157 research outputs found

    Dimensionality reduction using parallel ICA and its implementation on FPGA in hyperspectral image analysis

    Get PDF
    Hyperspectral images, although providing abundant information of the object, also bring high computational burden to data processing. This thesis studies the challenging problem of dimensionality reduction in Hyperspectral Image (HSI) analysis. Currently, there are two methods to reduce the dimension: band selection and feature extraction. This thesis presents a band selection technique based on Independent Component Analysis (ICA), an unsupervised signal separation algorithm. Given only the observations of hyperspectral images, the ICA –based band selection picks the independent bands which contain most of the spectral information of the original images. Due to the high volume of hyperspectral images, ICA -based band selection is a time consuming process. This thesis develops a parallel ICA algorithm which divides the decorrelation process into internal decorrelation and external decorrelation such that computation burden can be distributed from single processor to multiple processors, and the ICA process can be run in a parallel mode. Hardware implementation is always a faster and real -time solution to HSI analysis. Until now, there are few hardware designs for ICA -related processes. This thesis synthesizes the parallel ICA -based band selection on Field Programmable Gate Array (FPGA), which is the best choice for moderate designs and fast implementations. Compared to other design syntheses, the synthesis present in this thesis develops three ICA re-configurable components for the purpose of reusability. In addition, this thesis demonstrates the relationship between the design and the capacity utilization of a single FPGA, then discusses the features of High Performance Reconfigurable Computing (HPRC) to accomodate large capacity and design requirements. Experiments are conducted on three data sets obtained from different sources. Experimental results show the effectiveness of the proposed ICA -based band selection, parallel ICA and its synthesis on FPGA

    Dimension Reduction Using Quantum Wavelet Transform on a High-Performance Reconfigurable Computer

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The high resolution of multidimensional space-time measurements and enormity of data readout counts in applications such as particle tracking in high-energy physics (HEP) is becoming nowadays a major challenge. In this work, we propose combining dimension reduction techniques with quantum information processing for application in domains that generate large volumes of data such as HEP. More specifically, we propose using quantum wavelet transform (QWT) to reduce the dimensionality of high spatial resolution data. The quantum wavelet transform takes advantage of the principles of quantum mechanics to achieve reductions in computation time while processing exponentially larger amount of information. We develop simpler and optimized emulation architectures than what has been previously reported, to perform quantum wavelet transform on high-resolution data. We also implement the inverse quantum wavelet transform (IQWT) to accurately reconstruct the data without any losses. The algorithms are prototyped on an FPGA-based quantum emulator that supports double-precision floating-point computations. Experimental work has been performed using high-resolution image data on a state-of-the-art multinode high-performance reconfigurable computer. The experimental results show that the proposed concepts represent a feasible approach to reducing dimensionality of high spatial resolution data generated by applications such as particle tracking in high-energy physics

    Adaptive multispectral GPU accelerated architecture for Earth Observation satellites

    Get PDF
    In recent years the growth in quantity, diversity and capability of Earth Observation (EO) satellites, has enabled increase’s in the achievable payload data dimensionality and volume. However, the lack of equivalent advancement in downlink technology has resulted in the development of an onboard data bottleneck. This bottleneck must be alleviated in order for EO satellites to continue to efficiently provide high quality and increasing quantities of payload data. This research explores the selection and implementation of state-of-the-art multidimensional image compression algorithms and proposes a new onboard data processing architecture, to help alleviate the bottleneck and increase the data throughput of the platform. The proposed new system is based upon a backplane architecture to provide scalability with different satellite platform sizes and varying mission’s objectives. The heterogeneous nature of the architecture allows benefits of both Field Programmable Gate Array (FPGA) and Graphical Processing Unit (GPU) hardware to be leveraged for maximised data processing throughput

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Reconfigurable Computing for Space

    Get PDF

    A scalable dataflow accelerator for real time onboard hyperspectral image classification

    No full text
    © Springer International Publishing Switzerland 2016.Real-time hyperspectral image classification is a necessary primitive in many remotely sensed image analysis applications. Previous work has shown that Support Vector Machines (SVMs) can achieve high classification accuracy, but unfortunately it is very computationally expensive. This paper presents a scalable dataflow accelerator on FPGA for real-time SVM classification of hyperspectral images.To address data dependencies, we adapt multi-class classifier based on Hamming distance. The architecture is scalable to high problem dimensionality and available hardware resources. Implementation results show that the FPGA design achieves speedups of 26x, 1335x, 66x and 14x compared with implementations on ZYNQ, ARM, DSP and Xeon processors. Moreover, one to two orders of magnitude reduction in power consumption is achieved for the AVRIS hyperspectral image datasets

    Efficient FPGA Implementation of PCA Algorithm for Large Data using High Level Synthesis

    Get PDF
    Principal Component Analysis (PCA) is a widely used method for dimensionality reduction in different application areas, including microwave imaging where the size of input data is large. Despite its popularity, one of the difficulties in using PCA is its high computational complexity, especially for large dimensional data. In recent years several FPGA implementations have been proposed to accelerate PCA computation. However, most of them use manual RTL design, which requires more time for design and development. In this paper, we propose an FPGA implementation of PCA using High Level Synthesis (HLS), which allows us to explore the design space more efficiently than with hand-coded RTL design. Starting from a PCA algorithm written in C++, we apply various hardware optimization techniques to the same code using Vivado HLS in order to quickly explore the design space. Our experiments show that the performance of the design obtained with the proposed method is superior to the state-of-the-art RTL design in terms of resource utilization, latency and frequency
    • …
    corecore