8 research outputs found

    Deformation-based Augmented Reality for Hepatic Surgery

    Get PDF
    International audienceIn this paper we introduce a method for augmenting the laparoscopic view during hepatic tumor resection. Using augmented reality techniques, vessels, tumors and cutting planes computed from pre-operative data can be overlaid onto the laparoscopic video. Compared to current techniques, which are limited to a rigid registration of the pre-operative liver anatomy with the intra-operative image, we propose a real-time, physics-based, non-rigid registration. The main strength of our approach is that the deformable model can also be used to regularize the data extracted from the computer vision algorithms. We show preliminary results on a video sequence which clearly highlights the interest of using physics-based model for elastic registration

    Markerless deformation capture of hoverfly wings using multiple calibrated cameras

    Get PDF
    This thesis introduces an algorithm for the automated deformation capture of hoverfly wings from multiple camera image sequences. The algorithm is capable of extracting dense surface measurements, without the aid of fiducial markers, over an arbitrary number of wingbeats of hovering flight and requires limited manual initialisation. A novel motion prediction method, called the ‘normalised stroke model’, makes use of the similarity of adjacent wing strokes to predict wing keypoint locations, which are then iteratively refined in a stereo image registration procedure. Outlier removal, wing fitting and further refinement using independently reconstructed boundary points complete the algorithm. It was tested on two hovering data sets, as well as a challenging flight manoeuvre. By comparing the 3-d positions of keypoints extracted from these surfaces with those resulting from manual identification, the accuracy of the algorithm is shown to approach that of a fully manual approach. In particular, half of the algorithm-extracted keypoints were within 0.17mm of manually identified keypoints, approximately equal to the error of the manual identification process. This algorithm is unique among purely image based flapping flight studies in the level of automation it achieves, and its generality would make it applicable to wing tracking of other insects

    Augmented reality for non-rigid surfaces

    Get PDF
    Augmented Reality (AR) is the process of integrating virtual elements in reality, often by mixing computer graphics into a live video stream of a real scene. It requires registration of the target object with respect to the cameras. To this end, some approaches rely on dedicated hardware, such as magnetic trackers or infra-red cameras, but they are too expensive and cumbersome to reach a large public. Others are based on specifically designed markers which usually look like bar-codes. However, they alter the look of objects to be augmented, thereby hindering their use in application for which visual design matters. Recent advances in Computer Vision have made it possible to track and detect objects by relying on natural features. However, no such method is commonly used in the AR community, because the maturity of available packages is not sufficient yet. As far as deformable surfaces are concerned, the choice is even more limited, mainly because initialization is so difficult. Our main contribution is therefore a new AR framework that can properly augment deforming surfaces in real-time. Its target platform is a standard PC and a single webcam. It does not require any complex calibration procedure, making it perfectly suitable for novice end-users. To satisfy to the most demanding application designers, our framework does not require any scene engineering, renders virtual objects illuminated by real light, and let real elements occlude virtual ones. To meet this challenge, we developed several innovative techniques. Our approach to real-time registration of a deforming surface is based on wide-baseline feature matching. However, traditional outlier elimination techniques such as RANSAC are unable to handle the non-rigid surface's large number of degrees of freedom. We therefore proposed a new robust estimation scheme that allows both 2–D and 3–D non-rigid surface registration. Another issue of critical importance in AR to achieve realism is illumination handling, for which existing techniques often require setup procedures or devices such as reflective spheres. By contrast, our framework includes methods to estimate illumination for rendering purposes without sacrificing ease of use. Finally, several existing approaches to handling occlusions in AR rely on multiple cameras or can only deal with occluding objects modeled beforehand. Our requires only one camera and models occluding objects at runtime. We incorporated these components in a consistent and flexible framework. We used it to augment many different objects such as a deforming T-shirt or a sheet of paper, under challenging conditions, in real-time, and with correct handling of illumination and occlusions. We also used our non-rigid surface registration technique to measure the shape of deformed sails. We validated the ease of deployment of our framework by distributing a software package and letting an artist use it to create two AR applications

    Simulation Guidée par l’Image pour la Réalité Augmentée durant la Chirurgie Hépatique

    Get PDF
    The main objective of this thesis is to provide surgeons with tools for pre and intra-operative decision support during minimally invasive hepaticsurgery. These interventions are usually based on laparoscopic techniques or, more recently, flexible endoscopy. During such operations, the surgeon tries to remove a significant number of liver tumors while preserving the functional role of the liver. This involves defining an optimal hepatectomy, i.e. ensuring that the volume of post-operative liver is at least at 55% of the original liver and the preserving at hepatic vasculature. Although intervention planning can now be considered on the basis of preoperative patient-specific, significant movements of the liver and its deformations during surgery data make this very difficult to use planning in practice. The work proposed in this thesis aims to provide augmented reality tools to be used in intra-operative conditions in order to visualize the position of tumors and hepatic vascular networks at any time.L’objectif principal de cette thèse est de fournir aux chirurgiens des outils d’aide à la décision pré et per-opératoire lors d’interventions minimalement invasives en chirurgie hépatique. Ces interventions reposent en général sur des techniques de laparoscopie ou plus récemment d’endoscopie flexible. Lors de telles interventions, le chirurgien cherche à retirer un nombre souvent important de tumeurs hépatiques, tout en préservant le rôle fonctionnel du foie. Cela implique de définir une hépatectomie optimale, c’est à dire garantissant un volume du foie post-opératoire d’au moins 55% du foie initial et préservant au mieux la vascularisation hépatique. Bien qu’une planification de l’intervention puisse actuellement s’envisager sur la base de données pré-opératoire spécifiques au patient, les mouvements importants du foie et ses déformations lors de l’intervention rendent cette planification très difficile à exploiter en pratique. Les travaux proposés dans cette thèse visent à fournir des outils de réalité augmentée utilisables en conditions per-opératoires et permettant de visualiser à chaque instant la position des tumeurs et réseaux vasculaires hépatiques
    corecore