromR to (S → R) ( R, which is harmless,
but also to changing the principal(·) ( (·) to (·) → (·), which relaxes the usage restrictions on
the control context. Hence, instead of (8.5), we need to use the type

(S → R′) ( S → R′ (8.7)

Third attempt: sanity restored
In order to define an interpretation using type (8.7), we need a term of type

((S → R) ( S → R) ( (S → R) ( S → R

to fill the role ofλx. δt.C 〈x t, t〉 in (8.4). We do this with the transformation

l:C
def= Y◦ δx. δt.C 〈x t, t〉 (8.8)

where

Y◦ def= Y λy. λx. x (y x) : (P ( P) → P
βη= λx. x (Y◦ x)

is a least fixed-point combinator:

Lemma 21 (Y◦ computes least fixed-points)

J− ; − ` Y◦ : (P ( P) → PK [ ] [ ] = J− ; − ` Y : (P→ P) → PK [ ] [ ]

Here we use the standard predomain semantics of the target language, which is briefly described
in Section A.4.

Proof Straightforward calculation depending on Lemma 34. �

Note that (8.8) still does not typecheck linearly sincex is thrown away in the right factor of
the&-pair. To typecheck this requires a Weakening rule for the restricted zone:

[RWEAK]
Γ ; ∆ ` M : B

Γ ; ∆ , x : A ` M : B

When the target type system is augmented with[RWEAK] it becomes an affine, rather than lin-
ear, type system. We are happy to add Weakening since we cannot see a conceptual reason to
disallow it, and its addition does not invalidate any other results we show, including no junk.
However, Weakening can be hacked around in this case and so in Section 8.5 we present a purely
linear interpretation. Whether this supports or undermines the case for allowing Weakening is
debatable.
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Figure 8.1RefinedCPSof Backward Jumps

Expressions

S → N

LnM def= λs. n

L*nM def= λs. s[n]
LE0 == E1M

def= λs. LE0M s
n= LE1M s

Commands

(S → R)︸ ︷︷ ︸
label

&(S → R)︸ ︷︷ ︸
current

( S → R

n = E
def= δ〈l , k〉. λs. k [s | n: LEM s]

skip
def= δ〈l , k〉. k

C0;C1
def= δ〈l , k〉.C0 〈l ,C1 〈l , k〉〉

if(E) {C}
def= δ〈l , k〉. λs. LEM s� k s8 C 〈l , k〉 s

goto l
def= δ〈l , k〉. l

Programs

(S → R)︸ ︷︷ ︸
toplevel

( S → R

l:C
def= Y◦ δx. δt.C 〈x t, t〉

8.3 Soundness

There is nothing technically remarkable regarding soundness.

Proposition 22 (Soundness) 1. For any command C

− ; − ` C : (S → R) & (S → R) ( S → R

2. For any program P
− ; − ` P : (S → R) ( S → R

Proof

1. By structural induction on the syntax of the command.

2. Follows from 1. �

8.4 Adequacy

As for forward jumps, the differences between the standard and refined interpretations of com-
mands are not computationally significant, and so adequacy is straightforward.
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Proposition 23 (Adequacy for Commands) For any command C and terms L, K

C 〈L, K〉 βη= CL K

Proof By structural induction on the syntax of the command. �

For programs, adequacy is more subtle. In factβη-equality is too fine an equivalence to allow
us to prove the correspondence between the two transformations. This is expected since we are
trying to establish the equivalence of two possibly-divergent terms. So, to prove adequacy we
appeal to the standard predomain semantics of the target language given in Section A.4.

Pictorially, we have the following situation:

source
language

(·) --

(·)
11

target
language

J(·)K
// predomains

Strachey and Wadsworth’s original semantics is essentially the composition of the predomain
semantics and the standardCPS transformation,J(·)K. We prove the adequacy of the refinedCPS

transformation by showing that its composition with the predomain semantics,J(·)K, is equal to
J(·)K. Any two source language programs are equivalent ifJ(·)K maps them to equal predomain
elements, so if programs are mapped to equal predomain elements byJ(·)K andJ(·)K, then source
programs which are mapped to equal predomain elements byJ(·)K are equivalent.

Proposition 24 (Adequacy for Programs) For any program P, terms S, K such that

− ; t : S → R ` K : S → R − ; − ` S : S

we have

J− ; − ` P K[t 7→ λs. halt] S : RK [ ] [ ] = J− ; − ` PK[t 7→ λs. halt] S : RK [ ] [ ]

In order to avoid comparing the semantics of terms of different types, we compare the results of
running the program under both semantics rather than the programs themselves. To do this, we
have compromised the abstractness ofR by introducing a closed term of result type,3 with syntax

M ::= · · · terms

| halt terminate

and typing

[HALT ] Γ ; − ` halt : R

Intuitively, halt represents all the actions the operating system performs when a program relin-
quishes control to it. Having this facility in the programming language is clearly not very sen-
sible, but the simple but inaccurate standard model suffices for our purposes here, and a proper
account of the abstractness of the result type has not yet been given.

3Actually, the standard predomain semantics already violated the abstractness ofR by interpreting it
with a particular domain. So by introducinghalt we are simply pulling this from the semantics into the
language.
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Proof Fix P = l:C, andS, K such that− ; t : S → R ` K : S → R and− ; − ` S : S. Then
we have

J− ; − ` P K[t 7→ λs. halt] S : RK [ ] [ ]
= J− ; − ` l:C K[t 7→ λs. halt] S : RK [ ] [ ]
= J− ; − ` (Y◦ δx. δt.C 〈x t, t〉) K[t 7→ λs. halt] S : RK [ ] [ ]
= J− ; − ` (Y◦ δx. δt.C 〈x t, t〉) K[t 7→ λs. halt] : ¬SK [ ] [ ] (J− ; − ` S : SK [ ] [ ])
= J− ; − ` Y◦ δx. δt.C 〈x t, t〉 : ¬S ( ¬SK [ ] [ ] (J− ; − ` K[t 7→ λs. halt] : ¬SK [ ] [ ])

(J− ; − ` S : SK [ ] [ ])

and

Jt : ¬S ; − ` Y◦ λl .Cl t : ¬SK [ ] [[ ] | t: J− ; − ` K[t 7→ λs. halt] : ¬SK [ ] [ ]]
(J− ; − ` S : SK [ ] [ ])

= (λd ∈ J− ` ¬SK [ ]. Jt : ¬S ; − ` Y◦ λl .Cl t : ¬SK [ ] [[ ] | t: d])
(J− ; − ` K[t 7→ λs. halt] : ¬SK [ ] [ ]) (J− ; − ` S : SK [ ] [ ])

= J− ; − ` λt.Y◦ λl .Cl t : ¬S → ¬SK [ ] [ ]
(J− ; − ` K[t 7→ λs. halt] : ¬SK [ ] [ ]) (J− ; − ` S : SK [ ] [ ])

= J− ; − ` (λt.Y◦ λl .Cl t ) K[t 7→ λs. halt] : ¬SK [ ] [ ] (J− ; − ` S : SK [ ] [ ])
= J− ; − ` (λt.Y◦ λl .Cl t ) K[t 7→ λs. halt] S : RK [ ] [ ]
= J− ; − ` PK[t 7→ λs. halt] S : RK [ ] [ ]

So, letk = J− ; − ` K[t 7→ λs. halt] : ¬SK [ ] [ ], and the result follows from

J− ; − ` Y◦ δx. δt.C 〈x t, t〉 : ¬S ( ¬SK [ ] [ ] k = Jt : ¬S ; − ` Y◦ λl .Cl t : ¬SK [ ] [[ ] | t: k]
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Now we have

J− ; − ` Y◦ δx. δt.C 〈x t, t〉 : ¬S ( ¬SK [ ] [ ] k

=
⊔
{(J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])n⊥ | n≥ 0} k

by Lemma 35

= (λ f ∈ J− ` ¬S ( ¬SK. f k)⊔
{(J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])n⊥ | n≥ 0}

=
⊔
{(J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])n⊥ k | n≥ 0}

by continuity ofλ f ∈ J− ` ¬S ( ¬SK. f k

and ⊔
{(Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])n⊥ | n≥ 0}

= Jt : ¬S ; − ` Y◦ λl .Cl t : ¬SK [ ] [[ ] | t: k]
by Lemma 35

and so the result follows from

⊔
{(J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])n⊥ k | n≥ 0}

=
⊔
{(Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])n⊥ | n≥ 0}

which is implied by

{(J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])n⊥ k | n≥ 0}
= {(Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])n⊥ | n≥ 0}

which, for anyn≥ 0, is in turn implied by

(J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])n⊥ k

= (Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])n⊥
(8.9)

which we prove by induction onn:

[n = 0]: Immediate.

[n = m+ 1]: Assume (8.9) form. Then let

e = [[ ] | x: (J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])m⊥]
e′ = [e | t: k]
e′′ = [[[ ] | t: k] | l : (Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])m⊥]

and we have



96 Chapter 8. Backward Jumps

(J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])m+1⊥ k

= J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ]
((J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])m⊥) k

= Jx : ¬S ( ¬S ; t : ¬S ` C 〈x t, t〉 : ¬SK [ ] e′

= Jx : ¬S ( ¬S ; t : ¬S ` C : ¬S & ¬S ( ¬SK [ ] e′

(Jx : ¬S ( ¬S ; t : ¬S ` 〈x t, t〉 : ¬S & ¬SK [ ] e′)
= J− ; − ` C : ¬S & ¬S ( ¬SK [ ] [ ] (Jx : ¬S ( ¬S ; t : ¬S ` 〈x t, t〉 : ¬S & ¬SK [ ] e′)

by Proposition 22 and Lemma 33

= J− ; − ` C : ¬S & ¬S ( ¬SK [ ] [ ]
(Jx : ¬S ( ¬S ; t : ¬S ` x t : ¬SK [ ] e′, Jx : ¬S ( ¬S ; t : ¬S ` t : ¬SK [ ] e′)

= J− ; − ` C : ¬S & ¬S ( ¬SK [ ] [ ]
(Jx : ¬S ( ¬S ; − ` x : ¬S ( ¬SK [ ] e(Jx : ¬S ( ¬S ; t : ¬S ` t : ¬SK [ ] e′), k)

= J− ; − ` C : ¬S & ¬S ( ¬SK [ ] [ ]
((J− ; − ` δx. δt.C 〈x t, t〉 : (¬S ( ¬S) → ¬S ( ¬SK [ ] [ ])m⊥ k, k)

= J− ; − ` C : ¬S & ¬S ( ¬SK [ ] [ ]
((Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])m⊥, k)
by the induction hypothesis

= J− ; − ` C : ¬S & ¬S ( ¬SK [ ] [ ]
(Jt : ¬S , l : ¬S ; − ` l : ¬SK [ ] e′′, Jt : ¬S , l : ¬S ; − ` t : ¬SK [ ] e′′)

= J− ; − ` C : ¬S & ¬S ( ¬SK [ ] [ ] (Jt : ¬S , l : ¬S ; − ` 〈l , t〉 : ¬S & ¬SK [ ] e′′)
= Jt : ¬S , l : ¬S ; − ` C : ¬S & ¬S ( ¬SK [ ] e′′

(Jt : ¬S , l : ¬S ; − ` 〈l , t〉 : ¬S & ¬SK [ ] e′′)
by Proposition 22 and Lemma 33

= Jt : ¬S , l : ¬S ; − ` C 〈l , t〉 : ¬SK [ ] e′′

= Jt : ¬S , l : ¬S ; − ` Cl t : ¬SK [ ] e′′

by Proposition 23 and Lemma 34

= Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k]
((Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])m⊥)

= (Jt : ¬S ; − ` λl .Cl t : ¬S → ¬SK [ ] [[ ] | t: k])m+1⊥ �

8.5 Hacked Linear CPS Transformation

If linearity is insisted on, we can hack around the need for Weakening in (8.8). We do not put
any conceptual meaning to this interpretation since, intuitively, discarding is part of the desired
semantics; so this interpretation is simply a way to fool the type system. Additionally, this in-
terpretation is based on linear use of something larger than control context. So, basically, we
linearly use more than the control context in order to slip through the typing, very similarly to
how we linearly used less than the control context to allow linear typing ofcall/cc in Sec-
tion 5.4. The point, then, of presenting this linear interpretation is to demonstrate that too large a
control context is also dangerous, and just to provide another instance where we can subvert the
formalism if we do not pay careful attention to the conceptual issues.



8.5. Hacked LinearCPSTransformation 97

Discarding linearly used control contexts is possible since the only time Weakening is needed
is to discard the recursive delimited continuation when passing the toplevel continuation to the
command. Since the delimited continuations we use all have no free linear identifiers, and since
we can form an “empty” closed delimited continuation, we can keep each delimited continuation
in a &-pair with the identity function at all times and just “use” the identity function in order to
discard the delimited continuation.

So we have a type of “discardable delimited continuations”

((S → R) ( S → R)︸ ︷︷ ︸
delimited continuation

&((S → R) ( S → R)︸ ︷︷ ︸
identity function

which can still be used linearly. Using this, we can give a version of the body of (8.8) having
type

(¬S ( ¬S) & (¬S ( ¬S) ( ¬S ( ¬S

in which we use a discardable delimited continuation in place of a delimited continuation. Then
the linear transformation is

l:C
def= Y&id δ〈x, i〉. δt.C 〈x t, i t〉 (8.10)

where

Y&id def= Y λy. λx. x 〈y x, δq. q〉 : (P & (Q ( Q) ( P) → P (8.11)
βη= λx. x 〈Y&id x, δq. q〉 (8.12)

is a sort of fixed-point combinator:

Lemma 25

J− ; − ` Y&id : (P & (Q ( Q) ( P) → PK [ ] [ ]
= J− ; − ` λx.Y λp. x 〈p, δq. q〉 : (P & (Q ( Q) ( P) → PK [ ] [ ]

Proof Straightforward calculation of the same flavor as in the proof of Proposition 24, but
centers on an inductive proof of, for anyd ∈ J− ` TK, for all n≥ 0

(J− ; − ` λy. λx. x 〈y x, δq. q〉 : ((T → P) → T → P) → T → PK [ ] [ ])n⊥d

= (Jx : T ; − ` λp. x 〈p, δq. q〉 : P→ PK [ ] [[ ] | x: d])n⊥

whereT = P & (Q ( Q) ( P. �

Note that this lemma says that in the denotational semantics (which ignores linearity),Y&id has
the same meaning as a term which computes a recursive delimited continuation by explicitly
discarding the delimited continuation we got upset with (8.8) for discarding. We did say this
is a hack. In (8.11), the use ofy is not restricted, and it is discarded. Conceptually this is not
problematic though sincey, having type

((¬S ( ¬S) & (¬S ( ¬S) ( ¬S ( ¬S) → ¬S ( ¬S

is essentially a fixed-point combinator for discardable delimited continuations.
The linear interpretation is clearly computationally adequate with respect to the affine one.

(8.12) ensures thati in δt.C 〈x t, i t〉 of (8.10) is always bound to the linear identity func-
tion. Hence,i t

βη= t, eliminating the only significant difference in the bodies of the recursion.
Lemma 25 and Lemma 21 then ensure thatY&id computes the same fixed-point in the first factor
of the&-pair, eliminating the other point of concern. That is:
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Proposition 26 (Adequacy) The linear interpretation is computationally adequate with respect
to the affine interpretation.

Proof

J− ; − ` Y&id δ〈x, i〉. δt.C 〈x t, i t〉 : ¬S ( ¬SK [ ] [ ] in the linear language

= J− ; − ` Y λx. δt.C 〈x t, t〉 : ¬S ( ¬SK [ ] [ ] by Lemma 25

= J− ; − ` Y◦ δx. δt.C 〈x t, t〉 : ¬S ( ¬SK [ ] [ ] in the affine lang., by Lemma 21

�

8.6 Conclusion

In this chapter we analyzed recursion explicit in the source language, as opposed to implicit in
self-application of untyped source procedures. We interpreted commands using the type:

(S → R)︸ ︷︷ ︸
labeled

continuation

& (S → R)︸ ︷︷ ︸
current

continuation

( S → R

which is unsurprising. The standard semantics of this source language involves recursive con-
tinuations, as opposed to the recursive continuation transformers inλ-calculus. But we saw that
recursive continuations break linear typing, and so we used an (adequate) interpretation built
from recursive continuation transformers. Unfortunately, the type of commands does not force
our hand into using a type which restricts use of the control context when defining the recursive
continuation transformers. So we had to take fixed-points at type:

((S → R) ( S → R) ( (S → R) ( S → R

which required a fixed-point combinator with type(P ( P) → P.
This interpretation required an affine, rather than linear, type system. However, we presented

a conceptually suspect method of hacking the semantics into a linear system.
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Chapter 9

Coroutines

In this chapter we turn our attention to coroutines, a control construct allowing significantly dif-
ferent control behavior than we have thus far considered. The crucial aspect of coroutines which
makes them so different is that running a coroutine modifies its control state, which is reinstated
the next time the coroutine is run. Semantically, this moves us away from considering control
contexts consisting only of control environment, to considering control contexts consisting of
control store. The primary result of this is that the continuations of the control store are upward.
Typechecking this in a restricted type system leads us to an interpretation which crucially relies
on delimited continuations, which allow us to impose different usage constraints on the different
parts of the semantic continuations.

9.1 Source Language

We now extend the simple command language of Section 6.1 with a facility for running two
commands in parallel as coroutines.

9.1.1 Syntax

We extend the syntax of Section 6.1 with the productions

C ::= · · · commands

| swap swap coroutines

P ::= programs

| C | C coroutines in parallel

9.1.2 Direct semantics

The informal semantics of a programC0 | C1 is that execution starts withC0 and continues until
a swap command is executed. Wheneverswap is executed, the currently running coroutine is
blocked and execution proceeds with the other coroutine. For example, executing

0 = 42; swap; 1 = 13 | 2 = 7; swap (9.1)

will first cause location0 to be assigned value42, then2 gets7, and finally1 gets13. Control
returns to the operating system as soon as one command finishes, that is, the coroutines race.
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More precisely, we give a simple resumption semantics of the source language [Plo76, HP79,
Rey98b]. The type of resumptions is

Q
def= µQ.S + (S× (S → Q))

and commands are interpreted with the type

S → Q

Executing a command on a state can either complete without executingswap—in which case
the semantics is simply the modified state—or execute part of the command, changing the state to
some intermediate state, and then executeswap—in which case the semantics is the intermediate
state together with the unexecuted command. That is, the semantics of commands is

JCK ∈ S → Q

Jn = EK s
def= inl [s | n: LEM s]

JskipK s
def= inl s

JC0;C1K s
def= JC1K; (JC0K s)

Jif(E) {C}K s
def=

{
JCK s if LEM s

βη= n 6= 0
inl s if LEM s

βη= 0

JswapK s
def= inr (s, inl)

where

(·); ∈ (S → Q) → Q→ Q

f; (inl s) def= f s

f; (inr (s, q)) def= inr (s, λs. f; (q s))

is the auxiliary definition of the meaning of sequencing common in resumption semantics.
The semantics of programs is

JPK ∈ S → S

JC0 | C1K s
def= JC1K| (JC0K s)

where

(·)| ∈ (S → Q) → Q→ S

f| (inl s) def= s

f| (inr (s, g)) def= g| ( f s)

Here we need another auxiliary,(·)|, since parallel composition is semantically similar to se-
quencing, which we will see in the continuation semantics.

9.2 RefinedCPS Transformation

We present aCPS interpretation which uses control contexts linearly in three stages. First we
extend the transformation of Section 6.4 to handle theswap command, but this interpretation does
not admit a satisfactory interpretation of programs. So next we refine the result type, yielding
an interpretation in which control contexts are represented by delimited continuations. This
interpretation admits a satisfactory interpretation of programs, however an affine, rather than
linear, type system is required. Finally, we employ a hack to define a type of linearly used but
discardable delimited continuations, which yields a linear interpretation.
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9.2.1 Continuation interpretation

It has been known for some time that the combination of state and labels can be used to implement
coroutines [Rey70, Wan99],1 but to design a continuation semantics of coroutines we do not need
the full power of the features used in these encodings; namely, first-class control and higher-order
store. But we need to do more than simply have several continuations, one for each coroutine,
and swap them. The extra ingredient that is needed is the ability to pass the saved state of one
coroutine to another, so the other coroutine can then swap back; this is implemented using upward
continuations and a recursive type.

Expressions can still be interpreted with the semantics given in Section 6.3.2. The execution
of a command in the extended source language possibly changes not only the state, as before, but
also the control state of the blocked coroutine; so the type of command continuations is

K
def= µK.S → K ( R

Note that a command continuation takes another command continuation as an argument, hence
command continuations are upward. Commands are interpreted with the type

K ( K

Intuitively, the meaning of a command depends on both the commands following it, and on the
other coroutine. For example,0 = 42 in (9.1) depends onswap; 1 = 13 and 2 = 7; swap. The
control context then consists of both of these, which are represented as command continuations,
and used linearly. Unfolding the type of commands once we have

K︸︷︷︸
running

continuation

( S → K︸︷︷︸
blocked

continuation

( R

So the interpretation of a command accepts a continuation which represents the rest of the (cur-
rent) coroutine, accepts a (data) state, accepts a continuation which is the control state of the
other (blocked) coroutine, and then runs. This treatment is a form of state-passing style of a
stored continuation for the control state of the blocked coroutine.

Note that the typing of this interpretation is very different from those in preceding chapters
since the two argument continuations are passed independently,2 rather than in a&-pair. Here,
when a continuation is invoked, another continuation is passed to it. This means that the invoked
and argument continuations cannot come from the same&-pair, and hence both current and
blocked continuations must be used and cannot share a common ancestor continuation.

In Section 6.4, the type of command continuations isS → R, soK here is simply the old type
of command continuations, but withK ( R as the result type. So since the only command that
will manipulate the blocked coroutine isswap, the transformation clauses of the other commands
are simply linearη-expansions of those in Section 6.4, see Figure 9.1. Hence, we merely extend
the transformation with a clause forswap:

swap
def= δr. λs. δb. b s r

This clause simply invokes the blocked continuation with the running continuation as the new
blocked continuation, indicating that the effect of executingswap is simply to interchange running
and blocked coroutines.

1Wand also notes “Another syntactic restriction which might be desirable is one which would prevent
a continuation from being restarted more than once.”, which this refined transformation may be seen as
providing.

2Or, we could arrange the types to pass them in a⊗-pair.



102 Chapter 9. Coroutines

Notice how we could extend the continuation semantics without modifying, merely
η-expanding, the previous clauses. This contrasts sharply with the monad-like resumption se-
mantics where the addition ofswap forces sequencing to change meaning, and forces tagging
throughout the semantics. Also, the resumption semantics involves tagging; a complicated se-
quencing,(·);; and trampolining at toplevel,(·)|, while the continuation semantics involves only
primitives one is likely to find in an assembly language.

We would like to interpret programs with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

using the transformation

C0 | C1
def= δt. λs.C0 (λs. δb. t s) s (C1 λs. δb. t s)

but this requires duplication of the toplevel continuation,t. Conceptually, both coroutines do need
access to the toplevel continuation since either may finish and relinquish control to the operating
system. But, only one coroutine may be running at any point in time, so it would be sufficient
to only give a coroutine access to the toplevel continuation when it is actually running. This can
be accomplished by representing the control state of a coroutine with a delimited continuation
rather than a continuation.

9.2.2 Delimited continuation interpretation

Just as in Section 5.1, the delimited continuation interpretation is derived from the continua-
tion interpretation simply by using a more specified result type. So instead of using a type of
command continuations, we use a type of command delimited continuations

K
def= µK.S → K ( (S → K ( R) ( R

This type was obtained from the type used in the continuation interpretation,µK.S → K ( R,
but using(S → K ( R) ( R as the result type.

Commands are still interpreted with the type

K ( K

but now unfolding once yields

K︸︷︷︸
running

delimited
continuation

( S → K︸︷︷︸
blocked

delimited
continuation

( (S → K ( R)︸ ︷︷ ︸
shared

continuation

( R

As in Section 5.1, the transformation clauses for the delimited continuation interpretation are
simply linearη-expansions of the clauses for the continuation interpretation. But now it is no
longer necessary to duplicate the toplevel continuation when we try to give an interpretation of
programs using the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R
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Figure 9.1RefinedCPSof Coroutines

Expressions

S → N

LnM def= λs. n

L*nM def= λs. s[n]
LE0 == E1M

def= λs. LE0M s
n= LE1M s

Commands

K︸︷︷︸
running

( K where K
def= µK.S → K︸︷︷︸

blocked

( (S → K ( R)︸ ︷︷ ︸
shared

( R

n = E
def= δk. λs. k [s | n: LEM s]

skip
def= δk. k

C0;C1
def= δk.C0 (C1 k)

if(E) {C}
def= δk. λs. LEM s� k s8 C k s

swap
def= δr. λs. δb. b s r

Programs

(S → R)︸ ︷︷ ︸
toplevel

( S → R

C0 | C1
def= δt. λs.C0 E s (C1 E) λs. δb. t s

E
def= λs. δb. δk. k s b

by:
C0 | C1

def= δt. λs.C0 E s (C1 E) λs. δb. t s

where, for legibility, we use the abbreviation

E
def= λs. δb. δk. k s b

for the empty delimited continuation.
This transformation still discards the blocked delimited continuation when a coroutine fin-

ishes, however. This is seen by trying to derive

− ; t : S → R ` λs. δb. t s : S → K ( R

which requires Weakening for the restricted zone,[RWEAK], as in Section 8.2. As before, we can
hack up a linear version.

9.2.3 Hacked linear delimited continuation interpretation

If one insists on banning Weakening, we can hack up a linear version of the previous interpreta-
tion. Similar to the situation in Section 8.5, this works by getting the control context wrong, and
is possible since the only time Weakening is needed is to discard the blocked delimited continu-
ation when the running coroutine finishes. So we have a type of discardable command delimited
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continuations

K
def= µK. (S → K ( (S → K ( R) ( R) & (¬S ( ¬S)

Commands are interpreted with the type

K ( K

which unfolded once is

K︸︷︷︸
running

delimited
continuation

( (S → K︸︷︷︸
blocked

delimited
continuation

( (S → K ( R)︸ ︷︷ ︸
shared

continuation

( R) & (¬S ( ¬S)︸ ︷︷ ︸
identity

The transformation of commands is not conceptually different, but it must be modified to carry
the identity functions around appropriately:

E0 = E1
def= δ〈r, i〉. 〈λs. r [s | LE0M s: LE1M s], i〉

skip
def= δk. k

C0;C1
def= δk.C0 (C1 k)

if(E) {C}
def= δ〈r, i〉. 〈λs. LEM s� r s 8 π0 (C 〈r, i〉) s, i〉

swap
def= δ〈r, i〉. 〈λs. δ〈b, j〉. b s 〈r, i〉, i〉

Programs are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

and the transformation is

C0 | C1
def= δt. λs. π0 (C0 E) s (C1 E) λs. δ〈b, j〉. j t s

where, for legibility, we use the abbreviation

E
def= 〈λs. δk. δt. t s k, δt. t〉

for the empty delimited continuation.

9.3 Soundness

The soundness of the linear delimited continuation interpretation is much like previous cases.

Proposition 27 (Soundness) 1. For any command C

− ; − ` C : K ( K

2. For any program P
− ; − ` P : (S → R) ( S → R

Proof

1. By structural induction on the syntax ofC.

2. By structural induction on the syntax ofP. �
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9.4 Adequacy

No particular difficulties arise when relating the direct and linear delimited continuation seman-
tics.

Proposition 28 (Adequacy) For any program P and state s, ifJPK s = s′, then for any target
term M,P M s

βη= M s′.

For induction purposes, we define a notion of syntactic size for the source language:

|C0 | C1|
def= |C0|+ |C1|

|E0 = E1|
def= 1

|skip| def= 0
|C0;C1|

def= 1 + |C0|+ |C1|
|if(E) {C}| def= 1 + |C|

|swap| def= 1

We need the following observation about the direct semantics:

Lemma 29 If JCK s = inr (s′, q), then q= JC′K for some C′ such that|C′| < |C|.
Proof By structural induction on the syntax ofC. �

We also need the following observation about theCPStransformation:

Lemma 30 For any C and M,π1 (C 〈M, δt. t〉) βη= δt. t.

Proof By structural induction on the syntax ofC. �

The following two lemmas capture the correspondence between the direct and continuation
interpretations of commands:

Lemma 31 If JCK s = inl s′, thenπ0 (C M) s
βη= π0 M s′.

Proof AssumeJCK s = inl s′ and proceed by structural induction on the syntax ofC:

[E0 = E1]: Therefores′ = [s | LE0M s: LE1M s] and we have

π0 (E0 = E1 M) s

= π0 ((δ〈r, i〉. 〈λs. r [s | LE0M s: LE1M s], i〉) M) s
βη= π0 〈λs. π0 M [s | LE0M s: LE1M s], π1 M〉 s
βη= (λs. π0 M [s | LE0M s: LE1M s]) s
βη= π0 M [s | LE0M s: LE1M s]
= π0 M s′

[skip]: Therefores′ = s and we have

π0 (skip M) s

= π0 ((δk. k) M) s
βη= π0 M s

= π0 M s′
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[C0;C1]: ThereforeJC1K; (JC0K s) = inl s′ and henceJC0K s = inl s′′ and JC1K s′′ = inl s′ for
somes′′. Therefore we have

π0 (C0;C1 M) s

= π0 ((δk.C0 (C1 k)) M) s
βη= π0 (C0 (C1 M)) s
βη= π0 (C1 M) s′′ by the induction hypothesis forC0
βη= π0 M s′ by the induction hypothesis forC1

[if(E) {C0}]: There are two cases:

[LEM s
βη= n 6= 0]: ThereforeJC0K s = inl s′ and we have

π0 (if(E) {C0} M) s

= π0 ((δ〈r, i〉. 〈λs. LEM s� r s 8 π0 (C0 〈r, i〉) s, i〉) M) s
βη= π0 〈λs. LEM s� π0 M s8 π0 (C0 M) s, π1 M〉 s
βη= (λs. LEM s� π0 M s8 π0 (C0 M) s) s
βη= LEM s� π0 M s8 π0 (C0 M) s
βη= n � π0 M s8 π0 (C0 M) s
βη= π0 (C0 M) s
βη= π0 M s′ by the induction hypothesis

[LEM s
βη= 0]: Therefores′ = s and we have

π0 (if(E) {C0} M) s
βη= LEM s� π0 M s8 π0 (C0 M) s
βη= 0 � π0 M s8 π0 (C0 M) s
βη= π0 M s

= π0 M s′

[swap]: Not possible. �

Lemma 32 If JCK s = inr (s′, q), thenπ0 (C M) s N
βη= π0 N s′ (C′ M) whereJC′K = q and

|C′| < |C|.
Proof AssumeJCK s = inr (s′, q) and proceed by structural induction on the syntax ofC:

[E0 = E1]: Not possible.

[skip]: Not possible.

[C0;C1]: ThereforeJC1K; (JC0K s) = inr (s′, q). Proceed by cases onJC0K s:
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[inl s′′]: ThereforeJC1K; (JC0K s) = JC1K s′′ = inr (s′, q). Therefore, by Lemma 29, there
existsC′

1 such thatJC′
1K = q and|C′

1| < |C1|. Thus we have

π0 (C0;C1 M) s N

= π0 ((δk.C0 (C1 k)) M) s N
βη= π0 (C0 (C1 M)) s N
βη= π0 (C1 M) s′′ N by Lemma 31
βη= π0 N s′ (C′

1 M) by the induction hypothesis forC1

[inr (s′′, q′)]: Therefore, by Lemma 29, there existsC′
0 such that JC′

0K = q′ and
|C′

0| < |C0|. So JC1K; (JC0K s) = inr (s′′, λs. JC1K; (JC′
0K s)) = inr (s′′, JC′

0;C1K) =
inr (s′, q) and hences′′ = s′, JC′

0;C1K = q, and|C′
0;C1| < |C0;C1|. Thus we have

π0 (C0;C1 M) s N
βη= π0 (C0 (C1 M)) s N
βη= π0 N s′ (C′

0 (C1 M)) by the induction hypothesis forC0

βη= π0 N s′ (C′
0;C1 M)

[if(E) {C0}]: ThereforeLEM s
βη= n 6= 0 and JC0K s = inr (s′, q). Therefore the induction hy-

pothesis ensures
π0 (C0 M) s N

βη= π0 N s′ (C′
0 M) (9.2)

whereJC′
0K = q and|C′

0| < |C0|. Thus we have

π0 (if(E) {C0} M) s N

= π0 ((δ〈r, i〉. 〈λs. LEM s� r s 8 π0 (C0 〈r, i〉) s, i〉) M) s N
βη= π0 〈λs. LEM s� π0 M s8 π0 (C0 M) s, π1 M〉 s N
βη= (LEM s� π0 M s8 π0 (C0 M) s) N
βη= π0 (C0 M) s N
βη= π0 N s′ (C′

0 M) by (9.2)

[swap]: Therefores′ = s, q = inl = JskipK. Note that|skip| < |swap|, and we have

π0 (swap M) s N

= π0 ((δ〈r, i〉. 〈λs. δ〈b, j〉. b s 〈r, i〉, i〉) M) s N
βη= π0 〈λs. δ〈b, j〉. b s M, π1 M〉 s N
βη= (λs. δ〈b, j〉. b s M) s N
βη= δ〈b, j〉. b s M) N
βη= π0 N s M
βη= π0 N s ((δk. k) M)
= π0 N s′ (skip M) �
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Proof [Proposition 28] By induction on|P|. Let C0 | C1 = P and assumeJC0 | C1K s = s′.
ThereforeJC1K| (JC0K s) = s′. Proceed by cases onJC0K s:

[inl s′′]: Therefores′′ = s′ and we have

C0 | C1 M s

= (δt. λs. π0 (C0 E) s (C1 E) λs. δ〈b, j〉. j t s) M s
βη= π0 (C0 E) s (C1 E) λs. δ〈b, j〉. j M s
βη= π0 E s′ (C1 E) λs. δ〈b, j〉. j M s by Lemma 31
βη= (λs. δk. δt. t s k) s′ (C1 E) λs. δ〈b, j〉. j M s
βη= (λs. δ〈b, j〉. j M s) s′ (C1 E)
βη= π1 (C1 E) M s′
βη= (δt. t) M s′ by Lemma 30
βη= M s′

[inr (s′′, q)]: Therefore Lemma 32 ensures

π0 (C0 M) s N
βη= π0 N s′′ (C′

0 M) (9.3)

whereJC′
0K = q and|C′

0| < |C0|. So we haveJC′
0K|(JC1K s′′) = s′ and proceed by cases on

JC1K s′′:

[inl s′′′]: Therefores′′′ = s′ and we have

C0 | C1 M s
βη= π0 (C0 E) s (C1 E) λs. δ〈b, j〉. j M s
βη= π0 (C1 E) s′′ (C′

0 E) λs. δ〈b, j〉. j M s by (9.3)
βη= π0 E s′ (C′

0 E) λs. δ〈b, j〉. j M s by Lemma 31
βη= (λs. δ〈b, j〉. j M s) s′ (C′

0 E)
βη= π1 (C′

0 E) M s′
βη= (δt. t) M s′ by Lemma 30
βη= M s′

[inr (s′′′, q′)]: Therefore Lemma 32 ensures

π0 (C1 M) s′′ N
βη= π0 N s′′′ (C′

1 M) (9.4)

where JC′
1K = q′ and |C′

1| < |C1|. So we haveJC′
1K|(JC

′
0K s′′′) = s′ and hence

JC′
0 | C′

1K s′′′ = s′. Also, |C′
0 | C′

1| < |C0 | C1|, and so the induction hypothesis en-
sures

C′
0 | C′

1 M s′′′
βη= M s′ (9.5)

and we have
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C0 | C1 M s
βη= π0 (C0 E) s (C1 E) λs. δ〈b, j〉. j M s
βη= π0 (C1 E) s′′ (C′

0 E) λs. δ〈b, j〉. j M s by (9.3)
βη= π0 (C′

0 E) s′′′ (C′
1 E) λs. δ〈b, j〉. j M s by (9.4)

βη= C′
0 | C′

1 M s′′′
βη= M s′ by (9.5) �

9.5 Conclusion

In this chapter we encountered our first upward continuations in a semantics which restricts
control contexts. The upward nature is evidenced in the interpretation:

K︸︷︷︸
running

delimited
continuation

( K

where
K

def= µK.S → K︸︷︷︸
blocked

delimited
continuation

( (S → K ( R)︸ ︷︷ ︸
shared continuation

( R

by K being recursive.
We saw that since the use of continuations by coroutines is so stylized, linear typing is un-

problematic, even though the upward (delimited) continuations which interpret the coroutines
play the role of a control store. However, to interpret toplevel programs reasonably, we found
that the use of delimited continuations here is crucial. Since there are two coroutines, each with
its control state represented by a continuation, if undelimited continuations were used, then the
toplevel continuation would have to be shared between them, which linear typing is not happy
with. Instead we used delimited continuations which allowed us to separate out the toplevel con-
tinuation and pass it back and forth between the coroutines as they are active, avoiding the need
to actually share it.

This semantics is affine since the control state of one coroutine must be discarded when the
other terminates (though, as before, there is a hack into a linear system).
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Chapter 10

Stored Labels and Commands

Given the source language control constructs we have considered thus far—a couple sorts of
labels and an implicit form of control store—it is natural to ask what the situation is for stored
labels and commands. These language features are also of interest since storable pointers to
immutable code are a prominent characteristic of the output of closure conversion in a compiler.

In this chapter we consider various forms of stored labels: some for which storing the labels
themselves (as part of the data context) suffices, whose semantics manipulate a control environ-
ment; and some which necessitate storing the continuations the labels refer to (as part of the
control context), whose semantics manipulate a control store. We also consider a form of stored
code whose semantics is similar to the control environment semantics in that only data is stored,
and similar to the control store semantics in that code is accessed through a store. Presenting
these semantics will not only address the question we opened with, but will also let us explore
the distinctions between control environment and control store, downward control and upward
control, and stored code and stored control. Very briefly, control environment, downward control,
and stored code all readily admit refined interpretations, while control store, upward control, and
stored control only do so in very specialized or restricted forms.

10.1 Semantic Landscape

Ignoring linearity for the moment, the semantics in Chapter 7 and Chapter 8 follow the general
form of interpreting commands with the type

U → K → K where K
def= S→ R (10.1)

while the semantics in Chapter 9 follows the form

K → K where K
def= µK. S→ U → R (10.2)

whereS is some type interpreting the data store andU is some type interpreting thelabel assign-
ment(despite not having any explicit labels in Chapter 9). Drawing on the similarity between
a label assignment and a traditional store, we say that a label assignment maps labelL-values
to labelR-values. Note that while the label assignment is always a map conceptually, often a
function type is not used in the implementation. For instance, in Chapter 7 label L-values are
target language identifiers and label R-values are continuations, so label assignments have type

U
def= & K (10.3)
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If we had a type,I say, of target language identifiers, (10.3) would be equivalent to1

U = I → K

Commonly, the label assignment and the current continuation together constitute the control
context. The two forms of semantic interpretation treat the label assignment, and hence control
context, very differently: in (10.1) it is treated as an environment (it is an input, but not an
output, of commands), and is downward; while in (10.2) it is treated as a store (as an argument
to continuations, it is both an input and an output of commands), and is upward. (In this latter
case, since continuations accept a label assignment as an argument, and since the type of label
assignments often itself involves the type of continuations (as in (10.3), for instance), use of a
recursive type is required in (10.2), even for some non-recursive languages.)

Generally, semantics which genuinely fit form (10.1) admit a refined interpretation. However,
as we will find, the pickings are much slimmer when dealing with semantics of form (10.2), and
only very specialized or restricted cases lead to a refined interpretation. Part of the reason for
this disparity may be that the diversity of store-based control constructs does not approach that of
environment-based constructs. Linear use of control contexts is wholly dependent on (particular)
stylized or idiomatic usage, but store constructs tend to be very general and allow any usage
whatsoever. For stored code, the semantics looks to be of form (10.2), but in this case rather than
a label assignment,U is another data store and hence its use need not be restricted in a refined
interpretation.

The crucial aspect of each source language we consider, which determines which of the forms
above its semantics fits, is whether it is sufficient to store only the L-values of labels, or if storing
the R-values is necessary. In the first case, a semantics like (10.1) may be used, while in the
second, one like (10.2) is required. We discuss this distinction further as we present the various
source languages, and in Section 10.8 we summarize and discuss all the semantics.

10.2 Stored Global Labels

The first control construct we interpret in the control environment form of semantics is stored
global labels. In this case there is some fixed collection of labels bound globally. The associ-
ation between label L-values and R-values is fixed—executing code cannot rebind or redefine
labels—so it is sufficient to treat the label assignment as a constant environment. While the label
environment is immutable, label L-values are storable. So the map from locations to continua-
tions (N → K), given by the composition of the data store mapping locations to values (N → N)
and label environment mapping label L-values to continuations (N → K), can be updated. In this
way, the storability of labels connects the data store and control environment.

The ability to store global, immutable, labels does not necessitate a control store because,
since the labels cannot be rebound (they are global) nor redefined (they are immutable), the same
label environment is good throughout a program’s execution. So there is no need to store the
label environment, it is simply a global constant. It is only necessary to store label L-values,
which point to some code but do not contain any information about control flow, and hence are
just data.

10.2.1 Source language

We extend the syntax of Section 6.1 with the productions

1Details on this sort of equivalence will be discussed in Section 10.2.2.
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E ::= · · · expressions

| li label

C ::= · · · commands

| gotoE jump

P ::= {C; {li:C}n
i=1} programs 0 ≤ n

wherei is a number.
For the sake of convenience, we have specified the set of labels to be{li | i a number},

that is, isomorphic toN. We could have more identifier-like (programmer-defined) labels if
the semantics carried around an environment mapping labels to their L-values. But by taking
the route we have, a label’s L-value is trivially determined by the syntax of the label, without
needing such an environment. The downside is that this makes the syntax of labels semantically
significant, and hence labels are not renamable.

Since the labels in this language are global, we have programs consisting of a block which
binds all the labels. Unlike in most other cases, we allow multiple labels to be bound in programs
since we do not allow blocks to be nested. For simplicity’s sake, we do not consider recursion in
this chapter, but we will in Chapter 11. So in the program

{C0; {li:Ci}n
i=1}

the scope of each labelli is the commands

{C0, . . . ,Ci−1}

Also, a stored label is defined only within its scope, so labels which escape their scope through
the store are undefined. For example, the jump in the program

{1 = l0; l0: goto *1}

is erroneous because location1 contains labell0, whose scope does not containgoto *1.
Executing a program block sets the label environment and then execution proceeds with the

first command in the block. When executing the body of a block, storing a label,li , results in
the label’s L-value,i, being stored. Since the label environment never changes (destructively or
otherwise), it is unnecessary to store the label R-values. With storable labels come computed
jumps: we at least have to be able to pull a label out of the store and jump to it, as in

{1 = l0; goto *1; 2 = 13; l0: 2 = 42}

which first bindsl0 to the control point starting with2 = 42, and then storesl0’s L-value,0, in
location1, jumps to the label R-value associated with the contents of location1, causing42 to be
stored in location2.

10.2.2 RefinedCPS transformation

First we extend the semantics of expressions given in Section 6.3.2 with a clause for labels:

LliM
def= λs. i

Since labels are immutable in this language, the semantics of expressions only needs to specify
a label’s L-value.
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The starting point for interpreting commands is the interpretation of the language of forward
jumps in Section 7.4, where we used the type

& K︸︷︷︸
label

environment

& K︸︷︷︸
current

continuation

( K (10.4)

where
K

def= S → R

Interpreting the label environment with a&-tuple relies on substitution (and projection) to select
the continuation associated with a given label. Now that the source language supports possibly
computed jumps, we need computed projections. So instead of a&-tuple, we interpret the label
environment with a function mapping label L-values to continuations:

N → K

Using functions in this way is more general than using&-tuples—we could have interpreted
exceptions, forward jumps, and so on similarly—but some complication is added. The restric-
tions the typing makes are the same in either case. As when constructing a&-tuple, where all the
factors must share the same restricted zone, when constructing such a function all the possible
outputs must share the same restricted zone. Using the sugar of Section 6.3.1, we have

Γ ; ∆ ` U : N → P Γ ; − ` N0 : N Γ ; ∆ ` M0 : P

Γ ; ∆ ` [U | N0: M0] : N → P Γ ; − ` N1 : N Γ ; ∆ ` M1 : P

Γ ; ∆ ` [[U | N0: M0] | N1: M1] : N → P

from which we see thatM0, M1 (andU) must share∆. Deconstruction is more obvious: instead
of usingπi to take us from a&-tuple to a single factor, we simply use application to take us from
aN → P to a singleP.

So, similar to (10.4), but with a different implementation of the environment, commands are
interpreted with the type

(N → K)︸ ︷︷ ︸
label

environment

& K︸︷︷︸
current

continuation

( K

and the transformation is given in Figure 6.1. Since label L-values are numbers and we are not
relying on substitution, it is not necessary to parameterize the transformation on a sequence of
labels, as was done in Section 7.4. Other than the clause forgoto, the transformation is not
conceptually different from that in Section 7.4. ForgotoE, since we now have computed jumps,
first we must evaluateE to a label L-value,LEM s, then lookup the label R-value (continuation)
associated with the label L-value by the environment,u[LEM s], and finally invoke the continuation
with the current state,u[LEM s] s.

Programs, which establish the binding of labels, are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R
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Figure 10.1RefinedCPSof Stored Global Labels

Expressions

S → N

LnM def= λs. n

L*nM def= λs. s[n]
LE0 == E1M

def= λs. LE0M s
n= LE1M s

LliM
def= λs. i

Commands

(N → K)︸ ︷︷ ︸
labels

& K︸︷︷︸
current

( K

n = E
def= δ〈u, k〉. λs. k [s | n: LEM s]

skip
def= δ〈u, k〉. k

C0;C1
def= δ〈u, k〉.C0 〈u,C1 〈u, k〉〉

if(E) {C}
def= δ〈u, k〉. λs. LEM s� k s8 C 〈u, k〉 s

gotoE
def= δ〈u, k〉. λs. u[LEM s] s

Programs

(S → R)︸ ︷︷ ︸
toplevel

( S → R

x{C0; {li:Ci}n
i=1}y

def= δt.C0 〈U0, · · ·Cn 〈Un, t〉 · · · 〉

Ui
def= [· · · [λn. (Y λx. x) t | i + 1:Ci+1 〈Ui+1,Ui+1[i + 2]〉] · · · | n:Cn 〈Un, t〉] : N → K

by the transformation in Figure 6.1. The transformation of a program is similar to that of se-
quencing above, but an appropriate label environment,Ui , is provided for each command,Ci .
Each label environment contains definitions of only those labels which are in scope, the remain-
der are undefined,(Y λx. x) t. Each label environment binds each label L-value,i + 1, to a
continuation for the labeled command,Ci+1, with the appropriate label environment,Ui+1, and
the continuation denoting the next command,Ci+2 (that is,Ui+1[i + 2]), for the current contin-
uation. The final command,Cn, gets the toplevel continuation as its current continuation. Note
that there is no recursion involved in the definition of theUi , the notation is simply a shorthand
for writing out all the environments needed for a known value ofn.

10.3 Stored Nested Labels

It is natural to consider a source language with (statically-bound) stored nested labels, given that
it is the result of simply adding the ability to store labels to the source language of Chapter 7,
and that it provides a close first-order analogue ofcall/cc. We interpret this language with a
semantics which manipulates a control store. This may be slightly confusing (if one naturally
thinks of labels as being distinct from their denotations) since there are no explicit control store
operations in the source language, but the combination of static binding and storability of labels
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necessitates a control store.
The key difference from the language of the previous section is that storing the L-values of

labels no longer suffices, the R-values must be stored. When labels are global, storing the L-
value of a label suffices since the definitions of the labels never change, and hence a label can
never be used in an incompatible label environment. With nested labels, however, storing only
a label’s L-value is insufficient since this stored L-value may persist after the label goes out of
scope. That is, a label can outlive the environment it depends on. Hence, it becomes necessary
to store a label’s R-value: in this case, a continuation, which is implicitly a label, together with
a label environment, that is, a continuation closure. Since continuations are part of a control
context, this language provides stored control.

10.3.1 Source language

The source language is like that in Chapter 7 but with an additional command to store labels and
one to jump to such a stored label. We extend the syntax of Section 7.1 with the productions

C ::= · · · commands

| n = l store label

| goto *n indirect jump

While it would make sense to simply extend expressions to include labels, as in Section 10.2.1,
doing so would complicate the presentation of the semantics for little gain.

To illustrate the intended semantics of this language, note that executing

{{{{1 = l0; goto l2 l0:}; 7 = 13; goto l4 l2:}; goto *1 l0:}; 7 = 42 l4:}

results in a state where location7 contains13. This happens since whenl0 is loaded from
location1, l0 refers to the binding which was in effect when it was stored, that is, the control
point starting with7 = 13. So storing a label results in a control point being stored; in other
words, it is necessary to store label R-values.

10.3.2 CPS transformation

The conceptual starting point for interpreting this language is the semantics of Section 7.4:

& K & K ( K where K
def= S → R

The significant difference between the source language of Section 7.1 and the present one is that
labels, in addition to numbers, are storable. So, while we can still interpret commands with the
type

& K︸︷︷︸
control

environment

& K︸︷︷︸
current

continuation

( K

we must extend the type of the store to accommodate labels. Not yet considering usage con-
straints on the control context, instead of representing the store withS, we need something along
the lines of2

N → N & K

2This&-product should really be a union, but for our purposes here a&-product will do.
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But in the type of continuations it is convenient to split the store into separate data and control
components, and uncurry, yielding

µK. S︸︷︷︸
data store

→ (N → K)︸ ︷︷ ︸
control store

→ R

(Note that since the continuations serving as the R-values of labels are passed to other contin-
uations as part of the store, the semantics must manipulate upward continuations, and the type
of continuations must be recursive.) Now, the control store is part of the control context, and so
should be subjected to usage constraints. As explained in Section 10.2.2, linear use of elements
of type

N → K

is equivalent to linear use of elements of type

& K

but, for the situation here, neither express appropriate constraints. If we were to represent the
control store with& K, say, then dereferencing one location would necessarily result in destruc-
tion of the entire state, making it impossible to dereference another location. Instead we use a
multiplicative product (treated in Section 10.9), yielding a semantics of form

& K & K ( K where K
def= µK.S →⊗z K ( R

(Note that, technically, for this type of continuations to be well-defined, the⊗-product must be
finitary. So we need to specify thatN represents some finite set of numbers, say32-bit integers
with modular arithmetic, and letz denote the maximum such number.)3 While not quite of form
(10.2) due to the presence of a control environment, this semantics certainly contains a control
store. (And we could very well implement the control environment with the control store if we
insisted on making (10.2) fit.)

Since

K = µK.S →⊗ K ( R

= S →⊗ (µK.S →⊗ K ( R) ( R

= S → R′

this semantics is simply that of Section 7.4 with a more specified result type. Hence, the transfor-
mation clauses for the old commands—which do not manipulate the control store—are simply
η-expansions of those in Section 7.4, and we need only attempt to transform the new commands:

n = l~l = δ〈~l , k〉. λs. δ(~u). k s [(~u) | n: l ]

goto *n~l = δ〈~l , k〉. λs. δ(~u). un s ( ~u )

where~u
def= u0, . . . , uz.

While not incredibly important, strictly speaking, then = l clause requires Weakening since
the continuationun is forgotten. Real failure, however, occurs when jumping to a stored label:
goto *n. Here the problem is that part of the control store,un, is copied (used twice), highlighted

3Another option would be to retain an infinite number type and use the infinitary tensor product of
linear dependent type theory.
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above by the boxes. The conceptual problem here is that once something is dumped into the store
there is no constraint forcing any form of stylized usage. This is manifested as the ability to jump
to the contents ofn in the control store after having done so before. If we were to disallow such
behavior, we could achieve linearity, but this is decidedly opposed to the intended semantics of
the source language. But in Section 10.7 we consider imposing such constraints, in a language
in which they are possibly not quite so counterintuitive.

There is another violation of linearity in the assignment clause since bothl andk come from
the argument&-tuple, meaning that it must be copied. Changing the interpretation to avoid
this failure (by using a⊗-tuple rather than a&-tuple for the control environment) would not
immediately violate the intended semantics of the source language, but would instead force the
clause for blocks to break the typing by copying the current continuation.

10.4 Dynamically-Assigned Labels

We now generalize the source language of Section 10.2 in a different direction, to allow nested
blocks of dynamically-assigned (or fluidly-bound) labels. While such a language may appear
completely contrived at first glance, the essential components are quite familiar: exceptions.
In Section 10.4.3 we briefly discuss this relationship. This language more fully exercises the
semantics, and also makes the point that storing and nesting of labels together are notinherently
incompatible with linearity. Storability and nestability are not themselves the crucial factors,
that is, in Section 10.3, linearity breaks due to (not restricted enough) stored control, not the
combination of storable and nested labels. We support this with a restricted interpretation of a
language with stored nested labels but which does not provide stored control.

The basic idea is to avoid needing label closures, which we saw in Section 10.3 lead to trying
to put continuations in the store, breaking linearity. We achieve this by changing from statically
binding labels to dynamically assigning them.4 A dynamic assignment performs a temporary
assignment. That is, an assignment is performed, then some code is executed, and then the
assignment is reverted. Hence, using dynamic assignment can provide a mutable environment,
which is more structured, stylized, and idiomatic than general assignment, but less structured
than static binding since all environment lookups reference the current environment. That is, free
identifiers in values are looked up in the current environment, not necessarily the environment
which was current when the value was created. In other words, closures are not necessary.
Dynamic assignment in general is explained more thoroughly in [FWH92].

10.4.1 Source language

We extend the syntax of Section 6.1 with the productions

E ::= · · · expressions

| li label

C ::= · · · commands

| gotoE jump

| {C li:} block

wherei is a number.

4Dynamically-bound labels would also be an option, and essentially equivalent, but dynamic assign-
ment is a better fit with computed jumps, since the initial environment must bind all the labels anyhow.
Also, it is more natural to think of assignment than binding when the “bound identifiers” cannot be re-
named.
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With dynamically-assigned labels, when entering a block{C li:}, first the control point
immediately following the block is assigned toli , thenC is executed, and thenli is reverted to
its previous value. As an example, note that executing

{{{{1 = l0; goto l2 l0:}; 7 = 13; goto l4 l2:}; goto *1 l0:}; 7 = 42 l4:}

results in a state where location7 contains42, not13 as it did in Section 10.3.1 where labels were
bound statically. Since the binding made by a block is reverted when the block is exited, storing
a label only requires the label’s L-value to be stored, not the R-value it refers to at the time it is
stored.

10.4.2 RefinedCPS transformation

Label expressions are interpreted as in Section 10.2.2 and so commands are interpreted with the
type

(N → K)︸ ︷︷ ︸
label

environment

& K︸︷︷︸
current

continuation

( K

where
K

def= S → R

One point to note about this type is that the label environment is handled in a downward fashion:
a command accepts an environment but, although it is mutable, a modified environment is not
returned upward (accepted by the current continuation). This indicates that any changes made to
the environment by executing a command are reverted when the command completes.

The transformation is given in Figure 10.2. All but the clause for blocks are identical to those
in Section 10.2.2. Note the crucial aspect of the interpretation ofgotoE: the destination of any
jump is looked up in the label environment, never is it part of the value ofE. The clause for
blocks indicates that to execute{C li:}, C should be executed in an environment whereli is
bound to the current continuation of the block.

Again as in Section 10.2.2, programs are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

The transformation, shown in Figure 10.2, simply indicates that the initial label environment
maps all labels to a divergent continuation.

10.4.3 Dynamically-assigned labels as exceptions

Nested blocks of dynamically-assigned labels provide the basic control machinery of an excep-
tions mechanism. Establishing a new binding of a label for the duration of a block’s execution
and then reverting to the previous binding, as the blocks in the present source language do, is
much the same as installing a new handler for a sort of exception for the duration of the exe-
cution of some body of code, as is common to exception mechanisms. For instance, recall the
example program from Section 10.4.1:

{{{{1 = l0; goto l2 l0:}; 7 = 13; goto l4 l2:}; goto *1 l0:}; 7 = 42 l4:}

We can write a very similar version of this program using OCaml’s exception mechanism, see
Figure 10.3, which, when executed, also leaves42 in location7 (loc_7).
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Figure 10.2RefinedCPSof Dynamically-Assigned Labels

Expressions

S → N

LnM def= λs. n

L*nM def= λs. s[n]
LE0 == E1M

def= λs. LE0M s
n= LE1M s

Commands

(N → K)︸ ︷︷ ︸
labels

& K︸︷︷︸
current

( K where K
def= S → R

n = E
def= δ〈u, k〉. λs. k [s | n: LEM s]

skip
def= δ〈u, k〉. k

C0;C1
def= δ〈u, k〉.C0 〈u,C1 〈u, k〉〉

if(E) {C}
def= δ〈u, k〉. λs. LEM s� k s8 C 〈u, k〉 s

gotoE
def= δ〈u, k〉. λs. u(LEM s) s

{C li:}
def= δ〈u, k〉.C 〈[u | i: k], k〉

Programs

(S → R)︸ ︷︷ ︸
toplevel

( S → R

xCy
def= δt.C 〈λn. (Y λx. x) t, t〉

Figure 10.3Dynamically-Assigned Labels in OCaml

exception L0
exception L2
exception L4

let loc_1 = ref (Failure "undefined")
let loc_7 = ref 0

let _ =
try (try (try (try

loc_1 := L0; raise L2
with L0 -> loc_7 := 13; raise L4)

with L2 -> raise !loc_1)
with L0 -> loc_7 := 42; raise L4)

with L4 -> ()
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10.5 Stored Commands

To investigate a semantics which manipulates a code store, we consider a language with stored
commands. The essential point of this interpretation is that code which is stored, unlike stored
control, need not form part of the control context; code is only data.

In this section we consider a language with a command to store a command,n = (C), and
to execute such a stored command,exec *n. As an illustration of the difference between stored
code and stored control, note that the intended semantics ofn = (C0);C1 is to store (the code
of) commandC0 in locationn of the code store and then executeC1. After storingC0, executing
exec *n;C2 causesC0 followed byC2 to be executed. That is, if execution reaches the end of a
stored command, then the code following the most recently executedexec command is executed.
The code of a command (for example,C0) is itself just some data: a sequence of opcodes. So
in our example, whenC0 is stored, since nothing is stored which identifies which command to
execute should execution ofC0 fall off the end, only code, not control, is stored.

On the other hand, suppose we were to change the semantics so that executingn = (C0);C1

followed byexec *n;C2 causesC0 followed byC1 to be executed. That is, if execution reaches
the end of a stored command, then the code following the stored command in the program text is
executed. In this case, not onlyC0, but alsoC1 (and whatever comes after it, ad infinitum), must
be stored. All this together specifies a control point: executingexec *n;C2 completely ignores
C2 since the contents ofn specifies a complete computation.

10.5.1 Source language

We extend the syntax of Section 6.1 with the productions

C ::= · · · commands

| n = (C) store command

| exec *n execute stored command

For an example illustrating the intended semantics, the command:

1 = (exec *2); 2 = (0 = *0 + 1); exec *1

is simply a long-winded way to increment the value stored in location0. Note that since the
stored commands are inert untilexeced, and since a commandstorenot a commandenvironment
is used, storing a command which refers to an uninitialized location is unproblematic.

10.5.2 RefinedCPS transformation

The interpretation of commands is an extension of that in Section 6.4, so commands are inter-
preted with the type

K︸︷︷︸
current

continuation

( K

The key to the interpretation of stored commands is that in the type of continuations

K
def= µK. S︸︷︷︸

data store

→ (N → K ( K)︸ ︷︷ ︸
code store

→ R
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the code store is not used linearly, since it is part of the data context. In Section 6.4, the
type of continuations isS → R, so K here is simply the old type of continuations, but with
(N → K ( K) → R as the result type. So we need only extend the transformation with clauses
for the new commands:

n = (C)
def= δk. λs. λt. k s[t | n:C]

exec *n
def= δk. λs. λt. t[n] k s t

Notice thatC is stored without the current continuation, and that when executing a stored com-
mand, it is provided with the current continuation of theexec command.

Programs are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

by the transformation, shown in Figure 10.4, simply indicates that the initial code store maps all
locations to a divergent command, and that the code store is thrown away just before a program
terminates.
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Figure 10.4RefinedCPSof Stored Commands
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10.6 Mutable Labels, Natural but Nonlinear

In Section 10.3 we considered implicit control store, and in Section 10.5 we considered explicit
code store, now we turn to explicit control store. This language does not really have a hope of a
linear interpretation; we present it primarily to set up the next section, where we investigate what
constraints on the source language are needed for a refined interpretation. But this language also
demonstrates how even a very weak form of control store breaks linearity. When considering
stored control, distinctions which were important to languages interpreted with control environ-
ments, such as storable versus unstorable and nested versus global, seem to be irrelevant: even
the least powerful combination (unstorable global, but mutable, labels), which we present here,
breaks linearity.

10.6.1 Source language

We extend the syntax of Section 6.1 with the productions

C ::= · · · commands

| l j = li label assignment

| goto li jump

| {C li:} block
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where0 ≤ i, j < n for some fixedn.
While the discussion has been in terms of label L-values from the beginning, we finally have

labels on the left of an assignment. Intuitively, a label assignmentl j = li works like ordinary
assignment,l j ’s L-value is updated toli ’s R-value, except that it refers to the control store rather
than the data store. Note in particular that, unlike other languages, labels here are mutable but
not storable. A consequence of this is that label L-values are not stored anywhere, only label
R-values are stored (in the control store).goto li also behaves as expected, looking upli ’s R-
value and invoking it. While it might look like a sort of binding, a block{C li:} is just a form
of forward-referencing assignment. That is, executing{C li:} first assigns the control point
corresponding to the end of the block toli and then executesC.

To illustrate this language, we sketch an implementation of coroutines as in Chapter 9. We
usel0 to store the control state of the blocked coroutine,l1 as an auxiliary, andl2 to enable
jumping to the end of the program and returning to the toplevel. A coroutine programC0 | C1

can be implemented by
{{C′

0; goto l2 l0:};C′
1; goto l2 l2:}

Executing this first stores the control point corresponding to the toplevel continuation inl2. Then
the control point starting withC′

1; goto l2 is stored inl0. C′
0 is then executed and, if it completes,

l2 is jumped to, causing the program to return to the toplevel. (Note howl2 is passed along
statefully, but unmodified, throughout the computation, just as the toplevel continuation in the
delimited continuation interpretation of Section 9.2.2.) Above,C′

0,C
′
1 are the versions ofC0,C1

which have had occurrences ofswap replaced by a command, described below, which swaps the
coroutines by manipulatingl0 and the control point starting with the command followingswap.
So if executingC′

0 results in aswap command being executed, the remainder ofC′
0 is stored inl0

and the previous contents ofl0 are executed.
As mentioned above, occurrences ofswap are replaced by

l1 = l0; {goto l1 l0:}

Executing this command first moves the contents ofl0, the control state of the blocked coroutine,
to l1. Then the block is executed, which stores the control state of the “next” command, which
might be thought of as the program counter plus one, inl0. Finally, the previously blocked
coroutine is resumed by jumping tol1.

10.6.2 CPS transformation

The interpretation of commands is an extension of that in Section 6.4 but ignoring linearity, so
commands are interpreted with the type

K︸︷︷︸
current

continuation

→ K

In Section 6.4 the type of continuations wasS → R, and here we simply further specify the result
type to include a control store, yielding

K
def= µK. S︸︷︷︸

data store

→ &n K︸ ︷︷ ︸
control store

→ R

wheren is the number of labels, as specified in Section 10.6.1.
Instead of implementing the control store with& K, we could have usedN → K, but since

the present language does not include computed jumps, it is not necessary. Also, we choose to
use& K since it is closer to the interpretation we will give in the next section.
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The transformation clauses for the new commands are

l j = li
def= λk. λs. λ〈~l〉. k s[〈~l〉 | j: l i ]

goto li
def= λk. λs. λ〈~l〉. l i s〈~l〉

{C li:}
def= λk. λs. λ〈~l〉.Ck s[〈~l〉 | i: k]

where~l
def= l0, . . . , ln−1.

In the l j = li clause, the current continuation is invoked with an unmodified data state and
a control state like the old but wherel j ’s L-value, j, maps toli ’s R-value,l i . For goto li , li ’s
R-value,l i , is invoked with unchanged states. The clause for blocks,{C li:}, indicates that the
body,C, should be executed with the same current continuation and data state, but in a control
state like the old but whereli ’s L-value,i, maps to the current continuation,k.

Programs are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

→ S → R

by the transformation

xCy
def= λt. λs.C (λs. λ〈~l〉. t s) s〈{D}n−1

0 〉

where

D
def= Y λk. k : K

simply indicating that the initial control store maps all labels to a divergent continuation, and the
control store is thrown away just before termination.

10.7 Mutable Labels, Affine but Contrived

In this section we modify the source language of the previous section in order to force it to admit
a refined interpretation. In doing do we admittedly end up with a contrived language, but it helps
in understanding what a refined interpretation demands of the source language. The result of the
restrictions allowing the refined interpretation is that all the operations on the control store must
be very careful to move, not copy, stored pieces of control context.

10.7.1 Source language

While the syntax is the same as in the previous section, the intended semantics is significantly
different. Now the effect of executing a label assignmentl j = li is not only to updatel j ’s L-value
with li ’s R-value, as before, but also to undefineli ’s L-value. Hence,l j ’s R-value is moved, not
copied, fromli ’s L-value tol j ’s. Similarly, executinggoto li now not only looks upli ’s R-value
and invokes it, but also undefinesli ’s L-value. Along the same lines but stranger, executing
a block{C li:} first assigns the control point corresponding to the end of the block toli and
then executesC, but with an undefined current continuation. This means that the only sensible
(defined) choices ofC are of the formC′; goto l j .

Note that while these restrictions are severe, this language is still expressive enough to im-
plement coroutines as described in Section 10.6.1.
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10.7.2 RefinedCPS transformation

The only difference between the form of this interpretation and that in Section 10.6.2 is the use
of a⊗-product rather than a&-product, to implement the control store. Hence, commands are
interpreted with the type

K︸︷︷︸
current

continuation

( K where K
def= µK. S︸︷︷︸

data
store

→ ⊗n K︸ ︷︷ ︸
control
store

( R

The transformation of commands, shown in Figure 10.5, is like that in Section 10.6.2 but
for the introduction of undefinedness. In thel j = li clause, the current continuation is invoked
with an unmodified data state and a control state like the old but wherel j ’s L-value, j, maps to
li ’s R-value,l i , andli ’s L-value is undefined (and consumesl j ’s R-value,l j ). For goto li , li ’s
R-value,l i , is invoked with an unchanged data state and a control state like the old but where
li ’s L-value is undefined. The clause for blocks,{C li:}, indicates that the body,C, should be
executed with an undefined current continuation, and the same data state, but in a control state
like the old but whereli ’s L-value,i, maps to the current continuation,k. In short, all operations
ensure that parts of the control state are moved and not copied.

Programs are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

by the transformation in Figure 10.5, which indicates that the initial control store maps all labels
to a divergent continuation, and the control store is thrown away just before termination. The
more complicated definition of divergence is necessary to ensure continuations are used affinely
when defining a recursive continuation directly.

10.7.3 Stored mutable labels

This semantics could be extended to allow the labels to be stored. This would give the source
language code pointers, but as above, the code they point to could not be copied, only moved.
One use of this would be to implement coroutines by interchanging the contents of two vari-
ables holding labels instead of swapping labels, as in Section 10.6.1. While this semantics is
technically complicated, the same intuitive concepts and restrictions drive the definition. The
complication is that, like we needed to interpret label environments with

N → K

instead of
& K

with the addition of stored labels, we would need the linear dependent type theory analogue of

⊗ K

to interpret label stores once stored labels are added. For this reason we do not pursue this further.
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Figure 10.5RefinedCPSof Mutable Labels
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10.8 Semantic Landscape Revisited

Having presented the details of stored labels, we now summarize the semantic landscape we have
been exploring and position the developments in the last few chapters as well as the semantics
we considered in this chapter. As indicated in Section 10.1, we considered three basic sorts of
semantics:

10.8.1 Control environment

First, interpretations of form (10.1), of which the first we presented were the semantics of the
languages of Chapter 7 and Chapter 8. In both of these languages there is no way for a la-
bel to escape from (outlive) the label environment in which it is bound, so there is no need to
store anything related to control. Technically, we can observe this by noting that in the refined
interpretations of these languages
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& K & K ( K where K
def= S → R (10.5)

the store contains only numbers, which are neither label L-values (which are target language
identifiers) nor label R-values (which are continuations). Hence there is no connection between
the store and the label assignment.

In the present chapter we connected the store and the label assignment first with an interpre-
tation of the form

(L → K) & K ( K where K
def= (N → V) → R

Unlike in (10.5), where there was no interaction between label L-values,L, and stored values,V,
here we store label L-values. That is, we wanted a situation something likeV = N ∪ L, but to
make this simple, we tookL = N and usedN ∪N = N, yielding

(N → K) & K ( K where K
def= S → R

We used this semantics to interpret two source languages: first one with stored global labels in
Section 10.2, and then one with dynamically-assigned (or fluidly-bound) labels in Section 10.4.
While stored global labels are an instance of dynamically-assigned labels, we presented them
anyhow since dynamic-assignment is not as widely understood and the interpretation of stored
global labels can illustrate the types used in the semantics without worrying about strange binding
forms. On the other hand, we presented dynamically-assigned labels since stored global labels
are a rather weak and degenerate control construct which does not come close to fully exercis-
ing the types in the semantics. The interpretation of dynamically-assigned labels also serves to
demonstrate that stored nested labels are not inherently incompatible with restricted typing—as
Section 10.3 might lead one to believe—if care is taken not to store control.

10.8.2 Code store

In Section 10.5, we considered a semantics with a code store:

K ( K where K
def= µK.S → (N → K ( K) → R

Here we see that the code store maps locations,N, to code, or commands,K ( K. The code
store need not be used linearly since it is part of the data context, not part of the control context
as the label assignment is in semantics like (10.2). So, technically, this case is easy since refining
the interpretation does not impose any significant constraints.

Nevertheless, this case fills an important conceptual place, highlighting the distinction be-
tween stored code and stored control. The basic point is that some finite amount of code (such as
a command) is just data, but some finite code together with information determining what code
will execute afterward is a control point, and hence is part of a control context.

10.8.3 Control store

We now turn to stored control and interpretations of form (10.2). Unlike the benign nature of
storing code with respect to linear use of control contexts, storing control is highly malignant.
Generally speaking, once something is dumped into any sort of general store, any hope of stylized
usage is gone.
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But stored control does not entirely preclude restricted use of control contexts: the language
of coroutines in Chapter 9 provides stored control in the form of the control state of the blocked
coroutine. Note that the control state of a coroutine is an instance of stored control and not merely
stored code because the blocked coroutine, once unblocked, need not ever relinquish control, and
hence a coroutine’s control state must determine an entire future computation, not just some
code. In this case the control store is implicit in the source language, and is manipulated in a
very stylized way, making possible a refined interpretation (of form (10.2)):

K ( K where K
def= µK.S → K ( R

Here, while there is nothing control-related in the data store, the label assignment acts as a
separate control store. The upward nature of continuations is also clear here as we explicitly
have continuation arguments to continuations.

In Section 10.3, we considered a semantics of form

& K & K → K where K
def= µK.S → (N → K) → R

where we have not only a control environment mapping labels to continuations, but also a control
store mapping locations,N, to continuations. Despite the presence of a control environment, this
semantics is like (10.2) in the crucial aspect that it manipulates a control store. We used this
semantics to interpret a language with (statically-bound) stored nested labels. As we noted in
Section 7.1, the forward-jumping blocks we use are a sort of first-order analogue ofcall/cc, and
now with the ability to store labels, labels (and hence, continuations) are upward and can outlive
the blocks which defined them, resulting in full stored control. Since this store is essentially
unconstrained, attempting to give a refined interpretation fails.

To better understand what a linear interpretation of stored control requires of a source lan-
guage, we presented, in Section 10.6, a language with explicit control store in the form of mutable
labels and then, in Section 10.7, modified this language, in an admittedly unnatural way, to allow
an affine semantics. The natural but unrefined interpretation fits form (10.2):

K → K where K
def= µK.S → & K → R

and the refined interpretation has similar form:

K ( K where K
def= µK.S →⊗ K ( R

The result of the restrictions allowing the refined interpretation is that all the operations on the
control store must be very careful to move, not copy, stored pieces of control context. Un-
surprisingly, since the programming abstraction (the control store) is entirely unidiomatic, the
programmer is left with all the work. In other words, while we use an untyped and unsafe lan-
guage, if we were to use a typed and safe one we would be forced to pull linearity from the target
type system into the source type system as well, or something equivalent.

10.9 Appendix: Target Language(+= (·) ⊗ (·))

In this section we present the technical details for the multiplicative product,(·)⊗ (·), we use in
this chapter in addition to the additive product,(·) & (·). All this is conceptually summarized by
the typing rule for constructing a⊗-pair:
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[MPAIR]
Γ ; ∆ ` M : P Γ ; ∆′ ` N : Q

Γ ; ∆ , ∆′ ` (M, N) : P⊗Q

This indicates that the factors of a⊗-pair do not share the same restricted zone, as the factors of
a&-pair do, but must instead depend on disjoint resources.

10.9.1 Syntax

We extend the grammar of terms of Section 2.2:

M ::= · · · terms

| (M, M) multiplicative pair

| δ(x, x). M multiplicative pattern match

And, in Section A.1 we define the following syntactic sugar:

| () multiplicative unit constant

| (M) unary⊗-tuple

| δ(x, . . . , x). M n-ary restricted multiplicative pattern match

| [(M, . . . , M) | i: M] n-ary⊗-tuple extension

Convention: ⊗-pairing is right-associative, so(M, N, O) parses to(M, (N, O)) rather than
((M, N), O). The body of a multiplicative pattern match extends as far to the right as possi-
ble, soδ(x, y). M N parses toδ(x, y). (M N) rather than(δ(x, y). M) N.

10.9.2 Equational theory

We add the following to the axioms of Section 3.2:

(δ(x0, x1). M) (M0, M1)
βη= M[x0, x1 7→M0, M1]

10.9.3 Type system

The grammar of types of Section 3.2 is extended by

P ::= · · · pointed types

| P⊗ P multiplicative product type

And, in Section A.3 we define the following syntactic sugar:

|⊗n P n-ary multiplicative product type

Convention: The multiplicative product type constructor is right-associative, soP⊗Q⊗ R
parses toP⊗ (Q⊗ R) rather than(P⊗Q)⊗ R. The precedence of(·)⊗ (·) is the same as
(·) & (·) and higher than(·) → (·) and (·) ( (·), so P⊗Q ( R parses to(P⊗Q) ( R rather
than P⊗ (Q ( R). The n-ary multiplicative product type constructor has higher precedence
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than that of all the binary type constructors, so⊗n A ( B parses to(⊗n A) ( B rather than
⊗n (A ( B) and⊗n A⊗ B parses to(⊗n A)⊗ B rather than⊗n (A⊗ B). When it is clear
from context, we generally omitn and write⊗ P for⊗n P.

The typing rules of Section 3.2 are extended with

[MPAIR]
Γ ; ∆ ` M : P Γ ; ∆′ ` N : Q

Γ ; ∆ , ∆′ ` (M, N) : P⊗Q
[MPATM]

Γ ; ∆ , x0 : P0 , x1 : P1 ` M : Q

Γ ; ∆ ` δ(x0, x1). M : P0 ⊗ P1 ( Q

The point to note about the multiplicative product is that, unlike(·) & (·), the restricted zone
is not shared by the factors, instead they must depend on separate restricted identifiers.
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Chapter 11

Everything at Once

In previous chapters we always interpreted a single control construct in isolation. While this
simplified the various individual semantics, it might leave the impression, or cause the anxiety,
that the simplicity of the surrounding language was crucial to each control construct’s interpreta-
tion. In this chapter we counter by collecting many of the various control constructs previously
considered into one conglomerate language. The refined interpretation of this language follows
straightforwardly from the interpretations of the individual control constructs given in previous
chapters. In this regard, there are no new concepts. On the other hand, this language demon-
strates a wide variety of control constructs which simultaneously admit an interpretation where
the use of control contexts is restricted. And the straightforwardness of the interpretation, given
the previous interpretations, offers some confidence that the individual interpretations are not
artificially exploiting degeneracies of the particular simple languages considered.

11.1 Source Language

For the source language we start with the simple command language of Chapter 6 and extend it
in a number of steps. First we add a form of (parameterless) procedure call and return (valof

and resultis) inspired by Strachey and Wadsworth’s original [SW74]. Next we add nested
blocks of dynamically-assigned labels, as in Section 10.4, but we now allow backward as well
as forward jumps to them, as in Chapter 8. Next we add coroutines, as in Chapter 9, and fi-
nally add stored commands as in Section 10.5. So this language encompasses essentially all the
different control behaviors we have studied: procedures (though parameterless), exceptions (re-
cursive dynamically-assigned labels provide the necessary control machinery), labels (recursive
dynamically-assigned labels is the “most expressive” variety of control environment we studied
which admits a refined interpretation), coroutines (providing natural and implicit control store),
and stored commands (providing code store). Note that, despite its appearance, this language is
higher-order; In particular, its semantics requires a reflexive domain equation, just like untyped
λ-calculus.

The syntax is given by the grammar

E ::= expressions

| n numeric literal

| *n dereference

| E == E numeric equality

| valofC valof (call)
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| li label

C ::= commands

| n = E assignment

| skip no-op

| C;C sequence

| if(E) {C} conditional

| resultisE resultis (return)

| gotoE jump

| {C; {li:C}n
i=1} block 0 ≤ n

| swap swap coroutines

| n = (C) store command

| exec *n execute stored command

P ::= programs

| C | C parallel

where then andi are numbers.
Except for a few points, the intended semantics follows from previous chapters. For a block,

the scope of all the labels is all the commands, which allows backward jumps. Evaluation of
valofC causes commandC to be executed until it executes aresultisE command, which
causes the originalvalofC expression to evaluate to the value ofE. If execution ofC finishes
without executing aresultis, thenvalofC evaluates to0.1 Regarding the interaction between
valof/resultis and stored commands; when a stored command is run and executes aresultis

command, it returns to the dynamically enclosingvalof expression (as a procedure returns to the
dynamically enclosing caller) rather than the statically (lexically) enclosingvalof expression (as
a first-class continuation captured withcall/cc refers to its statically current continuation).

It is an error to jump to an unbound label or to return a value withresultis outside of a
valof expression.

11.2 RefinedCPS Transformation

We present the interpretation of this language in several steps, and summarize the whole seman-
tics in Figure 11.1.

11.2.1 Simple command language +valof and resultis

We start with the interpretation presented in Section 6.4 and extend it to handlevalof and
resultis.

Due to the addition ofvalof, expressions are no longer pure with respect to control, and so we
give aCPSsemantics of them instead of a direct semantics as we have done previously. This has
essentially made expressions into just another sort of commands, but Strachey and Wadsworth’s
original intent was that this language’s semantics would have to deal with “inconvenient” fea-
tures.

As in Section 6.4, the type of command continuations is

K
def= S → R

1This is different from Strachey and Wadsworth, who specify failure in this situation. We differ just to
avoid carrying yet another continuation around in the semantics.
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Expressions are interpreted much like procedures in Section 2.3 and Section 3.3: with a type of
continuation transformers

(N → K)︸ ︷︷ ︸
return

continuation

( K︸︷︷︸
call

continuation

The asymmetry between call and return continuations here is due to the fact thatvalof/resultis
provides a sort of parameterless procedures, so the call continuation accepts only a state, while
the return continuation accepts both a value and a state. Likewise, commands will need access to
a return continuation, so commands are interpreted with the type

(N → K)︸ ︷︷ ︸
return

continuation

& K︸︷︷︸
current

continuation

( K

The transformations of expressions and commands are mutually recursive. The transforma-
tion of expressions is

n
def= δr. r n

*n
def= δr. λs. r s[n] s

E0 == E1
def= δr. E0 λe0. E1 λe1. r (e0

n= e1)
valofC

def= δr.C 〈r, r 0〉

The effect of evaluating avalofC expression is to execute commandC with the expression’s
return continuation asC’s return continuation, and a current continuation shouldC fall of its end
without returning withresultis. Note that rather than specifying failure in this case, our seman-
tics treats such commands as if they had returned0. Making them fail would be straightforward,
however.

The transformation of the commands relevant at this step is

n = E
def= δ〈r, k〉. E λe. λs. k [s | n: e]

skip
def= δ〈r, k〉. k

C0;C1
def= δ〈r, k〉.C0 〈r,C1 〈r, k〉〉

if(E) {C}
def= δ〈r, k〉. E λe. e� k 8 C 〈r, k〉

resultisE
def= δ〈r, k〉. E r

Here we see that the effect of executing aresultisE command is simply to evaluate (that
is, execute) the expressionE with the argument return continuation. This will then cause the
dynamically-enclosingvalof expression to evaluate to the value ofE.

For now, we only consider programs consisting of a single command, rather than two in
parallel, and interpret them with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

by
xCy

def= δt.C 〈D, t〉
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where we use the abbreviation

D
def= λn. (Y λx. x) t : N → K

Here we see that returning outside of avalof expression, an error in the source language, causes
execution to diverge.

11.2.2 Adding recursive dynamically-assigned labels

Following Section 10.4.2, with the addition of nested blocks of labels, a label environment is
necessary. So commands are now interpreted with the type

(N → K)︸ ︷︷ ︸
continuation
environment

& (N → K)︸ ︷︷ ︸
return

continuation

& K︸︷︷︸
current

continuation

( K

Since expressions can contain commands, they also need a label environment, and so are now
interpreted with the type

(N → K)︸ ︷︷ ︸
continuation
environment

& (N → K)︸ ︷︷ ︸
return

continuation

( K

The transformation of expressions is

n
def= δ〈u, r〉. r n

*n
def= δ〈u, r〉. λs. r s[n] s

E0 == E1
def= δ〈u, r〉. E0 〈u, λe0. E1 〈u, λe1. r (e0

n= e1)〉〉
valofC

def= δ〈u, r〉.C 〈u, r, r 0〉
li

def= δ〈u, r〉. r i

This extension is straightforward but for the interpretation of labels, which is theCPSversion of
their interpretation in Section 10.2.2.

Extending the transformation of the old commands is straightforward:

n = E
def= δ〈u, r, k〉. E 〈u, λe. λs. k [s | n: e]〉

skip
def= δ〈u, r, k〉. k

C0;C1
def= δ〈u, r, k〉.C0 〈u, r,C1 〈u, r, k〉〉

if(E) {C}
def= δ〈u, r, k〉. E 〈u, λe. e� k 8 C 〈u, r, k〉〉

resultisE
def= δ〈u, r, k〉. E 〈u, r〉

For the new commands, we follow Section 10.4.2 but extend to multi-label blocks roughly fol-
lowing Section 10.2.2, and treat recursion following Section 8.2, leading to an affine transforma-
tion:

gotoE
def= δ〈u, r, k〉. E 〈u, λe. u[e]〉

{C0; {li:Ci}n
i=1}

def= π0 (Y◦ δ〈{xi}n
i=0〉. 〈{δ〈u, r, k〉.Ci 〈U, r, xi+1 〈u, r, k〉〉}n−1

i=0

, δ〈u, r, k〉.Cn 〈U, r, k〉〉)
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where
U

def= [· · · [u | 1: x1 〈u, r, k〉] · · · | n: xn 〈u, r, k〉] : N → K

For gotoE, E is evaluated and the value bound toe. The continuation denotinggotoE is then
the continuation the environment,u, mapse to, u[e]. In this language, blocks bind multiple labels
which can be jumped backwards to, and hence, all the labels in a block are mutually recursive. To
interpret this, the transformation builds a recursively defined tuple of the interpretations of all the
commands in the block, and projects out the first as the denotation of the block. This recursive
tuple is defined as the least fixed-point of a function from such tuples to such tuples. Each element
of the output tuple of this function is the denotation of a command, and follows the semantics of
sequencing, but instead of the current continuation being defined in terms of the transformation
of the second command, it is defined in terms of the corresponding element of the input tuple.
The current continuation of the final command in the block is the current continuation of the
block as a whole. The label environment for all the commands in the block,U, is the block’s
label environment,u, extended with bindings for all the labels bound by the block,{1, . . . , n}.
Each label lvaluei is bound to theith factor of the recursive tuple of command meanings applied
to the block’s label environment and continuations, just as for the current continuations of the
denotations of commands.

We still only consider programs consisting of a single command, rather than two in parallel,
and interpret them with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

by
xCy

def= δt.C 〈D,D, t〉

where we use the abbreviation

D
def= λn. (Y λx. x) t : N → K

Here we see that in addition to returning outside of avalof expression, jumping to an unbound
label, again an error in the source language, causes execution to diverge.

11.2.3 Adding coroutines

We now give an affine delimited continuation interpretation, following Section 9.2.2, to handle
coroutines. Rather than command continuations, we now use a type of command delimited
continuations

K = S → (S → R) ( R

and add a control store for the control state of the blocked coroutine:

K
def= µK.S → K ( (S → K ( R) ( R

The interpretation of expressions remains unchanged, and commands are still interpreted
with the type

(N → K) & (N → K) & K ( K

but now unrolling the recursive type on the right-hand side of the(·) ( (·) yields

(N → K)︸ ︷︷ ︸
label

environment

& (N → K)︸ ︷︷ ︸
return

continuation

& K︸︷︷︸
running

coroutine

( S → K︸︷︷︸
blocked

coroutine

( (S → K ( R)︸ ︷︷ ︸
shared

toplevel

( R
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As usual when simply refining the result type, we need only add a transformation clause for the
command(s) which manipulate the newly revealed type component:

swap
def= δ〈u, r, k〉. λs. δb. b s k

But for carrying the label environment and return continuation around, this interpretation is un-
changed from that in Section 9.2.2.

Programs are interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

by

xC0 | C1y
def= δt. λs.C0 〈D,D,E〉 s (C1 〈D,D,E〉) λs. δb. t s

where we use the abbreviations

D
def= λn.Y λx. x : N → K

E
def= λs. δb. δp. p s b : K

The definition ofD differs here because it no longer needs to consume the toplevel continuation,
it is instead embedded into the shared toplevel delimited continuation,λs. δb. t s. Again, the only
difference from the interpretation in Section 9.2.2 is carrying the label environment and return
continuation around.

11.2.4 Adding stored commands

We now extend the interpretation to handle stored commands, following Section 10.5.2. With a
different type interpreting commands than in Section 10.5.2, the type of the code store needed to
interpret stored commands changes accordingly:

T
def= N → (N → K) & (N → K) & K ( K

With this, we refine the result type to include the control store, making the type of continuations

K
def= µK.S → K ( (S → K ( T → R) ( T → R

And so the type of commands is (unrollingK once)

(N → K)︸ ︷︷ ︸
label
env.

&(N → K)︸ ︷︷ ︸
return
cont.

& K︸︷︷︸
running

coroutine

( S → K︸︷︷︸
blocked

coroutine

( (S → K ( T → R)︸ ︷︷ ︸
shared

toplevel

( T︸︷︷︸
code
store

→ R

The transformation clauses for the additional commands are2

n = (C)
def= δ〈u, r, k〉. λs. δb. δp. λt. k s b p [t | n:C]

exec *n
def= δ〈u, r, k〉. λs. δb. δp. λt. t[n] 〈u, r, k〉 s b p t

2At times like this one wishes for a labeledλ-calculus, which passes arguments by “label” rather than
“position”. This would allow a form ofη-contraction for arguments to curried functions other than the
last, such ass, b, p in the clause forn = (C).
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Conceptually, these clauses are no different than in Section 10.5.2, there are simply more inert
components to carry around.

Programs are still interpreted with the type

(S → R)︸ ︷︷ ︸
toplevel

continuation

( S → R

but now by the transformation

xC0 | C1y
def= δk. λs.C0 〈D,D,E〉 s (C1 〈D,D,E〉) (λs. δb. λt. k s) D

where we use the abbreviations

D
def= λn.Y λx. x : N → P

E
def= λs. δb. δp. p s b : K

from which we see that the every location in the code store in initialized to a divergent command.
Also, now the toplevel delimited continuation,λs. δb. λt. k s, also throws away the code store
before returning to the OS.

11.3 Conclusion

In this chapter we showed that the previous analyses of various control behaviors in isolation
were not relying on that isolation by giving an interpretation of a language including virtually
every control behavior we have considered: procedures (though parameterless), exceptions (re-
cursive dynamically-assigned labels provide the necessary control machinery), labels (recursive
dynamically-assigned labels is the “most expressive” variety of control environment we studied
which admits a refined interpretation), coroutines (providing natural and implicit control store),
and stored commands (providing code store).

In addition to being possible, interpreting the conglomerate language follows straightfor-
wardly from the individual interpretations, and is largely a matter of unioning the individual
interpretations’&-tuples and refining the result type.
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Figure 11.1RefinedCPSof Everything at Once

Expressions

(N → K)︸ ︷︷ ︸
labels

&(N → K)︸ ︷︷ ︸
return

( K

n
def= δ〈u, r〉. r n

*n
def= δ〈u, r〉. λs. r s[n] s

E0 == E1
def= δ〈u, r〉. E0 〈u, λe0. E1 〈u, λe1. r (e0

n= e1)〉〉
valofC

def= δ〈u, r〉.C 〈u, r, r 0〉
li

def= δ〈u, r〉. r i

Commands

(N → K) & (N → K) & K ( K

K
def= µK.S → K ( (S → K ( T → R) ( T → R

T
def= N → (N → K) & (N → K) & K ( K

n = E
def= δ〈u, r, k〉. E 〈u, λe. λs. k [s | n: e]〉

skip
def= δ〈u, r, k〉. k

C0;C1
def= δ〈u, r, k〉.C0 〈u, r,C1 〈u, r, k〉〉

if(E) {C}
def= δ〈u, r, k〉. E 〈u, λe. e� k 8 C 〈u, r, k〉〉

resultisE
def= δ〈u, r, k〉. E 〈u, r〉

gotoE
def= δ〈u, r, k〉. E 〈u, λe. u[e]〉

{C0; {li:Ci}n
i=1}

def= π0 (Y◦ δ〈{xi}n
i=0〉. 〈{δ〈u, r, k〉.Ci 〈U, r, xi+1 〈u, r, k〉〉}n−1

i=0

, δ〈u, r, k〉.Cn 〈U, r, k〉〉)
swap

def= δ〈u, r, k〉. λs. δb. b s k

n = (C)
def= δ〈u, r, k〉. λs. δb. δp. λt. k s b p [t | n:C]

exec *n
def= δ〈u, r, k〉. λs. δb. δp. λt. t[n] 〈u, r, k〉 s b p t

U
def= [· · · [u | 1: x1 〈u, r, k〉] · · · | n: xn 〈u, r, k〉] : N → K

Programs

(S → R)︸ ︷︷ ︸
toplevel

( S → R

xC0 | C1y
def= δk. λs.C0 〈D,D,E〉 s (C1 〈D,D,E〉) (λs. δb. λt. k s) D

D
def= λn.Y λx. x : N → P

E
def= λs. δb. δp. p s b : K
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Chapter 12

Loose Ends and Related Work

12.1 Loose Ends (aka Remaining Irritations)

12.1.1 Definition of control context

We have argued in Chapter 5 that it is crucial to get the control context right, however we do
not have adefinitionof control context, not even a decent informal one. In particular, it is not
possible to take any given type we have used to interpret a language and change a( to an→ and
readily see how the interpretation then violates the definition of linearly used control contexts.
This is an exceedingly irritating situation. In our defense, the distinction between continuations
and control contexts is not generally made in semantics work and, as far as we know, no one has a
reasonably general (generalizing more than one instance, say) characterization of this distinction.

It is important to appreciate that the form of the control context is not a function of a source
language’s possible control behavior, but of the form of the source language’s semantics. For
instance, some high-level control constructs (such ascall/cc) which do not admit a refined in-
terpretation can be compiled to low-level languages (such as the language of stored global labels)
which do admit a refined interpretation. The key is that when the environment is implemented
(as a tree) rather than being implicit in the semantics, it changes from being part of the control
context to part of the data context, and hence you gain restricted typecheckability.

Additionally, the treatment of recursion in the language of backward jumps (Section 8.2.2)
indicates that there some subtlety involved. The need to worry about the form of the types of
the subterms of the semantics is irritating. However, this situation is not entirely surprising since
“linear use of control contexts” is enforced through the form of types rather than the linear type
system itself. Perhaps this indicates some inappropriateness of the underlying type theory to our
analysis, but it seems more likely a consequence of not having a formal definition of control
context.

Danvy and Nielsen have some work [DN01, Dan04] which treats continuations and control
contexts (in our terminology) intensionally, as abstract data types. In this setting, the two can be
related and distinguished, primarily by analyzing the “apply” operation. Perhaps an adaptation of
that work to an extensional setting, using function spaces, would provide purchase for definitions
distinguishing continuations and control contexts. Or, perhaps, the analysis in this thesis needs
to be adapted to an intentional setting.

12.1.2 Remember versus use, and linear use versus separation

We explained, in Chapter 1, that the observation thatcall/cc allowed a continuation to be in-
voked more than once led us to the notion of linearly used control contexts. In hindsight, how-
ever, it appears that the crucial restriction which linearity enforces is not that control contexts
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are “used” (only) once, but that they are not “remembered” after their first invocation. Said dif-
ferently, linear typing enforces what is basically a “unique pointer” property (slightly modified
to account for the additive product), ensuring that no control contexts are aliased. So linearity
restricts multiple uses by preventing any situation in which multiple use might occur, rather than
preventing the multiple uses themselves. This may seem irrelevant, but an analogy can be drawn
with techniques to control pointer aliasing, where both approaches have been attempted. In that
setting, the currently developing direct constraint approach, which controls aliasing essentially
by checking on dereference [Rey02]; is looking promisingly flexible and manageable compared
to the indirect constraint approach, which controls aliasing by checking on reference creation
[Hof00, Wad91, WM01]. (Although it must be added that the former approach may be less real-
izable as a type system, and the two approaches differ in goals.) This ensures that the question
of whether linearity is the correct formal foundation for this sort of analysis remains open. It
seems quite likely that better results are there to be had, especially as one moves closer to actual
low-level implementations and properties of interest in that context, by starting over with the
notion of separation in place of linear use.

12.1.3 Explicit versus implicit recursion

Regarding the definition of control context, a particularly irritating case is the difference between
the interpretations of untypedλ-calculus and backward jumps. In these two semantics, the con-
trol contexts are different, but why? What is the difference between the source languages which
leads to this difference in control contexts? I would argue that the cause lies in recursion in
λ-calculus being “implicit,” that is, available only through self-application; while in the language
of backward jumps it is “explicit,” that is, hardcoded directly into the language. But the distinc-
tion between implicit and explicit recursion does not seem to be one that is made in semantics. It
seems hard to believe that our analysis could be the only one sensitive to this difference.

In Section 8.2.2 we argued for the choice of control context somewhat technically by appeal
to refining the result type. But there is also a speculative intuitive justification for the control
contexts being different. When relying on self-application in the source language, the recur-
sive continuation transformers used to implement recursion are source language procedures, and
hence are not part of the control context of the language semantics. When implementing recur-
sion directly, however, the recursive delimited continuations do not correspond to anything in the
source language, and hence are part of the control context of the language semantics.

So in general, the impact on the division between data and control contexts entailed by ex-
plicit versus implicit recursion must be considered. That is, in the explicit case, the structures
implementing recursion become part of the control context, whereas in the implicit case, they are
part of the data context. In more detail, the untypedλ-calculus does not provide an implemen-
tation of recursion, programs must instead roll their own, generally using self-application, and
there are several different possible recursions (naive, properly tail-recursive, memoizing, etc.).
So recursion is an aspect of the program, not of the source language, and hence the infrastructure
implementing recursion is not contained in the control context of the semantics of the source
language. On the other hand, a particular recursion is a definite feature of the particular source
language, and so its implementation is part of the control context in the semantics of the source
language.

12.2 Related Work

There are several lines of development concerned with restrictingCPS or using substructural
type systems. It is important to note that our approach is very different from Filinski’s linear
continuations [Fil92]. Since Filinski used a linear target language, he might have accounted for
linearly used continuations as we have; but his call-by-value transformation has an additional!(·),
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which essentially turns the principal(·) ( (·) we use into(·) → (·) and lifts all restrictions.
Completeness of affineCPS, or no junk, is in our experience not well known, and is even

often disbelieved initially. It must be said, though, that close familiarity with the details of Sabry
and Felleisen’s work [SF93] would perhaps make one expect the result. In any case, we hope
that our results give further support for the significance of the Sabry-FelleisenCPSsublanguage.
Certainly, the use of a domain or type equation to characterize the target provides an independent
rationale for it; theCPSlanguage can be obtained by starting with types, and then adoptingDILL-
style typing rules, rather than by designing the grammar for it directly.

Danvy has given a differentCPS sublanguage andDS transformation [Dan92, Dan94]. One
way his language differs from that of Sabry and Felleisen is that it is not closed underβη; he thus
characterizes the range ofCPSexactly, rather than up to equivalence.

In a different line, Polakow, Pfenning, and Yi have given an account and further analysis of
Danvy’s approach using typing rules from a linearλ-calculus that lacks Exchange [PP00, PY01].
Compared to the approach here, an important point is their use of ordered contexts to capture
the property that, in their treatment, the arguments of auxiliary continuations introduced by the
CPS transformation are used in a stack-like fashion, and that all these arguments are used before
the current continuation. The approach presented here, however, cannot capture these properties
since we make no distinction between arguments of the auxiliary continuations and arguments
of the continuations corresponding to source procedures. Also, once this distinction is made, the
inherent notion of order in their system plays a crucial role.

As mentioned earlier in the context of completeness, while our results are not fully general
since we “carve out” a sublanguage of the target, Hasegawa later showed the analogous but fully
general result for the simply-typed source language [Has02]. However, this proof exploits the
absence of divergence (using longβη-normal forms) and does not appear to generalize to the un-
typed case where normalization arguments are insufficient and one has to consider observational
equivalence rather than simplyβη-equality. Additionally, Laird [Lai03] later generalized the no
junk result and (game-) semantically proved full abstraction of the affineCPS transformation.
He considered the transformation from untypedλ-calculus into a full (without restricted types)
calculus, and used observational equivalence rather thanβη-equality.

Thielecke [Thi03] has investigated a connection between result type polymorphism (abstract-
ness) and linear continuation-passing using a control effect system on the source language.
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Appendix A

Target Language

Since we develop the target language incrementally as needed through the chapters, it is conve-
nient to present it in its entirety. We also give various technicalities here to avoid interrupting the
preceding chapters.

A.1 Syntax

The syntax of terms is given by the grammar in Figure A.1, and extended with the syntactic
sugar in Figure A.2. (Note that these definitions are possibly recursive.) We identify terms up to
renaming of bound identifiers. The set of identifiers occurring free in a term,fi((·)), is defined
in the usual way and a term isclosedif it has no free identifiers. The usual capture-avoiding
substitution is written(·)[(·) 7→ (·)], and the simultaneous variant is(·)[(·), . . . , (·) 7→ (·), . . . , (·)].
We make the following syntactic conventions:

• The body of an abstraction (of any sort) extends as far to the right as possible, soλx. M N
parses toλx. (M N) rather than(λx. M) N.

• Application (of any sort) is left-associative, soM N O parses to(M N) O rather than
M (N O).

• Pairing (of any sort) is right-associative, so〈M, N, O〉 parses to〈M, 〈N, O〉〉 rather than
〈〈M, N〉, O〉.

• Numeric equality has lower precedence than application, soM N
n= Oparses to(M N) n= O

rather thanM (N n= O).

• The conditional has lower precedence than numeric equality, soM
n= N � O 8 P parses to

(M n= N) � O 8 P rather thanM
n= (N � O 8 P).

• Lookup has higher precedence than application, soM S[N] parses toM (S[N]) rather than
(M S)[N].
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Figure A.1 Target Term Syntax

M ::= terms

| n numeric literal

| M
n= M numeric equality

| M � M 8 M conditional (if zero)

| x identifier

| λx. M abstraction

| M M application

| δx. M restricted abstraction

| M M restricted application

| 〈M, M〉 additive pair

| πi additive projection i ∈ {0, 1}
| (M, M) multiplicative pair

| δ(x, x). M multiplicative pattern match

| halt terminate

| 〈〉 unit constant

| λ〈〉. M unit consumer

| δ〈〉. M restricted unit consumer
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Figure A.2 Target Term Syntactic Sugar

M ::= · · · terms

| 〈M〉 def= M unary&-tuple

|
πm

0
def= π0

π2
1

def= π1

πm+1
j+1

def= δx. πm
j (π1 x)

n-ary&-projection

|
λ〈x0, . . . , xn−1〉. M[x 7→ 〈x0, . . . , xn−1〉]

def= λx. M[x0, . . . , xn−1 7→ π0 x, . . . , πn−1 x]
n-ary&-patm

|
δ〈x0, . . . , xn−1〉. M[x 7→ 〈x0, . . . , xn−1〉]

def= δx. M[x0, . . . , xn−1 7→ π0 x, . . . , πn−1 x]
n-ary restricted&-patm

| () def= 〈〉 ⊗-unit constant

| (M) def= M unary⊗-tuple

|

δ(). M
def= δ〈〉. M

δ(x0). M
def= δx0. M

δ(x0, . . . , xn−1). M
def= δ(x0, x). (δ(x1, . . . , xn−1). M) x

n-ary restricted⊗-patm

x /∈ fi(M) andn≥ 1

| S[N] def= S N lookup

| [S| N: M] def= λo. o
n= N � S[o] 8 M

extension

o /∈ fi(S) ∪ fi(N) ∪ fi(M)

|
[〈M0, . . . , Mn−1〉 | i: M]

def= 〈M0, . . . , Mi−1, M, Mi+1, . . . , Mn−1〉
n-ary&-tuple extension

0 ≤ i < n

|
[(M0, . . . , Mn−1) | i: M]

def= (M0, . . . , Mi−1, M, Mi+1, . . . , Mn−1)
n-ary⊗-tuple extension

0 ≤ i < n
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A.2 Equational Theory

The equational theory is generated in the usual way from the axioms in Figure A.3 and extended
with axioms for the syntactic sugar in Figure A.4, which are derived:

[1]: Immediate, ifn = 0. Otherwise

(δ〈x0, . . . , xn−1〉. M) 〈M0, . . . , Mn−1〉
= (δx. M[x0, . . . , xn−1 7→ π0 x, . . . , πn−1 x]) 〈M0, . . . , Mn−1〉
βη= M[x0, . . . , xn−1 7→ π0 x, . . . , πn−1 x][x 7→ 〈M0, . . . , Mn−1〉]
= M[x0, . . . , xn−1 7→ π0 〈M0, . . . , Mn−1〉, . . . , πn−1 〈M0, . . . , Mn−1〉]
βη= M[x0, . . . , xn−1 7→M0, . . . , Mn−1]
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Figure A.3 Target Equational Theory Axioms

n
n= n

βη= 1
m 6= n

m
n= n

βη= 0

0 � M 8 N
βη= M

n 6= 0
n � M 8 N

βη= N n � M 8 M
βη= M

(λx. M) N
βη= M[x 7→ N]

x /∈ fi(M)
λx. M x

βη= M

(δx. M) N
βη= M[x 7→ N]

x /∈ fi(M)
δx. M x

βη= M

πi 〈M0, M1〉
βη= Mi 〈π0 M, π1 M〉 βη= M

(δ(x0, x1). M) (M0, M1)
βη= M[x0, x1 7→M0, M1]

(λ〈〉. M) 〈〉 βη= M (δ〈〉. M) 〈〉 βη= M

Figure A.4 Target Equational Theory Axiom for Syntactic Sugar

[1] (δ〈x0, . . . , xn−1〉. M) 〈M0, . . . , Mn−1〉
βη= M[x0, . . . , xn−1 7→M0, . . . , Mn−1]

A.3 Type System

The syntax of types is given by the grammar in Figure A.5 and extended with the syntactic sugar
in Figure A.6. We identify types up to renaming of bound type identifiers, and make the following
syntactic conventions:

• The function type constructors (all sorts) have equal precedence and are right-associative,
soS→ T → U parses toS→ (T → U) rather than(S→ T) → U .

• As in an abstraction term, the body of a recursive type extends as far to the right as possible,
soµX. P ( Q parses toµX. (P ( Q) rather than(µX. P) ( Q.

• The product type constructors (both sorts) are right-associative, soP & Q & R parses to
P & (Q & R) rather than(P & Q) & R. The product type constructors have the same prece-
dence, which is higher than that of the function type constructors, soP & Q ( Rparses to
(P & Q) ( R rather thanP & (Q ( R).

• The continuation type constructor binds tightest of all, so¬P⊗Q parses to(¬P)⊗Q
rather than¬(P⊗Q).

• The n-ary product type constructors have the same precedence, which is higher than
that of all the binary type constructors, so&n A→ B parses to(&n A) → B rather than
&n (A→ B) and&n A & B parses to(&n A) & B rather than&n (A & B).
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Figure A.5 Target Type Syntax

P ::= pointed types

| A→ P function type

| P ( P restricted function type

| P & P additive product type

| P⊗ P multiplicative product type

| R result type

| 1 unit type

| X type identifier

| µX. P recursive type

A ::= types

| N base type

| A→ A nonrecursive function type

| P pointed type

Figure A.6 Target Type Syntactic Sugar

P ::= · · · pointed types

| ¬T
def= T → R continuation type

| &n P
def=


1 if n = 0
P & · · ·& P︸ ︷︷ ︸

n-many

if n≥ 1 n-ary additive product type

|⊗n P
def=


1 if n = 0
P⊗ · · · ⊗ P︸ ︷︷ ︸

n-many

if n≥ 1 n-ary multiplicative product type

A typing x: T annotates identifierx, called thesubjectof the typing, with its typeT. A
contextΓ ; ∆ consists of anunrestricted zoneΓ, which is a finite set of typings of the formx : A,
and arestricted zone∆, which is a finite set of typings of the formx : P, such that no identifier
is the subject of more than one typing. The set of subjects of a context is denotedsub((·)). We
use the notationΓ , Γ′ for the union ofΓ andΓ′ if the sets of subjects of the typings inΓ and
Γ′ are disjoint, otherwiseΓ , Γ′ is undefined. Also, we use the notation− for the empty set and
implicitly coerce single typings into singleton sets.

The judgmentΓ ; ∆ ` M : A states thatM is a well-typed term of typeA in contextΓ ; ∆,
and is defined by the rules in Figure A.7. (There is an implicit requirement that a judgment is
derivable only if all the contexts involved in the derivation are well-defined. We leave this, and
often other such requirements, unstated.) Contraction and Weakening in the unrestricted zone are
built into the system and we will often implicitly contract or weaken unrestricted zones. Also,
note that since contexts are built from sets (which are unordered), the Exchange rules are built
into the system. These admissible rules are summarized in Figure A.8.

Additionally, we use the judgments for the syntactic sugar in Figure A.9, and typing rules
in Figure A.10 as shorthand for the following derivations of judgments involving the syntactic
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sugar:

[RAPID]:

Γ ; − ` πi : P0 & P1 ( Pi Γ ; x : P0 & P1 ` x : P0 & P1

Γ ; x : P0 & P1 ` πi x : Pi

[APROJin]: By induction oni:

[i = 0, n = m≥ 1]: Immediate since

Γ ; − ` π0 : P & &m−1 P ( P

= Γ ; − ` π0 : &m P ( P

= Γ ; − ` πm
0 : &m P ( P

[i = 1, n = 2]: Immediate since

Γ ; − ` π1 : P & P ( P

= Γ ; − ` π1 : &2 P ( P

= Γ ; − ` π2
1 : &2 P ( P

[i = j + 1, n = m+ 1, 1 ≤ j < m]: First, trivially

Γ ; − ` π1 : P & &m P ( &m P

= Γ ; − ` π1 : &m+1 P ( &m P Γ ; x : &m+1 P ` x : &m+1 P

Γ ; x : &m+1 P ` π1 x : &m P

And then

the induction hypothesis···
Γ ; − ` πm

j : &m P ( P Γ ; x : &m+1 P ` π1 x : &m P

Γ ; x : &m+1 P ` πm
j (π1 x) : P

Γ ; − ` δx. πm
j (π1 x) : &m+1 P ( P

= Γ ; − ` πm+1
j+1 : &m+1 P ( P

[LOOKUP]:
Γ ; ∆ ` S : N → A Γ ; − ` N : N

Γ ; ∆ ` S N : A

[EXTEND]: Let Γ′ = Γ , o : N, and

Γ′ ; − ` o : N Γ ; − ` N : N

Γ′ ; − ` o
n= N : N

Γ ; ∆ ` S : N → A Γ′ ; − ` o : N

Γ′ ; ∆ ` S[o] : A Γ ; ∆ ` M : A

Γ′ ; ∆ ` o
n= N � S[o] 8 M : A

Γ ; ∆ ` λo. o
n= N � S[o] 8 M : N → A
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A.3.1 Recursive types formalities

The inclusion of recursive types, and hence type identifiers, makes writing syntactically correct
but meaningless types possible, so some extra machinery is required to ensure the types we use
are meaningful. The remainder of this section presents the details, following [AF96], of defining
the obvious equality on types and giving a formal version of[REC].

A type contextΣ is a finite set of type identifiers. We use the notationΣ , Σ′ for the union
of Σ andΣ′ if Σ andΣ′ are disjoint, otherwiseΣ , Σ′ is undefined. The judgmentΣ p̀ P states
thatP is a well-formedpointed typein type contextΣ while the judgmentΣ ` A states thatA is a
well-formedtypein type contextΣ. The rules defining these judgments are given in Figure A.11,
but effectively, a type is well-formed in a type context if its free identifiers are contained in the
context and there are no identifier name clashes.

We use the “equality approach” to recursive types to keep types from polluting terms at the
expense of defining equality on types. The judgmentΣ ` A = B, defined in Figure A.12, states
that typesA andB are equal in type contextΣ. The only rule of interest is the last which indicates
that folding or unfolding a recursive type once (and hence finitely-many times) preserves type
equality.

The judgmentΣ # Γ ; ∆ ` M : A states thatM is a well-typed term of typeA in type context
Σ and term contextΓ ; ∆. In Σ # Γ ; ∆ ` M : A, the only roleΣ plays is to ensure the well-
formedness of the types involved, so we usually elide it and use the abbreviations in Figure A.13.
Using these,[REC] and the other typing rules take the necessary formalities into account.
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Figure A.7 Target Typing Rules

[NL IT] Γ ; − ` n : N
[NEQ]

Γ ; ∆ ` M : N Γ ; ∆′ ` N : N

Γ ; ∆ , ∆′ ` M
n= N : N

[NCOND]
Γ ; ∆ ` M : N Γ ; ∆′ ` N : A Γ ; ∆′ ` O : A

Γ ; ∆ , ∆′ ` M � N 8 O : A

[ID] Γ , x : A ; − ` x : A [RID] Γ ; x : P ` x : P

[ABS]
Γ , x : A ; ∆ ` M : B

Γ ; ∆ ` λx. M : A→ B
[APP]

Γ ; ∆ ` M : A→ B Γ ; − ` N : A

Γ ; ∆ ` M N : B

[RABS]
Γ ; ∆ , x : P ` M : Q

Γ ; ∆ ` δx. M : P ( Q
[RAPP]

Γ ; ∆ ` M : P ( Q Γ ; ∆′ ` N : P

Γ ; ∆ , ∆′ ` M N : Q

[APAIR]
Γ ; ∆ ` M : P Γ ; ∆ ` N : Q

Γ ; ∆ ` 〈M, N〉 : P & Q
[APROJi] Γ ; − ` πi : P0 & P1 ( Pi

[MPAIR]
Γ ; ∆ ` M : P Γ ; ∆′ ` N : Q

Γ ; ∆ , ∆′ ` (M, N) : P⊗Q
[MPATM]

Γ ; ∆ , x0 : P0 , x1 : P1 ` M : Q

Γ ; ∆ ` δ(x0, x1). M : P0 ⊗ P1 ( Q

[HALT ] Γ ; − ` halt : R
[UNIT] Γ ; − ` 〈〉 : 1

[ABSUNIT]
Γ ; ∆ ` M : A

Γ ; ∆ ` λ〈〉. M : 1 → A
[RABSUNIT]

Γ ; ∆ ` M : P

Γ ; ∆ ` δ〈〉. M : 1 ( P

[REC]
Γ ; ∆ ` M : B

B = A
Γ ; ∆ ` M : A

And for the affine variant:

[RWEAK]
Γ ; ∆ ` M : B

Γ ; ∆ , x : A ` M : B

Figure A.8 Admissible Target Typing Rules

[CONT]
Γ , x : A , y : A ; ∆ ` M : B

Γ , x : A ; ∆ ` M[y 7→ x] : B
[WEAK]

Γ ; ∆ ` M : B

Γ , x : A ; ∆ ` M : B

[EXCH]
Γ , y : B , x : A , Γ′ ; ∆ ` M : C

Γ , x : A , y : B , Γ′ ; ∆ ` M : C
[REXCH]

Γ ; ∆ , y : B , x : A , ∆′ ` M : C

Γ ; ∆ , x : A , y : B , ∆′ ` M : C
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Figure A.9 Target Judgments for Syntactic Sugar

Γ ; ∆ , 〈x0, x1〉 : P0 & P1 ` M[x 7→ 〈x0, x1〉] : P
def= Γ ; ∆ , x : P0 & P1 ` M[x0, x1 7→ π0 x, π1 x] : P

Figure A.10 Target Typing Rules for Syntactic Sugar

[RAPID] Γ ; 〈x0, x1〉 : P0 & P1 ` xi : Pi

[APROJin] 0 ≤ i < n
Γ ; − ` πn

i : &n P ( P

[LOOKUP]
Γ ; ∆ ` S : N → A Γ ; − ` N : N

Γ ; ∆ ` S[N] : A

[EXTEND]
Γ ; ∆ ` S : N → A Γ ; − ` N : N Γ ; ∆ ` M : A

Γ ; ∆ ` [S| N: M] : N → A

Figure A.11 Target Type Well-Formedness Rules

Σ ` A Σ p̀ P

Σ p̀ A→ P

Σ p̀ P Σ p̀ Q
? ∈ {(,&,⊗}

Σ p̀ P ? Q
P ∈ {R, 1}

Σ p̀ P Σ , X p̀ X
Σ , X p̀ P

Σ p̀ µX. P

Σ ` N

Σ ` A Σ ` B

Σ ` A→ B

Σ p̀ P

Σ ` P

Figure A.12 Target Type Equality Rules

Σ ` B = A

Σ ` A = B

Σ ` A = C Σ ` C = B

Σ ` A = B

A ∈ {N,R, 1}
Σ ` A = A

Σ ` A = A′ Σ ` B = B′
? ∈ {→,(,&,⊗}

Σ ` A ? B = A′ ? B′

Σ ` P = Q

Σ ` µX. P = µX. Q Σ , X ` X = X

Σ , X p̀ P

Σ ` P[X 7→ µX. P] = µX. P
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Figure A.13 Target Type Context Abbreviations

When clear from context

Σ # Γ ; ∆ ` M : A is abbreviated Γ ; ∆ ` M : A

and
Σ # Γ1 ; ∆1 ` M1 : A1 · · · Σ # Γn ; ∆n ` Mn : An Σ ` An = A0

Σ # Γ0 ; ∆0 ` M0 : A0

is abbreviated
Γ1 ; ∆1 ` M1 : A1 · · · Γn ; ∆n ` Mn : An

An = A0
Γ0 ; ∆0 ` M0 : A0
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A.4 Standard Predomain Semantics

This is not an especially accurate model of the language, because the interpretation of(·) ( (·)
validates Contraction and Weakening and because the intuitive “abstractness” of the result type is
not accounted for. But the model is certainly adequate for any reasonable operational semantics,
and so serves as a useful reference point.

Type contexts are interpreted by type environments, which map type identifiers to domains
(chain-complete partial orders with least element), as shown in Figure A.14.

For the interpretation of types and terms, the metalanguage notation for (type and term)
environments in Figure A.15 will be convenient.

A type judgment is interpreted as a map from a type environment to a predomain (chain-
complete partial order), and a pointed type judgment is interpreted as a map from a type environ-
ment to a domain, as shown in Figure A.16. We writeN for the discretely ordered predomain of
the natural numbers,(·) → (·) for continuous function space, and(·)× (·) for Cartesian product.
The existence of least solutions of the domain isomorphisms is guaranteed by the inverse limit
construction [Sco70].

Contexts are interpreted by maps from type environments to environments: iterated products
over the subjects of the context, which map identifiers to elements of the appropriate predomain,
as shown in Figure A.17.

Term judgments are interpreted as maps from environments appropriate to the typing context
to the predomain appropriate to the type of the term as shown in Figure A.18.

Figure A.14 Semantics of Type Contexts

JΣK ∈
∏

X∈sub(Σ)

Dom
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Figure A.15 Metalanguage Syntactic Sugar for Environments

[ ] def= λi. undefined empty environment

e[x] def= e x environment lookup

[e | x: d] def= λi.

{
d if i = x

e[i] otherwise
environment extension

e|Ξ
def= λi.

{
e[i] if i ∈ sub(Ξ)
undefined otherwise

environment restriction

Figure A.16 Semantics of Target Types

JΣ ` AK ∈ JΣK → Predom

JΣ ` NK E
def= N

JΣ ` A→ BK E
def= JΣ ` AK E → JΣ ` BK E

JΣ ` PK E
def= JΣ p̀ PK E

JΣ p̀ PK ∈ JΣK → Dom

JΣ p̀ A→ PK E
def= JΣ ` AK E → JΣ p̀ PK E

JΣ p̀ P ( QK E
def= JΣ p̀ PK E → JΣ p̀ QK E

JΣ p̀ P & QK E
def= JΣ p̀ PK E × JΣ p̀ QK E

JΣ p̀ P⊗QK E
def= JΣ p̀ PK E × JΣ p̀ QK E

JΣ p̀ RK E
def= {>}⊥

JΣ p̀ 1K E
def= {>}⊥

JΣ , X p̀ XK E
def= E[X]

JΣ p̀ µX. PK E
def= the least solution ofD ∼= JΣ , X p̀ PK [E | X: D]

Figure A.17 Semantics of Target Contexts

JΣ # Γ ; ∆K E ∈
∏

x∈sub(Γ;∆)

JΣ ` AK E whereE ∈ JΣK andx : A ∈ Γ ∪∆
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Figure A.18 Semantics of Target Terms

JΣ # Γ ; ∆ ` M : AK E ∈ JΣ # Γ ; ∆K E → JΣ ` AK E whereE ∈ JΣK

JΓ ; − ` n : NK E e
def= n

JΓ ; ∆ , ∆′ ` M
n= N : NK E e

def=


0 if JΓ ; ∆ ` M : NK E e|Γ;∆

6= JΓ ; ∆′ ` N : NK E e|Γ;∆′

1 otherwise

JΓ ; ∆ , ∆′ ` M � N 8 O : AK E e
def=


JΓ ; ∆′ ` N : AK E e|Γ;∆′

if JΓ ; ∆ ` M : NK E e|Γ;∆ = 0

JΓ ; ∆′ ` O : AK E e|Γ;∆′ otherwise

JΓ , x : A ; − ` x : AK E e
def= e[x]

JΓ ; x : P ` x : PK E e
def= e[x]

JΣ # Γ ; ∆ ` λx. M : A→ BK E e
def= λd ∈ JΣ ` AK E.

JΓ , x : A ; ∆ ` M : BK E [e | x: d]

JΓ ; ∆ ` M N : BK E e
def= JΓ ; ∆ ` M : A→ BK E e

(JΓ ; − ` N : AK E e|Γ)

JΣ # Γ ; ∆ ` δx. M : P ( QK E e
def= λd ∈ JΣ p̀ PK E.

JΓ ; ∆ , x : P ` M : QK E [e | x: d]

JΓ ; ∆ , ∆′ ` M N : QK E e
def= JΓ ; ∆ ` M : P ( QK E e|Γ;∆

(JΓ ; ∆′ ` N : PK E e|Γ;∆′)

JΓ ; ∆ ` 〈M, N〉 : P & QK E e
def= (JΓ ; ∆ ` M : PK E e, JΓ ; ∆ ` N : QK E e)

JΓ ; − ` πi : P0 & P1 ( PiK E e
def= πi

JΓ ; ∆ , ∆′ ` (M, N) : P⊗QK E e
def= (JΓ ; ∆ ` M : PK E e|Γ;∆

, JΓ ; ∆′ ` N : QK E e|Γ;∆′)

JΣ # Γ ; ∆ ` δ(x0, x1). M : P0 ⊗ P1 ( QK E e
def= λd ∈ JΣ p̀ P0 ⊗ P1K E.

JΓ ; ∆ , x0 : P0 , x1 : P1 ` M : QK E

[[e | x0:π0 d] | x1:π1 d]

J− ; − ` halt : RK E e
def= >

J− ; − ` 〈〉 : 1K E e
def= >

JΣ # Γ ; ∆ ` λ〈〉. M : 1 → AK E e
def= λd ∈ JΣ ` 1K E. JΓ ; ∆ ` M : AK E e

JΣ # Γ ; ∆ ` δ〈〉. M : 1 ( PK E e
def= λd ∈ JΣ p̀ 1K E. JΓ ; ∆ ` M : PK E e
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A.5 Properties

Lemma 33 (Validity of [CONT] and [WEAK]) 1. If Σ # Γ , x : A , y : A ; ∆ ` M : B, then for
E ∈ JΣK and e∈ JΣ # Γ , x : A , y : A ; ∆K E

JΣ # Γ , x : A , y : A ; ∆ ` M : BK E e= JΣ # Γ , x : A ; ∆ ` M[y 7→ x] : BK E e|Γ,x:A

2. If Σ # Γ ; ∆ ` M : B, then for E∈ JΣK, e∈ JΣ # Γ ; ∆K E, and d∈ JΣ ` AK

JΣ # Γ ; ∆ ` M : BK E e= JΣ # Γ , x : A ; ∆ ` M : BK E [e | x: d]

Lemma 34 (Validity of βη=) For any terms M and N such that M
βη= N, Γ ; ∆ ` M : A, and

Γ ; ∆ ` N : A
JΓ ; ∆ ` M : AK = JΓ ; ∆ ` N : AK

Lemma 35 (Y computes least fixed-points) For any M such thatΣ # Γ ; − ` M : P→ P,
E ∈ JΣK, and e∈ JΣ p̀ PK E

JΣ # Γ ; − ` Y M : PK E e=
⊔
{(JΣ # Γ ; − ` M : P→ PK E e)n⊥ | n≥ 0}
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Index
Y, 112
Y◦, 115
abort, 88
call/cc, 13, 88, 101, 145, 167, 175
return/cc, 13

affine
function, 21

type,(·) ( (·), 21
use, 21

answer,seeresult

closed, 180
context

control, 17, 18, 20, 87, 175
data, 17, 18
empty,−, 185
source term,Γ, 31
target term,Γ ; ∆, 185
type,Σ, 187
union,(·) , (·), 185, 187

continuation, 17–20
call, 35
initial, 20
return, 34
semantics, 20
toplevel, 20
type,¬(·), 19
use, 15

continuation transformer, 35, 65, 167
continuation-passing style, 20
Contraction, 34, 101, 186, 191
control behavior, 20
control construct, 17
CPS, seecontinuation-passing style

delimited continuation, 80, 83, 113
direct style, 34
downward, 49, 102, 107
DS, seedirect style
dynamic, 62

environment
control, 18
data, 18

exceptions, 102, 148, 150
type,E, 16

free identifiers,fi((·)), 180

higher-order, 166

invoke, 18

jump
backward, 110
forward, 101

junk, 49

L-value, 140
label assignment, 140
language

CPS, 20
source, 20
target, 20, 21

lexical,seestatic
linear

function, 21
type,(·) ( (·), 21

use, 21, 46, 176

pointed type, 187
pure, 104

R-value, 140
refined, 20, 21
reified, 38, 100
restricted, 21
restricted zone, 185
result, 19

type,R, 19, 43
abstract, 19, 20, 84, 85, 89, 118, 119,

179, 191

state
control, 18
data, 18

static, 62
subject, 185

sub((·)), 185
substitution

(·)[(·) 7→ (·)], 180
simultaneous

(·)[(·), . . . , (·) 7→ (·), . . . , (·)], 180

transformation, 20
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type, 187
store

S, 95
typing,x : T, 185

unrestricted zone, 185
upward, 49, 102, 107, 128, 147

Weakening, 34, 101, 107, 116, 121, 122,
130, 148, 186, 191
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