4,597 research outputs found

    Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions

    Full text link
    Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening

    Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT:A validation study

    Get PDF
    Purpose: To evaluate deep-learning based calcium quantification on Chest CT scans compared with manual evaluation, and to enable interpretation in terms of the traditional Agatston score on dedicated Cardiac CT. Methods: Automated calcium quantification was performed using a combination of deep-learning convolution neural networks with a ResNet-architecture for image features and a fully connected neural network for spatial coordinate features. Calcifications were identified automatically, after which the algorithm automatically excluded all non-coronary calcifications using coronary probability maps and aortic segmentation. The algorithm was first trained on cardiac-CTs and refined on non-triggered chest-CTs. This study used on 95 patients (cohort 1), who underwent both dedicated calcium scoring and chest-CT acquisitions using the Agatston score as reference standard and 168 patients (cohort 2) who underwent chest-CT only using qualitative expert assessment for external validation. Results from the deep-learning model were compared to Agatston-scores(cardiac-CTs) and manually determined calcium volumes(chest-CTs) and risk classifications. Results: In cohort 1, the Agatston score and AI determined calcium volume shows high correlation with a correlation coefficient of 0.921(p < 0.001) and R-2 of 0.91. According to the Agatston categories, a total of 67(70 %) were correctly classified with a sensitivity of 91 % and specificity of 92 % in detecting presence of coronary calcifications. Manual determined calcium volume on chest-CT showed excellent correlation with the AI volumes with a correlation coefficient of 0.923(p < 0.001) and R-2 of 0.96, no significant difference was found (p = 0.247). According to qualitative risk classifications in cohort 2, 138(82 %) cases were correctly classified with a k-coefficient of 0.74, representing good agreement. All wrongly classified scans (30(18 %)) were attributed to an adjacent category. Conclusion: Artificial intelligence based calcium quantification on chest-CTs shows good correlation compared to reference standards. Fully automating this process may reduce evaluation time and potentially optimize clinical calcium scoring without additional acquisitions

    Evaluation of an Artificial Intelligence Coronary Artery Calcium Scoring Model from Computed Tomography

    Get PDF
    OBJECTIVES: Coronary artery calcium (CAC) scores derived from computed tomography (CT) scans are used for cardiovascular risk stratification. Artificial intelligence (AI) can assist in CAC quantification and potentially reduce the time required for human analysis. This study aimed to develop and evaluate a fully automated model that identifies and quantifies CAC. METHODS: Fully convolutional neural networks for automated CAC scoring were developed and trained on 2439 cardiac CT scans and validated using 771 scans. The model was tested on an independent set of 1849 cardiac CT scans. Agatston CAC scores were further categorised into five risk categories (0, 1–10, 11–100, 101–400, and > 400). Automated scores were compared to the manual reference standard (level 3 expert readers). RESULTS: Of 1849 scans used for model testing (mean age 55.7 ± 10.5 years, 49% males), the automated model detected the presence of CAC in 867 (47%) scans compared with 815 (44%) by human readers (p = 0.09). CAC scores from the model correlated very strongly with the manual score (Spearman’s r = 0.90, 95% confidence interval [CI] 0.89–0.91, p < 0.001 and intraclass correlation coefficient = 0.98, 95% CI 0.98–0.99, p < 0.001). The model classified 1646 (89%) into the same risk category as human observers. The Bland–Altman analysis demonstrated little difference (1.69, 95% limits of agreement: −41.22, 44.60) and there was almost excellent agreement (Cohen’s κ = 0.90, 95% CI 0.88–0.91, p < 0.001). Model analysis time was 13.1 ± 3.2 s/scan. CONCLUSIONS: This artificial intelligence–based fully automated CAC scoring model shows high accuracy and low analysis times. Its potential to optimise clinical workflow efficiency and patient outcomes requires evaluation. KEY POINTS: • Coronary artery calcium (CAC) scores are traditionally assessed using cardiac computed tomography and require manual input by human operators to identify calcified lesions. • A novel artificial intelligence (AI)–based model for fully automated CAC scoring was developed and tested on an independent dataset of computed tomography scans, showing very high levels of correlation and agreement with manual measurements as a reference standard. • AI has the potential to assist in the identification and quantification of CAC, thereby reducing the time required for human analysis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-022-09028-3

    Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium

    Get PDF
    Purpose: Coronary artery calcium (CAC) score has shown to be an accurate predictor of future cardiovascular events. Early detection by CAC scoring might reduce the number of deaths by cardiovascular disease (CVD). Automatically excluding scans which test negative for CAC could significantly reduce the workload of radiologists. We propose an algorithm that both excludes negative scans and segments the CAC. Method: The training and internal validation data were collected from the ROBINSCA study. The external validation data were collected from the ImaLife study. Both contain annotated low-dose non-contrast cardiac CT scans. 60 scans of participants were used for training and 2 sets of 50 CT scans of participants without CAC and 50 CT scans of participants with an Agatston score between 10 and 20 were collected for both internal and external validation. The effect of dilated convolutional layers was tested by using 2 CNN architectures. We used the patient-level accuracy as metric for assessing the accuracy of our pipeline for detection of CAC and the Dice coefficient score as metric for the segmentation of CAC. Results: Of the 50 negative cases in the internal and external validation set, 62 % and 86 % were classified correctly, respectively. There were no false negative predictions. For the segmentation task, Dice Coefficient scores of 0.63 and 0.84 were achieved for the internal and external validation datasets, respectively. Conclusions: Our algorithm excluded 86 % of all scans without CAC. Radiologists might need to spend less time on participants without CAC and could spend more time on participants that need their attention
    • …
    corecore