11 research outputs found

    Tight upper bound on the maximum anti-forcing numbers of graphs

    Full text link
    Let GG be a simple graph with a perfect matching. Deng and Zhang showed that the maximum anti-forcing number of GG is no more than the cyclomatic number. In this paper, we get a novel upper bound on the maximum anti-forcing number of GG and investigate the extremal graphs. If GG has a perfect matching MM whose anti-forcing number attains this upper bound, then we say GG is an extremal graph and MM is a nice perfect matching. We obtain an equivalent condition for the nice perfect matchings of GG and establish a one-to-one correspondence between the nice perfect matchings and the edge-involutions of GG, which are the automorphisms α\alpha of order two such that vv and α(v)\alpha(v) are adjacent for every vertex vv. We demonstrate that all extremal graphs can be constructed from K2K_2 by implementing two expansion operations, and GG is extremal if and only if one factor in a Cartesian decomposition of GG is extremal. As examples, we have that all perfect matchings of the complete graph K2nK_{2n} and the complete bipartite graph Kn,nK_{n, n} are nice. Also we show that the hypercube QnQ_n, the folded hypercube FQnFQ_n (n≥4n\geq4) and the enhanced hypercube Qn,kQ_{n, k} (0≤k≤n−40\leq k\leq n-4) have exactly nn, n+1n+1 and n+1n+1 nice perfect matchings respectively.Comment: 15 pages, 7 figure

    Palindromic Products

    Get PDF
    We investigate a number of open problems related to products of palindromic graphs. The notion of a palindromic graph was defined by Robert Beeler. A graph G on n vertices is palindromic if there is a vertex-labeling bijection f:V(G) -\u3e {1,..,n} with the property that for any edge vw in E(G), there is an edge xy in E(G) for which f(x)=n-f(v)+1 and f(y)=n-f(w)+1

    Factors of disconnected graphs and polynomials with nonnegative integer coefficients

    Full text link
    We investigate the uniqueness of factorisation of possibly disconnected finite graphs with respect to the Cartesian, the strong and the direct product. It is proved that if a graph has nn connected components, where nn is prime, or n=1,4,8,9n=1,4,8,9, and satisfies some additional conditions, it factors uniquely under the given products. If, on the contrary, n=6n=6 or 10, all cases of nonunique factorisation are described precisely.Comment: 14 page

    The combinatorics of the Jack parameter and the genus series for topological maps

    Get PDF
    Informally, a rooted map is a topologically pointed embedding of a graph in a surface. This thesis examines two problems in the enumerative theory of rooted maps. The b-Conjecture, due to Goulden and Jackson, predicts that structural similarities between the generating series for rooted orientable maps with respect to vertex-degree sequence, face-degree sequence, and number of edges, and the corresponding generating series for rooted locally orientable maps, can be explained by a unified enumerative theory. Both series specialize M(x,y,z;b), a series defined algebraically in terms of Jack symmetric functions, and the unified theory should be based on the existence of an appropriate integer valued invariant of rooted maps with respect to which M(x,y,z;b) is the generating series for locally orientable maps. The conjectured invariant should take the value zero when evaluated on orientable maps, and should take positive values when evaluated on non-orientable maps, but since it must also depend on rooting, it cannot be directly related to genus. A new family of candidate invariants, η, is described recursively in terms of root-edge deletion. Both the generating series for rooted maps with respect to η and an appropriate specialization of M satisfy the same differential equation with a unique solution. This shows that η gives the appropriate enumerative theory when vertex degrees are ignored, which is precisely the setting required by Goulden, Harer, and Jackson for an application to algebraic geometry. A functional equation satisfied by M and the existence of a bijection between rooted maps on the torus and a restricted set of rooted maps on the Klein bottle show that η has additional structural properties that are required of the conjectured invariant. The q-Conjecture, due to Jackson and Visentin, posits a natural combinatorial explanation, for a functional relationship between a generating series for rooted orientable maps and the corresponding generating series for 4-regular rooted orientable maps. The explanation should take the form of a bijection, ϕ, between appropriately decorated rooted orientable maps and 4-regular rooted orientable maps, and its restriction to undecorated maps is expected to be related to the medial construction. Previous attempts to identify ϕ have suffered from the fact that the existing derivations of the functional relationship involve inherently non-combinatorial steps, but the techniques used to analyze η suggest the possibility of a new derivation of the relationship that may be more suitable to combinatorial analysis. An examination of automorphisms that must be induced by ϕ gives evidence for a refinement of the functional relationship, and this leads to a more combinatorially refined conjecture. The refined conjecture is then reformulated algebraically so that its predictions can be tested numerically

    Combinatorial Representation Theory

    Get PDF
    The workshop brought together researchers from different fields in representation theory and algebraic combinatorics for a fruitful interaction. New results, methods and developments ranging from classical and modular representation theory, the theory of symmetric functions and Lie theory to cluster algebras and connections to physics and geometry were discussed

    Subject Index Volumes 1–200

    Get PDF
    corecore