3 research outputs found

    Short Text Categorization using World Knowledge

    Get PDF
    The content of the World Wide Web is drastically multiplying, and thus the amount of available online text data is increasing every day. Today, many users contribute to this massive global network via online platforms by sharing information in the form of a short text. Such an immense amount of data covers subjects from all the existing domains (e.g., Sports, Economy, Biology, etc.). Further, manually processing such data is beyond human capabilities. As a result, Natural Language Processing (NLP) tasks, which aim to automatically analyze and process natural language documents have gained significant attention. Among these tasks, due to its application in various domains, text categorization has become one of the most fundamental and crucial tasks. However, the standard text categorization models face major challenges while performing short text categorization, due to the unique characteristics of short texts, i.e., insufficient text length, sparsity, ambiguity, etc. In other words, the conventional approaches provide substandard performance, when they are directly applied to the short text categorization task. Furthermore, in the case of short text, the standard feature extraction techniques such as bag-of-words suffer from limited contextual information. Hence, it is essential to enhance the text representations with an external knowledge source. Moreover, the traditional models require a significant amount of manually labeled data and obtaining labeled data is a costly and time-consuming task. Therefore, although recently proposed supervised methods, especially, deep neural network approaches have demonstrated notable performance, the requirement of the labeled data remains the main bottleneck of these approaches. In this thesis, we investigate the main research question of how to perform \textit{short text categorization} effectively \textit{without requiring any labeled data} using knowledge bases as an external source. In this regard, novel short text categorization models, namely, Knowledge-Based Short Text Categorization (KBSTC) and Weakly Supervised Short Text Categorization using World Knowledge (WESSTEC) have been introduced and evaluated in this thesis. The models do not require any hand-labeled data to perform short text categorization, instead, they leverage the semantic similarity between the short texts and the predefined categories. To quantify such semantic similarity, the low dimensional representation of entities and categories have been learned by exploiting a large knowledge base. To achieve that a novel entity and category embedding model has also been proposed in this thesis. The extensive experiments have been conducted to assess the performance of the proposed short text categorization models and the embedding model on several standard benchmark datasets

    Automated Assessment of the Aftermath of Typhoons Using Social Media Texts

    Full text link
    Disasters are one of the major threats to economics and human societies, causing substantial losses of human lives, properties and infrastructures. It has been our persistent endeavors to understand, prevent and reduce such disasters, and the popularization of social media is offering new opportunities to enhance disaster management in a crowd-sourcing approach. However, social media data is also characterized by its undue brevity, intense noise, and informality of language. The existing literature has not completely addressed these disadvantages, otherwise vast manual efforts are devoted to tackling these problems. The major focus of this research is on constructing a holistic framework to exploit social media data in typhoon damage assessment. The scope of this research covers data collection, relevance classification, location extraction and damage assessment while assorted approaches are utilized to overcome the disadvantages of social media data. Moreover, a semi-supervised or unsupervised approach is prioritized in forming the framework to minimize manual intervention. In data collection, query expansion strategy is adopted to optimize the search recall of typhoon-relevant information retrieval. Multiple filtering strategies are developed to screen the keywords and maintain the relevance to search topics in the keyword updates. A classifier based on a convolutional neural network is presented for relevance classification, with hashtags and word clusters as extra input channels to augment the information. In location extraction, a model is constructed by integrating Bidirectional Long Short-Time Memory and Conditional Random Fields. Feature noise correction layers and label smoothing are leveraged to handle the noisy training data. Finally, a multi-instance multi-label classifier identifies the damage relations in four categories, and the damage categories of a message are integrated with the damage descriptions score to obtain damage severity score for the message. A case study is conducted to verify the effectiveness of the framework. The outcomes indicate that the approaches and models developed in this study significantly improve in the classification of social media texts especially under the framework of semi-supervised or unsupervised learning. Moreover, the results of damage assessment from social media data are remarkably consistent with the official statistics, which demonstrates the practicality of the proposed damage scoring scheme
    corecore