
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2006, Article ID 23025, Pages 1–12
DOI 10.1155/ES/2006/23025

A Reconfigurable FPGA System for Parallel Independent
Component Analysis

Hongtao Du and Hairong Qi

Electrical and Computer Engineering Department, The University of Tennessee, Knoxville, TN 37996-2100, USA

Received 13 December 2005; Revised 12 September 2006; Accepted 15 September 2006

Recommended for Publication by Miriam Leeser

A run-time reconfigurable field programmable gate array (FPGA) system is presented for the implementation of the parallel in-
dependent component analysis (ICA) algorithm. In this work, we investigate design challenges caused by the capacity constraints
of single FPGA. Using the reconfigurability of FPGA, we show how to manipulate the FPGA-based system and execute processes
for the parallel ICA (pICA) algorithm. During the implementation procedure, pICA is first partitioned into three temporally
independent function blocks, each of which is synthesized by using several ICA-related reconfigurable components (RCs) that
are developed for reuse and retargeting purposes. All blocks are then integrated into a design and development environment for
performing tasks such as FPGA optimization, placement, and routing. With partitioning and reconfiguration, the proposed recon-
figurable FPGA system overcomes the capacity constraints for the pICA implementation on embedded systems. We demonstrate
the effectiveness of this implementation on real images with large throughput for dimensionality reduction in hyperspectral image
(HSI) analysis.

Copyright © 2006 H. Du and H. Qi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

In recent years, independent component analysis (ICA) has
played an important role in a variety of signal and image
processing applications such as blind source separation
(BSS) [1], recognition [2], and hyperspectral image (HSI)
analysis [3]. In these applications, the observed signals are
generally the linear combinations of the source signals. For
example, in the cocktail party problem, the acoustic signal
captured from any microphone is a mixture of individual
speakers (source signal) speaking at the same time; in the
case of hyperspectral image analysis, since each pixel in the
hyperspectral image could cover hundreds of square feet
area that contains many different materials, unmixing the
hyperspectral image (the observed signal or mixed signal)
to the pure materials (source signals) is a critical step before
any other processing algorithms can be practically applied.
ICA is a very effective technique for unsupervised source
signal estimations, given only the observations of mixed
signals. It searches for a linear or nonlinear transformation
to minimize the higher-order statistical dependence between
the source signals [4, 5]. Although powerful, ICA is very
time consuming in software implementations due to the

computation complexities and the slow convergence rate,
especially for high-volume or dimensional data set. The
field programmable gate arrays (FPGAs) implementation
provides a potentially faster and real-time alternative.

Advances in very large-scale integrated circuit (VLSI)
technology have allowed designers to implement some com-
plex ICA algorithms on analog CMOS and analog-digital
mixed signal VLSI, digital application-specific integrated
circuits (ASICs), and FPGAs with millions of transistors. De-
signs that are developed using analog or analog-digital mixed
technologies utilize the silicon in the most efficient manner.
For example, analog CMOS chips have been designed to
implement a simple ICA-based blind separation of mixed
speech signals [6] and infomax theory-based ICA algorithm
[7]. Celik et al. [8] used a mixed-signal adaptive parallel
VLSI architecture to implement the Herault-Jutten (H-J)
ICA algorithm. The coefficients in the unmixing matrix were
stored in digital cells of the architecture, which was fabricated
on a 3mm × 3mm chip using a 0.5 µm CMOS technology.
But the 3×3 chip could only unmix three independent com-
ponents. The neuromorphic auto-adaptive systems project
conducted at Johns Hopkins University [9] used the ICA
VLSI processor as a front end of the system integration. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81102161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EURASIP Journal on Embedded Systems

processor separates the mixed analog acoustic inputs and
feeds the digital output to Xilinx FPGA for classification
purpose.

Although these works could offer possible solutions to
some ICA applications, the high cost of the analog or
mixed-signal development systems ($150K) and the long
turnaround period (8–10 weeks) make them suboptimal for
most ICA designs [10]. As another branch of VLSI imple-
mentation, the digital semicustom group that consists of
user programmable FPGAs and non-programmable ASICs
presents low-cost substitute solutions.

The general-purpose FPGAs are the best selections for
fast design implementations and allow end users to modify
and configure their designs formultiple times. Lim et al. [11],
respectively, implemented two small 7-neuron independent
component neural network (ICNN) prototypes on Xilinx
Virtex XCV 812E which contains 0.25 million logic gates.
The prototypes are based on mutual information maximiza-
tion and output divergence minimization. Nordin et al. [12]
proposed a pipelined ICA architecture for potential FPGA
implementation. Since each block in the 4-stage pipelined
FPGA array did not have data dependency with others, all
blocks could be implemented and executed in parallel. Sat-
tar and Charayaphan [13] implemented an ICA-based BSS
algorithm on Xilinx Virtex E, which contains 0.6 million
logic gates. Due to the capacity limit, the maximum itera-
tion number was prelimited to 50 and the buffer size to 2,500
samples. Wei and Charoensak [14] implemented a noniter-
ative algebra ICA algorithm [15] that requires neither iter-
ation nor assumption on Xilinx Virtex E in order to speed
up the motion detection operation in image sequences. Al-
though the design only used 90 200 of the 600 000 logic gates,
the system could support the unmixing of only two indepen-
dent components. We see that all these FPGA-based imple-
mentations of ICA algorithms are constrained by the limited
FPGA resources; hence, they have to either reduce the algo-
rithm complexity or restrict the number of derived indepen-
dent components.

In order to implement a complex algorithm in VLSI, one
common solution is to sacrifice the processing time so as to
meet the resource constraints. Although ASICs can obtain
better speedup than FPGAs, they are fixed in design and are
nonprogrammable. On the other hand, FPGAs have lower
circuit density and higher circuit delay which brings capac-
ity limitation to complex algorithm implementations. How-
ever, as standard programmable products, FPGAs offer char-
acteristics of reconfigurability and reusable life cycle that al-
low end users to modify and configure designs for multiple
times. The idea of our reconfigurable FPGA system is to use
the reconfigurability of FPGA to break its capacity limitation.
The proposed approach compromises the processing speed
to satisfy the hardware resource constraints so as to pro-
vide appropriate solutions to embedded system implemen-
tations. In this paper, we first develop and synthesize a par-
allel ICA (pICA) algorithm based on FastICA [1]. We then
investigate design challenges due to the capacity constraints
of single FPGA such as Xilinx VIRTEX V1000E. In order to
overcome the capacity limitation problem, we present the

reconfigurable FPGA system that partitions the whole pICA
process into several subprocesses. By utilizing just one FPGA
and its reconfigurability feature, the subprocesses can be al-
ternatively configured then executed at run-time.

The rest of this paper is organized as follows. Section 2
briefly describes the ICA, FastICA, and pICA algorithms.
Section 3 elaborates the three ICA-related reconfigurable
components (RCs) and the corresponding synthesis proce-
dure. Section 4 identifies and investigates design challenges
due to the capacity constraints of single FPGA, then presents
the reconfigurable FPGA system. Section 5 validates the pro-
posed implementation using a case study for pICA-based
dimensionality reduction in HSI analysis. Finally, Section 6
concludes this paper and discusses future work.

2. THE ICA AND PARALLEL ICA ALGORITHMS

Before discussing the hardware implementation, in this sec-
tion, we first describe the ICA [4], the FastICA [1], and
the pICA algorithms. FastICA is one of the fastest ICA soft-
ware implementations so far, while pICA further speeds up
FastICA using single program multiple data (SPMD) paral-
lelism.

2.1. ICA

Let s1, . . . , sm be m source signals that are statistically inde-
pendent and nomore than one signal is Gaussian distributed.
The ICA unmixing model unmixes the n observed signals
x1, . . . , xn by an m× n unmixing matrix or weight matrixW
to the source signals

S =WX, (1)

where

W =

⎡
⎢⎢⎣
wT
1
...

wT
m

⎤
⎥⎥⎦ , wi =

⎡
⎢⎢⎣
wi1
...

win

⎤
⎥⎥⎦ . (2)

The main work of ICA is to recover the source signal S
from the observation X by estimating the weight matrix W.
Since the source signals si are desired to contain the least
Gaussian components, ameasure of nongaussianity is the key
to estimate the weight matrix, and correspondingly, the in-
dependent components. The classical measure of nongaus-
sianity is kurtosis, which is the fourth-order statistics mea-
suring the flatness of the distribution and has zero value for
the Gaussian distributions [16]. However, kurtosis is sensi-
tive to outliers. The negentropy is then used as a measure
of nongaussianity since Gaussian variable has the largest en-
tropy among all random variables of equal variance [16]. Be-
cause it is difficult to calculate negentropy, an approximation
is usually given.

2.2. The FastICA algorithm

In order to find W that maximizes the objective function,
Hyvärinen and Oja [1] developed the FastICA algorithm that

H. Du and H. Qi 3

Output: s =Wx

Weight matrixW

External
decorrelation

External
decorrelation

External
decorrelation

External
decorrelation

Subweight
matrixW1

Subweight
matrixW2

One unit process One unit process

Internal
decorrelation

Internal
decorrelation

� � �

Subweight
matrixWi

Subweight
matrixWk

One unit process One unit process

Internal
decorrelation

Internal
decorrelation

� � �

� � �

Figure 1: Structure of the pICA algorithm.

involves the processes of one unit estimation and decorrela-
tion. The one unit process estimates the weight vectors wi

using (3),

w+
i = E

{
Xg
(
wT
i X
)}− E

{
g′
(
wT
i X
)}
wi,

wi = w+
i∥∥w+
i

∥∥ ,
(3)

where g denotes the derivative of the nonquadratic function
G in (??), and g(u) = tanh(au).

The decorrelation process keeps different weight vec-
tors from converging to the same maxima. For example, the
(p + 1)th weight vector is decorrelated from the preceding p
weight vectors by (4),

w+
p+1 = wp+1 −

p∑

i=1
wT

p+1wiwi,

wp+1 =
w+

p+1∥∥w+
p+1

∥∥ .
(4)

2.3. The Parallel ICA algorithm

In order to further speed up the FastICA execution, we de-
signed a pICA algorithm that seeks the data parallel solution
in SPMD parallelism [17].

PICA divides the process of weight matrix estima-
tion into several subprocesses, where the weight ma-
trix W is arbitrarily divided into k submatrices, W =
(W1, . . . ,Wz, . . . ,Wk)T . Each subprocess estimates a subma-
trix Wz by the oneunit process and an internal decorrela-
tion. The internal decorrelation decorrelates the weight vec-
tors derived within the same submatrixWz using (5),

w+
z(p+1) = wz(p+1) −

p,p≤nz−1∑

j=1
wT
z(p+1)wz jwz j ,

wz(p+1) =
w+
z(p+1)∥∥w+
z(p+1)

∥∥ ,
(5)

where wz(p+1) denotes the (p + 1)th weight vector in the zth
submatrix, nz is the amount of weight vectors inWz, and the
total number of weight vectors n = n1 + · · ·+ nz + · · ·+ nk.

The internal decorrelation process only keeps different
weight vectors within the same submatrix from converging
to the same maxima. But two weight vectors generated from
different submatrices could still correlate with each other.
Hence, an external decorrelation process is needed to decorre-
late the weight vectors from different submatrices using (6),

w+
z(q+1) = wz(q+1) −

q,q≤(n−nz−1)∑

j=1
wT
z(q+1)w jw j ,

wz(q+1) =
w+
z(q+1)∥∥w+
z(q+1)

∥∥ ,
(6)

where wz(q+1) denotes the (q + 1)th weight vector in the zth
submatrix Wz, and w j is a weight vector from another sub-
matrix.

The structure of the pICA algorithm is illustrated in
Figure 1. With the internal and the external decorrelations,
we have decorrelated all weight vectors in all submatrices as
if they are decorrelated in the same weight matrix. Hence, the
ICA process can be run in a parallel mode, thereby distribut-
ing the computation burden from single process to multi-
ple subprocesses in parallel environments. In the pICA algo-
rithm, not only the estimations of submatrices but also the
external decorrelation can be carried out in parallel.

3. SYNTHESIS

According to the structure of the pICA algorithm, we de-
sign the implementation structure, as illustrated in Figure 2.
This design estimates four independent components, that is,
m = 4. First of all, the weight matrix is divided into the two
submatrices, each of which undergoes two oneunit estima-
tions, generates four weight vectors in total using the input
observed signal x. Secondly, every pair of weight vectors in
the same submatrix executes the internal decorrelation. The

4 EURASIP Journal on Embedded Systems

Input observed signals x

Submatrix 1

One unit One unit

w1 w216 16

Internal
decorrelation

Submatrix 2

One unit One unit

16 16

Internal
decorrelation

16 16

External
decorrelation

16

Comparison

Output results

16 16

Figure 2: The implementation structure of the pICA algorithm.

four weight vectors then, respectively, undergo the external
decorrelation with weight vectors from the other submatrix.
So the decorrelated weight vectors generate the weight ma-
trix W. Finally, we compare the weights of individual obser-
vation channels and select the most important ones. In this
work, we set the bit width of both the observed signals and
the weight vector to be 16.

Prior to the synthesis process of the pICA algorithm, we
first develop three ICA-related RCs for reuse and retargeting
purposes. The design and the use of RCs simplify the design
process and allow for incremental updates. By using these
fundamental RCs, we build up functional blocks according
to the structure of the pICA algorithm. These blocks then set
up process groups that will be implemented on the single re-
configurable FPGA system.

3.1. ICA-related reconfigurable components

Regarding functionality, the pICA algorithm consists of three
main computations: the estimation of weight vectors, the in-
ternal and external decorrelations, and other auxiliary pro-
cessing on the weight matrix. Hence, we develop three RCs
for ICA-related implementations, including the one unit
process, the decorrelation process, and the comparison pro-
cess. The comparison process evaluates the importance of in-
dividual observation channel. The schematics of these three
RCs, as shown in Figure 3, are parameterized using gener-
ics to make them highly flexible for future instances. In very
high speed integrated circuit hardware description language
(VHDL), the use of generics is a mechanism for passing in-
formation into a functionmodel, similar to what Verilog pro-
vides in the form of parameters.

Band nr (configuration)

Sample nr (configuration)

Rounder Updating

Estimating Checking
convergence

Clock

xi wout

16 16

(a)

Band nr (configuration)

w1 nr (configuration)

w2 nr (configuration)

w1 in

w2 in
16

16
Clock

Updating

w1 out

Checking
convergence

16

D
ec
or
re
la
ti
n
g

(b)

Band nr (configuration)

w nr (configuration)

Select band nr (configuration)

win

16

Sorting

Clock

Selecting

OutputComparing
16

Bandout

(c)

Figure 3: The schematic diagrams of the three RCs for ICA-related
processes. (a) One unit estimation. (b) Decorrelation. (c) Compar-
ison.

According to the FastICA and pICA algorithms described
in Section 2, the one unit estimation is the fundamental pro-
cess that estimates an individual weight vector. The input
ports of the one unit RC consist of a 16-bit observed signal
input (xi) and a 1-bit clock pulse (clock) that synchronizes
the interconnected RCs. As we have described in Section 2,
the dimensions of the observed signal and the weight vector
are the same (n). Both the dimension (dimension) and the
amount of input observed signals (sample nr) are adjustable
for different applications by customizing the reconfigurable
generics. The output of the one unit RC (wout) is the esti-
mated weight vector that needs to be decorrelated with others
in the decorrelation process. Inside the one unit component,
the 16-bit observed signal is fed to estimate one weight vec-
tor. The “rounder” is necessary for avoiding overflow, since it
is a 16-bit binary instead of a floating point number used in
the estimation. The weight vector is then iteratively updated
until convergence, and then sent to the output port. Keeping
the observation data and previously estimated weight vectors
in the data RAM, Figure 4(a) demonstrates how the input
process, the estimate process, and the output process in the
one unit RC can be assembled in a pipelined state.

The decorrelation RC is designed for both the internal
and the external decorrelations. The schematic diagram is
shown in Figure 3(b). The input ports of the decorrelation

H. Du and H. Qi 5

Read in process

Data ram

Counter

xi

16

Clock

Estimation process

MUL

MUX

Random
number
generator

MUL MUL ADD

Data ram

MUL
ADD

MUL

DEC NORM

CMP

Data ram

Output process

Data ram

Counter

wout

16

(a)

Read in process

Data ram

Counter

Data ram

w1 in

16

Clock

w2 in

16

Decorrelation process

MUL ADD

Data ram
DEC NORM

CMP

Data ramCounter

Counter

Data ram

Output process

w1 out

16

(b)

Read in process

Data ram

Counter

Data ram

w in

16

Clock

Comparison process

CMP CMP

Output process

Data ram

Counter

16

Bandout

(c)

Figure 4: RTL schematics of the ICA-related RCs. (a) One unit estimation process. (b) Decorrelation process. (c) Comparison process.

RC include a 1-bit clock pulse (clock) and two 16-bit weight
vector inputs (w1 in,w2 in), with w1 in being the weight vec-
tor to be decorrelated, and w2 in the sequence of previously
decorrelated weight vectors. The generics parameterize the
amount (w1 nr,w2 nr) and the dimension (dimension) of
the decorrelated weight vectors. The output is a 16-bit decor-
related vector (w1 out). As the internal diagram shows in
Figure 4(b), the decorrelation RC also sets up a pipelined
processing flow that includes the input process, the decor-
relation process, and the output process.

The comparison RC sorts the weight values within the
weight vectors that denote the significance of individual
channels in the n observations and selects the most impor-
tant ones, which are predefined by the end users according to
specific applications. As shown in Figure 3(c), the input ports
of the comparison RC include a 1-bit clock pulse (clock) and a
16-bit weight vector (win). The generics set the dimension of
the weight vector (dimension), the length of the weight vec-
tor sequence (w nr), and the number of signal channels to be
selected (select band nr). The output port yields the selected

6 EURASIP Journal on Embedded Systems

Dimension

wi ini

w decorrelated

Clock

16

16

Decorrelation
RC

wi

Figure 5: Internal decorrelation with multiple RCs in pipeline.

observation channels (Band out). Similarly, Figure 4(c) illus-
trates how the comparison process can be performed in the
pipeline state.

The developed RCs are included in a library for the use
in the synthesis process. The generics of the RCs are config-
ured according to specific applications. The input and out-
put ports of the RCs are interconnected to build up pro-
cesses or subprocesses. In addition, the ICA-related RCs can
be modified, improved, and extended to new RCs as neces-
sary for other ICA applications. After developing the ICA-
related RCs, we add them into a library for the purpose of
reuse. During the design procedure, we select and configure
appropriate RCs and integrate them to implement specific
ICA applications.

3.2. Synthesis procedure

At the beginning of the synthesis work, the whole pICA pro-
cess is divided into three independent functional blocks: the
one unit (weight vectors) estimation, the internal/external
decorrelation, and the comparison block. The one unit es-
timation block consists of several one unit RCs running in
parallel, and the number of these RCs is constrained by the
capacity limit of single FPGA. Each one unit RC indepen-
dently estimates one weight vector, which is then collected
and decorrelated in the decorrelation block.

The decorrelation block involves both the internal and
the external decorrelations. In the internal decorrelation, one
initial weight vector is fed to the first 16-bit data port, while
the weight vector that does not need to be decorrelated or the
previously already decorrelated weight vector sequence is in-
put to the other 16-bit data port. The weight vectors within
one submatrix are then iteratively decorrelated. As shown
in Figure 5, the output decorrelated weight vector is then
combined with the previously decorrelated weight vector se-
quence using a multiplexer to feed the consequent round as
a new decorrelated weight vector sequence.

In the external decorrelation, if we use one decorrelation
RC, the process works in virtually the same way as the inter-
nal decorrelation. The only difference is that the input decor-
related weight vector sequence is from another weight sub-
matrix without multiplexing the output decorrelated weight
vector. In order to speed up the decorrelation process, we can
set up parallel processing using multiple decorrelation RCs,
as demonstrated in Figure 6. The initial weight vectors from

the current weight submatrix are, respectively, input to indi-
vidual decorrelation RCs, while the decorrelated weight vec-
tor sequence from another weight submatrix is concurrently
input to all RCs. The clock pulses are uniformly configured
by external input for synchronization purpose.

Take a pICA process containing the estimation of four
weight vectors as an example, the structure implemented on
FPGA is shown in Figure 7. The one unit block of this design
consists of four one unit RCs in parallel, the decorrelation
block includes three decorrelation RCs, two for the internal
decorrelation in parallel and one for the external decorre-
lation, and the comparison block contains one comparison
RC.

A top level block is then designed to configure individ-
ual RCs and interconnect collaborative RCs. In addition, the
top level block serves as the input/output interface that dis-
tributes the input data, synchronizes the clock pulse, and
sends out the final results.

When the observed signals are input to the pICA process,
the top level block distributes them to the one unit block.
The weight vectors are then estimated in parallel and fed to
the top level. The top block in turn forwards the estimated
weight vectors to the decorrelation block. Finally, the com-
parison block receives the decorrelated weight vectors from
the decorrelation block and compares, and selects the most
important signal observation channels. The design is simu-
lated using the ModelSim fromMentor Graphics.

4. FPGA IMPLEMENTATIONS

4.1. Single FPGA and its capacity limit

In general, FPGA/DSP platforms use PCI or PCMCIA slots
to exchange data with memory and communicate with CPU.
However, the data transfer speed can be extremely slow for
applications with large data sets like hyperspectral images.
Hence, we select the Pilchard reconfigurable computing plat-
form that uses the DIMM RAM slot as an interface that
is compatible with PC133 standard [18], thereby achieving
very high data transfer rate. The Pilchard board is embed-
ded with an Xilinx VIRTEX V1000E FPGA. In this work, we
implement the pICA algorithm on the Pilchard board that
is plugged into a sun workstation equipped with two Ultra-
SPARC processors, as shown in Figure 8. Inside the FPGA,
the core is partitioned into the arithmetic block and the dual
port RAM (DPRAM) block (Figure 9). The DPRAM, whose
capacity is 256×64 bytes, exchanges data between the imple-
mented design and the external memory or cache through a
14-bit address bus and a 64-bit data bus. The Pilchard board
with the pICA design therefore communicates directly with
the CPU and memory on the 64-bit memory bus at the max-
imum frequency of 133MHz.

As the implementation procedure demonstrated in
Figure 10, the pICA algorithm shown in Figure 7 is first
simulated by ModelSim from Mentor Graphics, then syn-
thesized by Synopsys FPGA Compiler2, and finally placed
and routed by Xilinx XVmake. After implementing pICA
on Xilinx V1000E embedded on the Pilchard board, we

H. Du and H. Qi 7

Band nr

w1 ini

w other
Clock

16

16

Decorrelation
RC

Decorrelation
RC

Decorrelation
RC

w2 ini w3 ini

w1 w2 w3

Figure 6: External decorrelation with multiple RCs in parallel.

Data samples Results Interface

Top level

FPGA

16 16 16 16 16 16 16 16

16 16

One unit module Decorrelation module Comparison module

O
n
e
u
n
it
R
C

O
n
e
u
n
it
R
C

O
n
e
u
n
it
R
C

O
n
e
u
n
it
R
C

D
ecorrelation

R
C

D
ecorrelation

R
C

D
ecorrelation

R
C

Internal
decorrelations

C
om

parison
R
C

External
decorrelation

Figure 7: Architectural specification of pICA implemented on FPGA. (Solid lines denote data exchange and configuration. Dotted lines
indicate the virtual processing flow.)

PCI slots

DIMM RAM slots

UltraSPARC
MEM

Bus
(PC133)

DIMM RAM

Pilchard board

Figure 8: The Pilchard board.

achieve the maximum frequency of 20.161MHz (minimum
period of 49.600 nanosecond) and the maximum net de-
lay of 13.119 nanosecond. The pICA uses 92% slices of the
V1000E. The detailed design and device utilization are listed
in Table 1.

In the placement and routing process, however, we ob-
serve that several capacity constraints barricade single FPGA
from implementing complex algorithms like pICA. Figure 11

Core

Arithmetic

14
(address)

64
(data)

DPRAM

14
64

Interface

Figure 9: Hierarchy of the FPGA on Pilchard board. The DPRAM
exchanges data between arithmetic and an interface written in C.

shows the relationship between the number of weight vectors
in pICA and the capacity utilization of the FPGA Xilinx VIR-
TEX V1000E. The evaluation metrics we use are the delay
and the number of slices, where the delay reflects the design

8 EURASIP Journal on Embedded Systems

PICA (VHDL)

Simulation
(ModelSim)

Synthesis (fc2)

Place and route
(XV make)

Download
FPGA (VIRTEX)

MEM Bus (PC133)

CPU (UltraSPARC)

Run

Compile (gcc)

Interface (C)

Figure 10: Implementation procedure of the pICA algorithm on
Pilchard board.

Table 1: Design and device utilization.

Item Amount Percentage

Slices 11 318 92%

Flip-flops 6 061 24%

LUTs 19 114 77%

I/O pins 32 20%

Equivalent gate 229 500 —

After placing and routing

Paths 129 753 145 344 —

Nets 26 884 —

Connections 73 169 —

performance and the number of slices puts a constraint on
the capacity. In Figure 11(a), the delay that represents the
processing speed of designs is estimated by software simu-
lations. We find that the circuit delay significantly increases
after the number of weight vectors exceeds five. This is be-
cause when the pICA design estimates too many weight vec-
tors, the entire design is too large and the synthesis CAD tools
have to run longer paths to connect logic blocks. This prob-
lem can be solved by using larger capacity FPGA to shorten
the lengths of paths in order to reduce delay. The number of
slices, as shown in Figure 11(b), reflects the area utilization
of designs, which cannot exceed the available capacity of the
target FPGA. We can see that the capacity constraint of Xil-
inx VIRTEX V1000E in the number of slices is a little more
than 12 000. Hence, a single Xilinx VIRTEX V1000E can ac-
commodate a pICA process with, at most, four weight vector
estimations that already takes 92% of the maximum capac-
ity. Considering the joint effects of the delay and the capacity
constraints, on this FPGA, the pICA process cannot estimate
larger number of weight vectors (more than 4) without par-
titioning or reconfiguration.

1 2 3 4 5 6
52

52.5

53

53.5

54

54.5

55

D
el
ay

(n
s)

Number of weight vector(s)

(a) Delay

1 2 3 4 5 6

4000

6000

8000

10000

12000

14000

16000

N
u
m
be
r
of

sl
ic
es

Number of weight vector(s)

(b) Number of slices

Figure 11: Capacity utilization of Xilinx VIRTEX V1000E for dif-
ferent numbers of weight vectors in pICA. The dotted lines denote
the maximum capacity of Xilinx VIRTEX V1000E.

4.2. Reconfigurable FPGA system

We take the advantage of the reconfigurability feature of
FPGA and construct a dynamically reconfigurable FPGA sys-
tem in which the FPGA capacity limit is overcome by sacri-
ficing the overall processing time.

In a general FPGA platform, all functional blocks are in-
tegrated together and synthesized on one FPGA, as shown
in Figure 7, which can be executed for multiple times. In the
reconfigurable FPGA system, instead of integrating all pro-
cesses of pICA in one FPGA design, we divide them into
three groups: the submatrix, the external decorrelation, and
the comparison group. The submatrix group estimates a sub-
weight matrix containing four weight vectors, since our tar-
get FPGA VIRTEX 1000E can only accommodate at most
four weight vector estimations. So the submatrix group in-
tegrates four one unit RCs and two decorrelation RCs for in-
ternal decorrelation. In the external decorrelation group, we
use four decorrelation RCs and set up a parallel processing

H. Du and H. Qi 9

Table 2: Utilization ratios of resources for each group.

Group
Submatrix
(4 weight vectors)

External
decorrelation

Comparison

Slices 10 501 (85%) 10 683 (86%) 1 274 (10%)

Flip-flops 5 610 (22%) 7 081 (28%) 669 (2%)

LUTs 17 641 (71%) 17 635 (71%) 2 176 (8%)

I/O pins 104 (65%) 104 (65%) 104 (65%)

Maximum
frequency

21.829MHz 21.357MHz 35.921MHz

Configure FPGA
for

Submatrix
group

Execute 5 times

Reconfigure FPGA
for

External
decorrelation

group

Execute 4 times

Reconfigure FPGA
for

Comparison
group

Execute once

Figure 12: Global run-time reconfiguration flow.

as demonstrated in Figure 6 to decorrelate weight vectors
generated from two different submatrices. The comparison
group selects themost important observation channel as pre-
viously described.

In order to verify the effect of the design, each of these
three groups is synthesized by Synopsys FPGA Compiler2
then placed and routed by Xilinx XVmake. Compared to
Table 1 that shows synthesis performance of the overall pICA
design with the estimation of four weight vectors, Table 2 lists
the performance and device utilization ratios for individ-
ual groups in the reconfigurable design. Since the submatrix
group still includes the internal decorrelation, its perfor-
mance is similar to that in Table 1. The external decorrela-
tion group includes four decorrelation RCs for parallel pro-
cessing, thereby taking full use of available FPGA resources.
Finally, the bit files that are ready to be downloaded to the
Xilinx V1000E FPGA are generated by BitGen after the place-
ment and routing.

In the reconfiguration process of the reconfigurable
FPGA system, as shown in Figure 12, both the execution

iteration and the sequence of each group are predefined.
We take a reconfigurable FPGA system that estimates twenty
weight vectors as an example. In this design, the submatrix
group is executed five times, estimating and decorrelating
four weight vectors each time. In order to decorrelate these
five submatrices, the external decorrelation group needs to
be executed hierarchically for four times. The comparison
group is executed only once. A shell script file is written to
control the reconfiguration flow at run-time, and a clock
control block is used to distribute different clock frequencies.
Individual groups of consecutive processing are downloaded
on FPGA in sequence. The submatrix group is first down-
loaded to configure the Pilchard FPGA platform. After the
submatrix group is executed and the task finished, the exter-
nal decorrelation group is then downloaded to reconfigure
the same FPGA. Since the immediate outputs from the pre-
ceding submatrix group are commonly used as inputs of the
following configuration of the external decorrelation group,
an external memory is used to store these intermediate sig-
nals that are originally the internal variables in single FPGA
implementation.

5. CASE STUDY

The validity of the developed reconfigurable FPGA system
for the pICA algorithm is tested for the dimensionality re-
duction application in HSI analysis. Hyperspectral images
carry information at hundreds of contiguous spectral bands
[19, 20]. Since most materials have specific characteristics
only at certain bands, a lot of these information is redundant.
The goal of the pICA-based FPGA system is to select themost
important spectral bands for the hyperspectral image [21].

We take the NASA AVIRIS 224-band hyperspectral image
(Figure 13(a)) as our testing example [22]. The image was
taken over the Lunar Crater Volcanic Field in Northern Nye
County at Nevada. The file size of this 614×512 hyperspectral
image is 140.8MB. We use the pICA algorithm to select 50
important spectral bands for this image, thereby reducing the
data set by 22.3%.

Figure 14 demonstrates the Pilchard board workflow of
the pICA-based dimensionality reduction. For each pixel in
the hyperspectral image, the reflectance percentages of spec-
tral bands are represented as 16-bit binaries, and then read in
by the interface programwritten in C language. The interface
program checks the execution status, advances these pixels to
the pICA-based FPGA system, and obtains the selected spec-
tral bands. As shown in Figure 15(a), the selected 50 bands
on the spectral profile contain the most important informa-
tion that describes the original spectral curve, including the
maxima, theminima and the inflection points, thus retaining
most spectral information.

The computation time of the pICA process with esti-
mations of twenty weight vectors is compared between the
implementations on the reconfigurable FPGA system and
on a much faster workstation by C++, where the work-
station has a Pentium 42.4GHz CPU and 1GB memory.
Table 3 lists the percentage of the hyperspectral image pro-
cessed and the computation time consumed in the respective

10 EURASIP Journal on Embedded Systems

(a)

Band number

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
efl
ec
ta
n
ce

p
er
ce
n
ta
ge

(b)

Figure 13: (a) The AVIRIS hyperspectral image scene [22]. (b)
Original 224-band spectrum curve.

Hyperspectral images

(Floating point)

Hyperspectral data

(16-bit binary)

(16-bit binary)

Pilchard board

(16-bit binary)

Interface (in C)

(Integer)

Selected
independent bands

Figure 14: Workflow of pICA-based dimensionality reduction.

implementations. The configuration and execution time of
individual groups are also shown in this table.

Next, we experiment the pICA estimations on the re-
configurable FPGA system using the number of weight vec-
tors ranging from 4 to 24, with a 4-vector interval. Figure 16
elaborates the scalability and the speedup obtained by us-
ing the proposed reconfigurable FPGA system. Although the

Band number

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
efl
ec
ta
n
ce

p
er
ce
n
ta
ge

Spectrum and selected bands using ICA. (50 bands)

(a)

Band number

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
efl
ec
ta
n
ce

p
er
ce
n
ta
ge

50-channel spectrum of selected bands using ICA.

(b)

Figure 15: (a) The selected 50 spectral bands. (b) Spectrum curve
plotted by the selected 50 spectral bands.

reconfigurable FPGA system consumes overhead time on re-
configuration and data buffering, the speedup compared to
the C++ implementation is 2.257 when the amount of weight
vectors is twenty.

In this case study, we have demonstrated the effective-
ness of the proposed reconfigurable system in terms of pro-
viding significant speedup over software implementations
while solving the limited capacity problem. We expect bet-
ter performance of optimizing placement and routing, and
implementing the system on modern high-end processors,
like the AMDOpteron 64-bit processor. In addition, our cur-
rent implementation platform, the Pilchard board, contains
only one FPGA. If multiple FPGAs are available on one im-
plementation platform, the proposed reconfigurable system
can be conducted in the time sharing pattern to reduce the
data transfer time, therefore speeding up the overall process.

H. Du and H. Qi 11

Table 3: Computation time comparison for the pICA algorithm implementations of twenty weight vectors.

C++ program Reconfigurable FPGA system

Data set used 100% 100%

Computation time (s) 2548.8

Configuring submatrix group 5.3

Executing submatrix group 891.7

Configuring external decorrelation group 4.9

Executing external decorrelation group 213.7

Configuring comparison group 4.4

Executing comparison group 9.5

Total 1129.5

Amount of weight vectors

4 8 12 16 20 24
0

500

1000

1500

2000

2500

3000

3500

FPGA
C++

C
om

pu
ta
ti
on

ti
m
e
(s
)

(a) Computation time

Amount of weight vectors

4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

Sp
ee
du

p

(b) Speedup

Figure 16: Computation time comparison between reconfigurable
FPGA system and C++ implementation.

6. CONCLUSION

In this paper, we presented a run-time reconfigurable FPGA
system implementation for the pICA algorithm to compen-
sate for the performance limit of single FPGA. The imple-
mentation included the development of three reconfigurable

components (RCs) based on the principal processes of the
FastICA algorithm and the application of dimensionality re-
duction in HSI analysis. They are highly reusable and can
be retargeted to other ICA applications. Based on these
RCs, the FPGA implementation was reported, and the re-
source constraints of single FPGA were investigated in terms
of delay and the number of slices. Our analysis concluded
that current FPGA could not provide sufficient resource for
complex iterative algorithms such as pICA in one design.
The proposed reconfigurable FPGA system partitioned the
pICA design into submatrix estimation, external decorrela-
tion, and comparison groups. Individual groups were sep-
arately synthesized targeting to the Xilinx VIRTEX V1000E
FPGA and achieved 85%, 86%, 10% capacity usages and
21.829MHz, 21.357MHz, 35.921MHz maximum frequen-
cies, respectively. The run-time reconfigurable system was
executed in sequence on the Pilchard platform that trans-
ferred data directly to and from the CPU through the 64-bit
memory bus at the maximum frequency of 133MHz. The
experimental results validated the effectiveness of the recon-
figurable FPGA system. The speedup, compared to the C++
implementation, is 2.257 when the amount of weight vectors
is twenty. The proposed reconfigurable FPGA system inspires
an FPGA solution in performing complex algorithms with
large throughput. More efficient solutions can be obtained
by optimizing different synthesis levels.

ACKNOWLEDGMENT

This work was supported in part by Office of Naval Research
under Grant no. N00014-04-1-0797. The authors would like
to acknowledge Dr. Donald W. Bouldin and Mr. W. Joel
Brooks from the University of Tennessee at Knoxville for
their help.

REFERENCES

[1] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for in-
dependent component analysis,” Neural Computation, vol. 9,
no. 7, pp. 1483–1492, 1997.

[2] M. Bartlett and T. Sejnowski, “Viewpoint invariant face recog-
nition using independent component analysis and attractor
networks,” in Advances in Neural Information Processing Sys-
tems 9, pp. 817–823, MIT Press, Cambridge, Mass, USA, 1997.

[3] M. Lennon, G. Mercier, M. C. Mouchot, and L. Hubert-
Moy, “Independent component analysis as a tool for the

12 EURASIP Journal on Embedded Systems

dimensionality reduction and the representation of hyper-
spectral images,” in Proceedings of IEEE International Geo-
science and Remote Sensing Symposium (IGARSS ’01), vol. 6,
pp. 2893–2895, Sydney, NSW, Australia, July 2001.

[4] P. Comon, “Independent component analysis, a new con-
cept?” Signal Processing, vol. 36, no. 3, pp. 287–314, 1994, spe-
cial issue on High-Order Statistics.

[5] T.-W. Lee, M. S. Lewicki, and T. J. Sejnowski, “ICA mixture
models for unsupervised classification of non-Gaussian classes
and automatic context switching in blind signal separation,”
IEEE Transactions on Pattern Analysis andMachine Intelligence,
vol. 22, no. 10, pp. 1078–1089, 2000.

[6] M. H. Cohen and A. G. Andreou, “Analog CMOS integration
and experimentation with an autoadaptive independent com-
ponent analyzer,” IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 42, no. 2, pp. 65–77,
1995.

[7] K.-S. Cho and S.-Y. Lee, “Implementation of infomax ICA al-
gorithm with analog CMOS circuits,” in Proceedings of the 3rd
International Conference on Independent Component Analysis
and Blind Signal Separation, pp. 70–73, San Diego, Calif, USA,
December 2001.

[8] A. Celik, M. Stanacevic, and G. Cauwenberghs, “Mixed-signal
real-time adaptive blind source separation,” in Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS
’04), vol. 5, pp. 760–763, Vancouver, Canada, May 2004.

[9] G. Cauwenberghs, “Neuromorphic autoadaptive systems and
independent component analysis,” Tech. Rep. N00014-99-1-
0612, Johns Hopkins University, Baltimore, Md, USA, 2003,
http://bach.ece.jhu.edu/gert/yip/.

[10] D. Bouldin, “Developments in design reuse,” Tech. Rep., Uni-
versity of Tennessee, Knoxville, Tenn, USA, 2001.

[11] A. B. Lim, J. C. Rajapakse, and A. R. Omondi, “Compara-
tive study of implementing ICNNs on FPGAs,” in Proceedings
of International Joint Conference on Neural Networks (IJCNN
’01), vol. 1, pp. 177–182, Washington, DC, USA, July 2001.

[12] A. Nordin, C. Hsu, and H. Szu, “Design of FPGA ICA for hy-
perspectral imaging processing,” in Wavelet Applications VIII,
vol. 4391 of Proceedings of SPIE, pp. 444–454, Orlando, Fla,
USA, April 2001.

[13] F. Sattar and C. Charayaphan, “Low-cost design and im-
plementation of an ICA-based blind source separation al-
gorithm,” in Proceedings of the 15th Annual IEEE Interna-
tional ASIC/SOC Conference, pp. 15–19, Rochester, NY, USA,
September 2002.

[14] Y. Wei and C. Charoensak, “FPGA implementation of non-
iterative ICA for detecting motion in image sequences,” in
Proceedings of the 7th International Conference on Control, Au-
tomation, Robotics and Vision (ICARCV ’02), vol. 3, pp. 1332–
1336, Singapore, December 2002.

[15] T. Yamaguchi and K. Itoh, “An algebraic solution to indepen-
dent component analysis,” Optics Communications, vol. 178,
no. 1, pp. 59–64, 2000.

[16] T. M. Cover and J. A. Thomas, Element of Information Theory,
John Wiley & Sons, New York, NY, USA, 1991.

[17] H. Du, H. Qi, and G. D. Peterson, “Parallel ICA and its hard-
ware implementation in hyperspectral image analysis,” in In-
dependent Component Analyses, Wavelets, Unsupervised Smart
Sensors, and Neural Networks II, vol. 5439 of Proceedings of
SPIE, pp. 74–83, Orlando, Fla, USA, April 2004.

[18] P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, et al.,
“Pilchard—a reconfigurable compouting platform with mem-
ory slot interface,” in Proceedings of the 9th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines

(FCCM ’01), pp. 170–179, Rohnert Park, Calif, USA, April-
May 2001.

[19] S.-S. Chiang, C.-I. Chang, and I. W. Ginsberg, “Unsupervised
hyperspectral image analysis using independent component
analysis,” in Proceedings of IEEE International Geoscience and
Remote Sensing Symposium (IGARSS ’00), vol. 7, pp. 3136–
3138, Honolulu, Hawaii, USA, July 2000.

[20] D. Landgrebe, “Some fundamentals and methods for hyper-
spectral image data analysis,” in Systems and Technologies for
Clinical Diagnostics and Drug Discovery II, vol. 3603 of Pro-
ceedings of SPIE, pp. 104–113, San Jose, Calif, USA, January
1999.

[21] H. Du, H. Qi, X.Wang, R. Ramanath, andW. E. Snyder, “Band
selection using independent component analysis for hyper-
spectral image processing,” in Proceedings of the 32nd Applied
Imagery Pattern Recognition Workshop (AIPR ’03), pp. 93–98,
Washington, DC, USA, October 2003.

[22] NASA, Jet Propulsion Laboratory, California Institute of Tech-
nology, AVIRIS concept, 2001, http://aviris.jpl.nasa.org/html/
aviris.concept.html.

Hongtao Du received his M.S. degree in
computer engineering from the University
of Tennessee in 2003, B.S. and M.S. degrees
in electrical engineering from Northeast-
ern University, Shenyang, China, in 1997
and 2000, respectively. He is now working
toward his Ph.D. degree in computer en-
gineering at The University of Tennessee,
Knoxville. His current research interests in-
clude parallel/distributed image and signal
processing, task and data partitioning on VLSI, reconfigurable and
virtual platform, and high performance computing.

Hairong Qi received her Ph.D. degree in
computer engineering from North Carolina
State University in 1999, B.S. and M.S. de-
grees in computer science from Northern
JiaoTong University, Beijing, China, in 1992
and 1995, respectively. She is now an Asso-
ciate Professor in the Department of Electri-
cal and Computer Engineering at The Uni-
versity of Tennessee, Knoxville. Her current
research interests are advanced imaging and
collaborative processing in sensor networks, hyperspectral image
analysis, and bioinformatics. She has published over 80 technical
papers in archival journals and refereed conference proceedings, in-
cluding a coauthored book in machine vision. She is the recipient
of the NSF CAREER Award, Chancellor’s Award for Professional
Promise in Research and Creative Achievement. She serves on the
Editorial Board of Sensor Letters and is the Associate Editor for
Computers in Biology and Medicine.

http://bach.ece.jhu.edu/gert/yip/
http://aviris.jpl.nasa.org/html/aviris.concept.html
http://aviris.jpl.nasa.org/html/aviris.concept.html

	Introduction
	The ICA and Parallel ICA Algorithms
	ICA
	The FastICA algorithm
	The Parallel ICA algorithm

	Synthesis
	ICA-related reconfigurable components
	Synthesis procedure

	FPGA implementations
	Single FPGA and its capacity limit
	Reconfigurable FPGA system

	Case Study
	Conclusion
	Acknowledgment
	REFERENCES

