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Abstract 

Hyperspectral images, although providing abundant information of the object, also bring 
high computational burden to data processing. This thesis studies the challenging problem of 
dimensionality reduction in Hyperspectral Image (HSI) analysis. Currently, there are two meth­
ods to reduce the dimension: band selection and feature extraction. This thesis presents a band 
selection technique based on Independent Component Analysis (ICA), an unsupervised sig­
nal separation algorithm. Given only the observations of hyperspectral images , the !CA -based 
band selection picks the independent bands which contain most of the spectral information of 
the original images. 

Due to the high volume of hyperspectral images, !CA -based band selection is a time­
consuming process. This thesis develops a parallel ICA algorithm which divides the decor­
relation process into internal decorrelation and external decorrelation such that computation 
burden can be distributed from single processor to multiple processors, and the ICA process 
can be run in a parallel mode. 

Hardware implementation is always a faster and real -time solution to HSI analysis. Until 
now, there are few hardware designs for !CA -related processes. This thesis synthesizes the 
parallel !CA -based band selection on Field Programmable Gate Array (FPGA), which is the best 
choice for moderate designs and fast implementations. Compared to other design syntheses, the 
synthesis present in this thesis develops three ICA re-configurable components for the purpose 
of reusability. In addition, this thesis demonstrates the relationship between the design and 
the capacity utilization of a single FPGA, then discusses the features of High Performance 
Reconfigurable Computing (HPRC) to accomodate large capacity and design requirements. 

Experiments are conducted on three data sets obtained from different sources. Experimental 
results show the effectiveness of the proposed !CA -based band selection, parallel ICA and its 
synthesis on FPGA. 
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Chapter 1 

Introduction 

Decades ago, people could only take black and white pictures, which recorded information 
from a single spectral band. Nowadays, color pictures are everywhere. They normally contain 
information from 3 spectral bands. As technology advances, we can now capture hyperspectral 
images which consist of several hundred bands. In this chapter, the concepts of spectroscopy, 
multispectral sensors and hyperspectral sensors are reviewed. We then focus the discussion on 
some challenging problems presented in hyperspectral image (HSI) analysis, as well as existing 
approaches to solving these problems. 

1.1 Imaging Spectroscopy 

As demonstrated in Fig. 1.1, when a beam of white light is dispersed by passing through a 
prism, a continuous range of color, the so-called color spectrum, is then formed. The color 
spectrum is only the visible region of the much wider electromagnetic spectrum (as shown in 
Fig. 1.2), which contains the entire wavelength range of electromagnetic radiation extending 
from gamma rays to the longest radio waves [39]. All objects give off electromagnetic radiation 
or reflect from another source. Therefore, by detecting and analyzing the energy emitted or 
reflected from the object, we can obtain an enormous amount of information about the object. 

Wavelcnalh 

-

' Ulll'llviolet :ioo.n, 

Figure 1.1: Color spectrum seen by passing white light through a prism. 
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Figure 1.2: Electromagnetic spectrum. 

1oon Wavelength 

Figure 1.3: AVIRIS sample data: gray scale (single band) [ 4 1]. 

1.1.1 Reflectance and Emission in Spectral Images 

An image taken at certain wavelength is composed of reflectance and emission. Reflectance 
is the percentage of light hitting a material and then reflected by that material. Emission is 
electromagnetic waves radiated and discharged into the air by an object or substances, such as 
a smokestack or an automobile gasoline engine [39]. Kirchhoff's Law gives the relationship 
between the reflectance and the emission: emissivity= l• reflectance [33]. 

Either the reflectance or the emission can be used in spectral analysis depending on the 
category of the object and the environment we observe. For example, the molecular structure 
of gases or vapors are observed in emission, while reflectance is used to reveal details of the 
chemical composition of the surface of solids and liquids [5 8]. When we use hyperspectral 
images to analyze the earth's surface, spectral reflectance is the ground feature that we would 
like to measure using airborne or satellite hyperspectral sensors [53]. 

Reflectance varies along wavelength for most materials. At certain wavelengths, some ma• 
terials would reflect light and some others would absorb it. Moreover, different materials would 
have different reflectance percentages at the same wavelength. These reflectance percentages 
are presented as different gray scales in a single band spectral image, such as the one from 
AVIRIS sample data shown in Fig. 1.3. If we measure the reflectance of a material across a 
range of wavelengths , we get the reflectance spectrum of this material. Figure 1.4 shows the 
reflectance spectra of four different materials. We can see that the light is absorbed selectively 
at individual bands by different materials. These bands are called the absorption bands. Since 
different materials have different sets of absorption bands, we can use these reflectance varia• 
tions , such as the shape of reflectance spectrum or the position and strength of absorption bands, 

2 
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Figure 1.4: Reflectance spectra of different materials. 

to compare the reflectance spectra for different materials and thus recognize the target made of 
certain material(s). These variations are also referred to as the spectral signature. With the 
spectral signatures shown in Fig. 1.4, water can be easily recognized from its spectral shape, 
while vegetation has higher reflectance than soil and rock in the range between 800nm and 
1 200nm. Although the shape of the reflectance spectrum of soil resembles that of rock, it can 

be distinguished with the strength of absorption bands in the visible range, which spreads from 
400nm to 700nm. 

1.1.2 Multispectral Sensors 

When we expand our observation from gray scale images to color images, we are working 
on the simplest multispectral images. Although humans can only perceive reflectances in the 
visible range with wavelength from 400nm to 700nm, in a much wider range of the electromag­
netic spectrum, multispectral remote sensors can generate images with up to tens of wavelength 
bands. These multiple reflectance bands are not necessarily contiguous and may overlap. 

Multispectral sensor systems typically contain a digital color camera and some sensor fil­
ters. They can collect data in either a simultaneous mode or a sequential mode [57]. In the 
simultaneous mode, images are taken at different spectral bands all at once. In the sequential 
mode, a spinning filter wheel or a tunable filter in front of a camera is typically used, and images 
are taken at different spectral bands successively. For example, the Landsat Thematic Mapper 

3 



Figure 1.5: A hyperspectral image cube, taken by AVIRIS on an ER- 2 plane over Moffett Field, 
CA [ 43]. 

(TM) and SPOT XS collect data from four to seven spectral bands in the simultaneous mode. 
Some popularly used spaceborne and airborne multispectral sensors are listed in Table 1.1. 

1.1.3 Hyperspectral Sensors 

In the past few years, airborne-based and satellite-based hyperspectral sensor systems have been 
developed for many different remote sensing applications. Compared to multispectral sensors 
which collect data at a few wide but separated wavelength bands, hyperspectral sensors collect 
data from a series of narrow and contiguous wavelength bands with a band interval no more 
than 15nm. Moreover, hyperspectral sensors only collect data in the simultaneous manner. As 
shown in Table 1. 2, most currently used hyperspectral sensors take hyperspectral images of 
more than one hundred bands. 

Compared to multispectral images, hyperspectral images increase our abilities of exploring 
and identifying resources and targets on the earth surface . The whole hyperspectral image can 
be interpreted as a hyperspectral cube, which includes a two-dimensional image and a third 
index of band. For example, a hyperspectral image taken by AVIRIS on an ER- 2 plane over 
Moffett Field, California [ 43] is displayed as a hyperspectral cube in Fig. 1 .5. The top band of 
the cube is in the visible range of the spectrum and the bottom band of the cube is in the infrared 
range . 

1.1.4 Applications of Hyperspectral Images 

Hyperspectral imagery has been used to detect and identify a wide variety of materials with 
characteristic reflectance spectra , including the classification of agriculture targets [55], under­
water objects [5 6], buried land mines [ 3 1] ,  military buildings [ 25], etc . 

For earth resource research, hyperspectral images are used by geologists for material map­
ping to identify material categories [ 1 6]. Given enough spectral range, spectral resolution, 

4 



Table 1 . 1 :  Multispectral sensors [63]. 
Sensor Full Name Satellites Organization Pixel Number Wavelength 

Size (m) of Bands range (nm) 
MSS Multispectral Landsat EROS Data 79 4 500-1,100 

Scanner 1-5 Center 
TM, ETM Thematic Mapper Landsat EROS Data 30 7 450-12,500 

and Enhanced 4.5,7 Center 
Thematic Mapper 

HRVIR High Resolution SPOT 4 SPOT Image 20 4 500-1 ,750 
Visible Infrared 

HRG High Resolution SPOT S SPOT Image IO 4 500-1 ,750 
Geometric 

AVHRR Advanced Very NOAA-9- 17 EROS Data 1 , 100 s 580- 12,400 
High Resolution Center 

Radiometer 
QuickBird DigitalGlobe 2.44 4 450-900 
IKONOS Space Imaging 4 4 450-900 

MODIS Moderate EOS Terra NASA Earth 250- 1 ,000 36 405- 14,385 
Resolution Imaging and Aqua Observing System 

Spectrometer Data Gateway 
ASTER Advanced EOS Terra NASA Earth 12-90 14 520- 1 1 ,650 

Spacebome Observing System 
ThennaJ Emission Data Gateway 

and Refktion 
Radiometer 

MISR Multiangle EOS Terra NASA Earth 275 4 446-867 
Imaging Spectro Observing System 

Radiometer Data Gateway 
SeaWiFS Sea-viewing Wide OrbView-2 NASA GES l ,  l 00-4,500 8 402-885 

Field-of-view DAAC or 
Sensor ORBIMAGE 
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Table 1 .2: Hyperspectral sensors [41 ,  57, 63] . 
Sensor Full Name Organization Number Wavelength 

of Bands range (µm) 
AVIRIS Airborne Visible/Infrared NASA Jet Propulsion 224 0.4 - 2.5 

Imaging Spectrometer Lab, USA 
KODAK CIS Johns Hopkins 3 1  0.4 - 0.7 

University 
AISA Airborne Imaging Spectrometer Spectral Imaging Ltd. 288 0.43 - 1 .0 

for Applications Finland 
CASI Compact Airborne ITRES Research Limited 288 0.4 - 1 .0 

Spectrographic Imager Canada 
CHRIS Compact High Resolution European Space Agency NIA 0.45 - 1 .05 

Imaging Spectrometer 
DAIS21 15 Digital Airborne GER Corp. 21 1 0.43 - 12.0 

Imaging Spectrometer USA 
FTHSI Fourier-Transform Visible Air Force Research Lab 256 0.35 - 1 .05 

Hyperspectral Imager designed by 
Satellite-based: MightySat I I  Kestrel Corp. 

HYMAP Integrated Spectronics 128 0.4 - 2.45 
Australia 

Hyperion Satellite-based on EO-1 NASA Goddard Space 220 0.4 - 2.5 
Flight Center, USA 

MIVIS Multispectral Infrared and SenSyTech 102 0.4 - 2.5 
Visible Imaging Spectrometer 

PROBE- I Earth Search Sciences 128 0.4 - 2.5 
Inc. USA 

SFSI Short Wavelength Infrared Canadian Centre for 120 1 .2 - 2.4 
Full Spectrum lmager Remote Sensing 

TRWIS III TRW Imaging Spectrometer TRW Inc. 384 0.38 - 2.45 
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signal to noise ratio, and spatial resolution, Clark et al. develop an analysis system called Tri­
corder to determine material categories such as mineral, vegetable and liquid. This system 
simultaneously maps minerals using multiple spectral features like absorption bands, spectra 
shape, etc [16]. Ben -Dor et al. use data acquired from the hyperspectral sensor DAIS - 79 1 5 
over Israel Valley in northern Israel to detect soil properties such as soil field moisture, or­
ganic content, soil saturated moisture and soil salinity [6]. Their objective is to use the Visible 
and Near Infrared Analysis (VNIRA) approach to generate an empirical model which predicts 
the soil property from wet chemistry and spectral information of a representative sample set. 
With NASA's AVIRIS data sets, taken from the Harvard Forest in central Massachusetts and 
Blackhawk Island in south -central Wisconsin, Aber and Martin [1] identify spectral regions 
correlated with foliar chemistry at the canopy level in forests. To achieve real -time recognition 
of underwater objects in the hyperspectral data sets taken by remotely sensing and imaging the 
ocean water, Stein et al. [56] use the spectral matched filter (SMF) to select spectral bands that 
optimize the signal-to-noise ratio (SNR) losses. 

For military applications, hyperspectral images have been used to detect different mili­
tary targets in a variety of environments. The U.S. Army Hyperspectral Mine Detection Phe­
nomenology (HMDP) program evaluates the advantage of the spectral discriminants in land 
mine detection [31 ]. They first identify the spectral features from the significant mine signature 
data in the range between 3 50nm and 1 4 ,000nm. The detection metrics are then used and the 
detection performance is analyzed against different background types, age of buried mines, etc. 
Moreover, they intend to utilize an Electro-Optics and Infrared (EO/IR) hyperspectral sensor to 
practically detect buried land mines. In another example, Huertas et al. employ panchromatic 
(PAN) images to construct 3-D building models in the automated building detection and descrip­
tion system [2 5]. Using the thematic maps provided by the hyperspectral sensor HYDICE, they 
fulfill the accurate delineation and improve the efficiency and quality of the detection system. 

1.2 Hyperspectral Image (HSI) Analysis 
1.2.1 Existing Challenges 

Hyperspectral images contain a large amount of valuable data, but interpreting them also presents 
unique challenges, which can be summarized as: 

• the high dimensionality challenge, 
• the classification accuracy challenge, and 
• the pixel pureness challenge. 
For target recognition in hyperspectral images , high dimensionality is both an advantage and 

a disadvantage. With more dimensions, we can obtain more feature information in more detail, 
and therefore detect targets and classify materials with potentially higher accuracy. However, 
the high dimensionality inversely gives a big processing burden to further analysis. Taking the 
hyperspectral image collected from NASA AVIRIS as an example, the spatial size of a single 
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Figure 1. 6: The relationship between the recognition accuracy and the measurement complexity 
[3 6]. 

band image is 61 4 x 5 1 2 pixels, which accounts for a file size of 62 9Kb if each pixel uses 16 bits. 
However, for the total 2 2 4  bands, the file size explodes to 1 4 0. 8Mb. Applying any classification 
algorithm to such a big data set would consume significant computing time. Fortunately, in 
many cases, it is unnecessary to process all the spectral bands of a hyperspectral image. Most 
materials have specific characteristics only at certain bands, thus leaving all the other reflectance 
data somewhat redundant. Therefore, dimensionality reduction is an important pre -processing 
step in HSI analysis. However, dimensionality reduction itself is a time -consuming process. 

On the other hand, with the dimensionality of hyperspectral image increasing, the number 
of training samples for each class must accordingly increase in order to achieve high classifi­
cation accuracy [3 0]. The relationship between the recognition accuracy and the measurement 
complexity is demonstrated in Fig. 1. 6, where the measurement complexity is related to the 
number of spectral bands, and the number of training samples (m). With the measurement 
complexity increasing, for a given number of training samples, the recognition accuracy climbs 
to a maximum and then descends eventually. In other words, an insufficient number of train­
ing samples hinders the recognition in high dimensionality. If the number of training samples 
grows larger, the recognition accuracy is accordingly increased [3 6]. However, the maximal 
recognition accuracy could not approach to a high rate without proper consideration of pixel 
pureness. 

Taken with the airborne or satellite hyperspectral sensors, hyperspectral images possess 
resolutions at normally the level of tens of meters (AVIRIS, Hyperion, FTHSI, etc) [4 2, 63], 
where multiple different materials could co -exist. Therefore, it is common that one pixel in a 
hyperspectral image presents a mixture of the reflectance spectra of several objects or materials. 
How to extract the spectrum of interest from the mixture or how to achieve sub -pixel recognition 
accuracy remains a challenging problem. This is the pixel pureness challenge. 

1.2.2 HSI Analysis Space 

To explore solutions to the existing challenges, the hyperspectral image analysis is normally 
conducted in three spaces: image space, spectral space and feature space [3 6, 3 8], as shown in 
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Figure 1.7: HSI analy sis space [ 3 6]. 

Fig . 1.7. 
In the image space, pixels are demonstrated in geometric relationship to one another ac­

cording to individual wavelength. At a given band, the corresponding reflectance value of each 
pixel is represented in gray scale, such that different materials can be distinctively displayed in 
an image. 

In the spectral space, for each pixel , the reflectance values at individual observation bands 
are represented as a function of wavelength. Therefore, we can analyze the absorption bands 
and the spectral shape to recognize specific materials. 

In the feature space, all observation bands or extracted features first construct a multidimen­
sional space with each individual band/feature as one axis, pixels and training samples are then 
displ ayed as points in this space. Consequently, we can classify materials or recognize objects 
of interest by measuring distance. 

1.3 Previous Work in HSI Analysis 

1.3.1 Dimensionality Reduction 

To solve the high dimensionality problem and thus improve classification accuracy, many di­
mensionality reduction methods have been developed for different data sets and application 
backgrounds. These methods can be divided into two categories, band selection and feature 
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extraction. 

Absorption Band 

Selection 

Hyperspectral Images 

Selected Bands 

(Retain physical meaning 
of each band) 

Feature 

Extraction 

Feature Space 

(Physical meaning of each 
band is not preserved) 

Figure 1.8: Dimensionality reduction in HSI analysis. 

As demonstrated in Fig. 1.8, the intention of feature extraction is to extract features from the 
hyperspectral data set and form a feature space with considerably low dimension. In essence, 
feature extraction is a projection process where the high dimensional hyperspectral data set 
is projected onto a lower-dimensional feature space. The projection, although it changes the 
physical meaning of each spectral band, should preserve most information that the original set 
contains. For example, Principal Component Analysis (PCA) is one of the commonly used 
schemes in feature extraction. The objective of PCA is to project the original data to a feature 
space which can be represented as the combination of basis vectors .  These basis vectors are 
derived from the eigenvectors corresponding to the maximum eigenvalues of the covariance 
matrix. The eventual feature space is optimal for signals with Gaussian noise. As another ex­
ample, Jimenez and Landgrebe [ 3 8] use Projection Pursuit (PP) to extract a lower-dimensional 
space. PP is a technique that automatically picks a maximally effective, lower-dimensional pro­
jection from high-dimensional data by optimizing a function called the projection index . Given 
the initial data set X, dimensionality reduced data set Y, and the parametric orthonormal matrix 
A, where Y = A Tx, PP computes A by optimizing the projection index /{A TX) . Lennon 
et al. [ 3 7] use Independent Component Analysis (ICA), a multivariate data analysis process, 
to represent hyperspectral images . Although closely related to PP, ICA simultaneously looks 
for the components and finds the directions where all the projected components are the most 
independent in the sense of negentropy, which we will discuss in detail in chapter 2. 

Compared to feature extraction, band selection reduces the high dimension by capturing the 
absorption bands, a subset of the original set of spectral bands that characterize most features of 
the spectral profile without changing its physical property . For instance, Velez-Reyes et al. [ 61] 
first use singular value to rank the QR matrix factorizations, where Q is a matrix of orthonormal 
columns and R is an upper triangular matrix. Then they use these matrix factorizations to select 
the most independent columns, which correspond to the most independent bands containing the 
maximum spatial information. As another example, in the spectral space, Keshava [ 3 2] quanti-
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fies the distance between the spectra of two materials at corresponding spectral bands, and then 
analyzes the separability of these two spectra using the Spectral Angle Mapper (SAM) metric. 
The spectral bands are selected in order to maximize the SAM metric, and thus maximize the 
angle between the two spectra. 

1.3.2 Classification 

Besides the high dimensionality problem, the classification accuracy challenge also spurs re­
searchers applying novel classification techniques to hyperspectral images. For example, Gualtieri 
et al. [2 4 ] use Support Vector Machine (SVM) to classify high-dimensional data without reduc­
ing dimensionality. The intention of S VM is to find the support vectors through training data, 
then form the separating surfaces with the support vectors, where the separating surfaces are 
the boundaries of classes. S VM first maps data to a high dimensional space with a non-linear 
transformation, then try to find a linear separating surface between two classes. Therefore, the 
non-linear separating surfaces in the original data space can be found as linear separating sur­
faces in higher dimensional space. As another example, Robila et al. [50] use ICA to detect 
small man-made targets. They preprocess the hyperspectral data through whitening and spher­
ing, which eliminates the first and second order statistics respectively. Then they apply ICA and 
sort the resulting bands according to kurtosis, which is the normalized fourth order moment of 
the sample distribution. Finally, they identify the targets from the high kurtosis valued bands 
which indicate the presence of small man-made targets. 

For different classification algorithms in HSI analysis, Landgrebe has summarized the gen­
eral procedure in [3 4 ,  3 5]. 

1.3.3 Pixel Pureness 

To settle the pixel pureness challenge in HSI analysis, many techniques for separating the com­
plex combinations found in the mixed pixels have been presented. Most of these approaches 
belong to one of the two categories: projection and linear spectral unmixing. 

The projection techniques project the mixed pixels onto another space and then extract 
desired information. For example, Chiang et al. [1 4 ]  assume the image background can be 
modeled by a Gaussian distribution, then employ skewness and kurtosis to design a projection 
index and detect small target in an unknown image scene. Harsanyi and Chang [1 3] first project 
the pixel vectors onto a subspace which is orthogonal to the undesired signatures, then null the 
interfering signatures and project the residual onto a signature of interest. Hence, the signal-to­
noise ratio is maximized and the results thus best represent the interested target. 

Compared to the projection, the linear spectral unmixing utilizes a linear mixture model 
to estimate the fractions of the signatures within a mixed pixel [1 2 ]. For example, Bowles et 
al. [10] use the filter vector, the estimation of material concentration based on the reflectance 
variations, to demix complex mixture patterns. This process achieves fast computing speed on 
well-known materials, therefore making real time implementation possible. Theo et al. [5 2 ]  use 
fuzzy classification to determine the presence and abundance of the basic spectra in a measured 
spectrum, thus obtain the fractions of the materials present in each pixel. As another example, 
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Bayliss et al. [ 5] assume that the spectral information of different materials are close to sta­
tistically independent, and apply ICA to find pure materials or some known mixtures, such as 
Halloysite + Kaolinite. 

1.4 Thesis Contributions 
This thesis focuses on the problem of band selection for dimensionality reduction in HSI anal­
ysis. It contributes in three aspectives: !CA-based band selection in dimensionality reduction 
in HSI analysis , parallel ICA algorithm, and FPGA implementation of parallel !CA-based band 
selection. 

In ( 3 7] and ( 1 5], ICA is used to represent hyperspectral images in a lower dimensional space 
corresponding to the materials existed in hyperspectral images. However, in most cases, we do 
not know the number of materials in the image. In this thesis work, we use ICA to estimate a 
weight matrix concerning the independent components and the spectral bands. We then compare 
the weights of individual spectral bands and select the most independent bands which contain 
the maximum information. This procedure is called the !CA-based band selection. As a unique 
benefit, !CA-based band selection avoids transforming the original hyperspectral images to a 
space that is sensitive to the unknown number of materials, and thus retains most features of the 
spectral profile given only the observations of hyperspectral images. To evaluate the !CA-based 
band selection, we apply kNN classifier to multispectral data sets obtained by !CA-based band 
selection, ICA transformation and PCA transformation. In chapter 5 ,  the experimental results 
show that !CA-based band selection is more effective than ICA and PCA transformations in 
dimensionality reduction. 

Although powerful, ICA is a time-consuming process for HSI analysis. To speed up the 
!CA-based band selection, we develop a parallel ICA algorithm which divides the decorrelation 
process into an internal decorrelation and an external decorrelation, which decorrelate weight 
vectors from the same processor and those from other processors respectively, such that com­
putation burden can be distributed from single processor to multiple processors, and the ICA 
process can be run in a parallel mode by dividing the weight matrix into multiple sub-matrices. 
Parallel ICA significantly reduces computation time without losing accuracy. In chapter 2, we 
prove that with the internal decorrelation and the external decorrelation, all weight vectors in 
all sub-matrices can be decorrelated as if they are decorrelated in the same weight matrix. In 
chapter 5, the computation time comparison shows that parallel ICA is much faster than the 
FastICA which is the fastest ICA method so far. 

Hardware implementation is a faster and real-time solution to HSI analysis. Until now, there 
are few hardware designs for !CA-related processes. In this thesis, we synthesize the parallel 
!CA-based band selection on Field Programmable Gate Arrays (FPGA), which will be described 
in detail in chapter 4. In our synthesis procedure, we develop three ICA re-configurable compo­
nents for the purpose of reusability. As a significant contribution, other designers would benefit 
for 7 0% or more design time reduction from the re-configurable components we developed. In 
chapter 4, we show the design flow using these re-configurable components. In addition, we 
demonstrate the relationship between the design and the capacity utilization of a single FPGA, 
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then discuss the features of High Performance Reconfigurable Computing (HPRC) to accom­
modate large capacity and design requirements. 

1.5 Thesis Outline 

The thesis outline is illustrated in Fig. 1. 9. 
Chapter 2 describes the Independent Component Analysis (ICA), then presents the ICA­

based band selection and parallel ICA algorithm. 
Chapter 3 reviews both unsupervised classification (k-means, winner-take -all, Kohonen 

maps) and supervised classification (kNN), then discusses how to identify mixture pixels. 
Chapter 4 first illustrates features of Field Programmable Gate Arrays (FPGAs) and High 

Performance Reconfigurable Computing (HPRC). It then describes the synthesis procedure to 
FPGAs using re-configurable components in VHDL. 

Chapter 5 describes data sets of one multispectral image set and two hyperspectral image 
sets used in this thesis. It then evaluates the !CA -based band selection by applying both the 
unsupervised and kNN classifiers. It also compares the computation time between parallel 
ICA and FastICA. Finally, this chapter depicts the FPGA synthesis procedure and simulations 
of the parallel !CA-based band selection, as well as the relationship between the number of 
independent components and capacity utilization of a single FPGA. 

Chapter 6 summarizes the algorithms developed and experimental results derived in this 
thesis work. It also discusses future work in HSI analysis and FPGA I HPRC implementation. 
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Figure 1. 9: Thesis outline. 
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Chapter 2 

Band Selection based on Independent 

Component Analysis 

As pointed out in chapter 1, one of the biggest challenges of hyperspectral image analysis is its 
high dimensionality. Although informative, many of the spectral bands provide redundant in­
formation. In order to save computation time and achieve high classification accuracy, the high 
dimension should be reduced before any further processing. There are two methods to reduce 
the dimension: by selecting the absorption bands and by extracting features . In this chapter, 
we apply a linear separation technique, independent component analysis (ICA), to hyperspec­
tral image band selection. In addition, we develop a parallel ICA algorithm to distribute the 
computation burden caused by the high dimensionality in hyperspectral data sets. 

2.1 Independent Component Analysis (ICA) 

ICA is a technique that searches for a linear transformation which minimizes the statistical 
dependence between components [ 1 7]. ICA is first proposed by Pierre Comon [1 7 ]  in 199 4, 
and has been used in a variety of applications, including blind source separation [ 26 ], feature 
extraction [ 3 7 ] ,  recognition [4], etc. 

2.1.1 Independent Component Analysis 

Suppose m is the number of source signals and n is the number of observed signals, where the 
observed signals are linear mixtures of the source signals. Then, the observed signal X, where 
X = (x1 , • .. , Xn)T , and the source signal S, where S = (s1 , • • • , Sm)T, are represented in the 
following ICA model, 

X = AS (2. 1) 

where A = [a1 , • • • , &m] is a mixing matrix, and ai = [ali ,  · · · , Onif, i = 1, · · · , m. 
If the mixing matrix is estimated, the unmixing matrix, which is the inverse of the mixing 

matrix, can then be used to separate the independent components from the observations, as 
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shown in Eq. 2.2 
S = WX ( 2.2) 

where W = A-1. 
To estimate the mixing matrix in the ICA model, the components Si are assumed to be 

statistically independent and not Gaussian distributed. The procedure of estimating independent 
components (I Cs) Si is actually a process of decorrelation. If information on Si does not give any 
information on the other components , then Si is considered independent of these components. 
According to the assumption of nongaussian distribution, the desired independent components 
Si contains the least Gaussian components. 

A measure of nongaussianity is the key for estimating the unmixing matrix and therefore 
the independent components. The classical measure of nongaussianity is kurtosis, which is the 
fourth order statistics and has zero value for Gaussian distributions, as shown in Eq. 2.3. 

kurt(y) = E{y4 } - 3(E{y2 } )2 ( 2.3) 

The random variables with negative kurtosis are called subgaussian and those with positive 
kurtosis are called supergaussian [28]. 

However, kurtosis is sensitive to outliers. Because a Gaussian variable has the largest en­
tropy among all random variables of equal variance [19], negentropy can be used as a measure 
of nongaussianity. The negentropy is defined as Eq. 2.4, 

J(X) = H(px9au11) - H(px) (2.4) 

where H(px9au11) is the entropy of a Gaussian random variable with the same covariance 
matrix as X, H (px) is the differential entropy and is defined as Eq. 2.5 ,  

H(px) = - f Px(u) logpx(u)du 

where px(u) is the probability density function of X. 
Since the negentropy is difficult to compute, an approximation is used instead [2 7]. 

J(X) � {E[G(X)] - E[G(X9au11)] }2 

( 2.5) 

(2.6) 

where G(X) is a non-quadratic function. If the G(X) is chosen not to grow too fast, the 
estimation would be robust. It has been proved that the following two forms of G(X) are very 
useful. 

where 1 � a1 � 2, or 

1 G(X) = - log cosh a1X a1 

x2 G(X) = -exp(--) 2 

16 
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2.1.2 FastICA Algorithm 

For practical implementation, Hyvarunen [ 2 7] has developed the so-called FastICA algorithm, 
which is claimed to be the fastest practical ICA method so far, to maximize the objective func­
tion shown in Eq. 2.6. The FastICA algorithm consists of two processes: the one unit process 
and the decorrelation process. As illustrated in Fig. 2. 1, the one unit process includes : 

1. Initialize the weight vector w i• 

2. Update wi by 
wt = E{Xg(wfX)} - E{g' (wfX)}wi 

where g(.) = tanh(.). 

3. Normalize wi, 
Wi = wt /l lwt l l  

4. Goto 2 ,  until Awi = (wi - wt)2 is less than a small number. 

(2.9) 

( 2 . 10) 

The one unit process is only used to estimate one weight vector. To estimate several weight 
vectors, the decorrelation process is used to avoid different weight vectors converging to the 
same maximal. Given the (p + l) th weight vector is estimated by one unit process, its decorre­
lation process includes : 

1. Update the weight vector wp+l by, 

wt+l = Wp+l - L w;+lwiwi 
i=l 

where w1 , • · • , w
p 

are the already decorrelated weight vectors. 

2. Normalize Wp+1, 
Wp+l = wt+1/l lwt+1 I I  

3. Goto 1, until Awp+l = (wp+l - wt+1)2 is less than a small number. 

2.2 ICA based Band Selection 

(2. 1 1 )  

( 2.1 2) 

We have discussed in chapter 1 that ICA has been used to reduce high dimensionality by pro­
jecting the original hyperspectral image to a lower dimensional space. In this projection, the 
number of observed signals n is the original dimensionality and the number of source signals 
m is the low dimensional space corresponding to the number of materials existing in the hyper­
spectral image. Then the spectral profile of all pixels in the hyperspectral images are treated as 
the observed signal X and used to estimate the weight matrix W. Subsequently, the resulting 
weight matrix is used in ICA projection S = WX, where S is the source signal with lower 
dimensionality , and each independent component Si is distinctive for one material. Using this 
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method, Lennon et al. [3 7] reduce the dimensionality of the CASI data from 1 4  to 3, then 
detect wood from different types of soil occupation and roads . Chiang et al. [15] reduce the 
dimensionality of the AVIRIS data from 2 2 4  to 158, and distinguish cinders, rhyolite, playa, 
vegetation and shade in one hyperspectral image. However, in most cases, we do not know the 
number of materials existing in a hyperspectral image . In this section, we evaluate the weight 
matrix W to observe how each original individual band contributes to the transformation de­
scribed above. Therefore, we obtain the independence of all the original bands, and select the 
maximally independent bands . According to the selected bands, we generate a new spectral 
image, which is a subset of the original hyperspectral image, and therefore achieve the purpose 
of dimensionality reduction. 

Suppose the exact number of materials included in an n-band hyperspectral image is un­
known, we assume m and obtain the corresponding weight matrix W mxn using FastlCA. In 
the ICA unmixing procedure, we estimate the source S (pure materials) from the observation X 
{pixels in the hyperspectral image) with the weight matrix W, 

81 1  Btp WU Wtn xu 

Bik = Wit w,; Win 

8ml Bmp Wml Wmn Xnt 

where p is number of pixels in the hyperspectral image. 
The kth element s,1c in the independent component Si is obtained by 

n 
s,1c = E w,;x;1c 

j=l 

Xtk Xtp 

Xjk 

Xnk Xnp 

(2. 13) 

where i = 1 · • • m. Wij denotes the weight of the jth band regarding to the component s, . 
In other words, Wij shows how much information the jth band includes considering the ith 

material .  Following the same way, we can estimate the importance of each spectral band corre­
sponding to different materials. 

Considering the assumption, we calculate the average absolute weight coefficient of each 
spectral band for all materials, as shown in Eq. 2 . 1 4 , 

( 2 . 1 4) 

where j = 1 • • · n. 
By sorting the average absolute weight coefficients for all spectral bands, we obtain a band 

independence sequence, 

(w1 , · · • , 'Wj , • • · , tiin] ( 2.15) 
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where w1 � • • • � w; � • • • � Wn , In this sequence, the bands with higher average ab­
solute weight coefficients contribute more to the ICA transformation than other bands do. In 
other words, these bands contain more spectral information than other bands. From the band 
independence sequence, we then select those bands with highest average absolute weight coef­
ficients. As typical multispectral analysis methods treat each spectral band as an independent 
variable, we call these selected bands independent bands. The set of selected independent bands 
is a subset of the original set of spectral bands and characterizes most features of the spectral 
profile without changing its physical property. According to the selected bands, we generate a 
new spectral image with lower dimensionality, therefore achieve the purpose of dimensionality 
reduction. 

For example, we apply the !CA -based band selection to a 22 4 -band synthetic hyperspectral 
image which will be described in detail in chapter 5. This hyperspectral image contains spectral 
profiles of both pure materials and mixtures. We select 5 0  independent bands and illustrate 
them respectively on the spectra of 5 pure materials: soil (white gypsum dune sand), rock 
(aplite), water (tap water), vegetation (conifer) and manmade material (construction concrete), 
in Fig. 2.2. It demonstrates that the selected independent bands on the spectra curves contain 
the most important information including maximum, minimum and inflection points, thus retain 
most spectral information such as absorption bands and spectra shapes. 

In addition, when we make the assumption about the number of different materials m, if 
the assumed m is larger than the ground truth, certain material would be separated into two 
kinds or more, whereas if the assumed m is less than the ground truth, some components would 
contain mixtures of different materials. Because we intend to select. independent bands for all 
materials, the !CA -based band selection calculates the average absolute weight coefficient of 
each individual band for all materials, pure materials or mixtures. 

For the 22 4 -band synthetic hyperspectral image, the selected 3 0  independent bands are il­
lustrated respectively on the spectra of 3 mixtures in Fig. 2.3, where the dark solid curves are 
the spectra of the mixtures and the color dotted curves denote the composing materials of the 
corresponding mixtures. It shows that the selected independent bands for the mixtures consist 
of the independent bands of composing materials of the mixtures. 

Using the !CA -based band selection, the dimensionality can be reduced to a specified lower 
number. However, if the number of independent bands we choose is too small, we might lose 
some information of certain materials. For the 22 4 -band synthetic hyperspectral image as an 
example, we respectively select 3 0  and 5 0  independent bands and show them as vertical dashed 
lines in Fig. 2. 4 on the 5 pure materials: soil, rock, water, vegetation and manmade material. 
It illustrates that the set of 3 0  independent bands loses some information about soil , rock and 
vegetation between 8 0 0nm and 1200nm, where the lost information is expressed as minimum 
and inflection points on the spectra. 

2.3 Parallel I CA 

Due to the high volume of the hyperspectral data sets, the process of I CA -based band selection is 
a time -consuming procedure. To calculate the weight matrix more efficiently, in this section we 
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2 2  



design a parallel ICA algorithm based on FastlCA. The basic idea of parallel ICA is to estimate 
the weight vectors using the one unit process in parallel mode, and perform the decorrelation at 
two levels: internal decorrelation and external decorrelation. 

2.3.1 Parallel ICA Algorithm 

In parallel ICA, the weight matrix W is first divided into several sub -matrices with different 
numbers of weight vectors, 

W = (W1, · · ·  , wi, · · · , wkf 
where Wi = (wit , · · ·  , Wij , · · • , Wini)T , Wij denotes the jth weight vector in the ith sub­
matrix , ni is the number of weight vectors in sub -matrix Wi , and the total number of weight 
vectors n = n1 + · · · + ni + · · · + nk. 

The sub -matrices Wi's can be estimated in a parallel manner. Eqs. 2. 16 and 2. 1 7  are used to 
decorrelate the weight vectors within each sub-matrix , which we call the internal decorrelation 
process. 

PJ"�Ri 

wt+l) = wi(p+l) - E wfc,+1)WijWij ( 2. 16) 
j=l 

wi(p+l) = w4P+i/l lwt+l) I I  ( 2. 1 7) 
Furthermore, the weight vectors generated from different sub-matrices in parallel need ad­

ditional decorrelation, which is called the external decorrelation process. This process is carried 
out as follows, 

1. Update each weight vector in different sub-matrices by, 
q,q�(n-ni) 

w�+l}i = w(q+l)i - E w(t+l)iwiwi 
j=l 

( 2. 1 8) 

where w(q+l)i is a weight vector of the sub-matrix Wi and w3 is a weight vector of other 
sub-matrices. 

2. Normalize the weight vector, 
W(q+l)i = w�+l);/ l lw�+l)i l l  ( 2. 1 9) 

With the internal decorrelation and the external decorrelation, we can decorrelate all weight 
vectors in all sub -matrices. See Fig. 2. 5 for a structural illustration of parallel ICA. The decor­
relation of two sub-matrices is proved as follows. 

Let us first consider the external decorrelation. Given two sub-matrices W i and W i , where 
Wi = (wit ,  . .  • , Wini )T and W3 = (w31 ,  · · · , Wjn; f. Without loss of generality, we assume 
W3 is prior to Wi. Then we have the already decorrelated weight vectors in matrix Wi , 

n; 
wti = Wiu - E wfuwjvWjv ( 2. 2 0) 

v=l 

2 3  



Sub­
Weght Matrix W1 

I Ooe Unit Process I 

� 

Outpit: •= Wx 

Sub­
Weight Matrix W 2 

I One Unit Process I • 

� 

Sub­
Weiglt Matrix Wi 

I I I One Unit Process I I 

� 

Sub­
Weight Matrix W, 

I I One Unit Process I 
� 

Figure 2. 5: Structure of parallel ICA. 

where u = 1 , · · · , ni. 
Without loss of generality, we assume the weight vector wi(p+l) has the internal decorrela­

tion defined as Eq. 2. 1 6  and rewritten as, 

where p = 1, • · · , ni. 

p 
wi(J>+l) = wi(p+l) - L wiuT Wi1JWiv 

v=l 
( 2. 21 )  

Substituting the external decorrelation (Eq. 2. 2 0 ) into the internal decorrelation (Eq. 2. 21 ) , 
we get 

p n; 

Wi(p+l) = Wi(p+l) - E wf(p+l) WfoWiv - E wf(p+l)WjrWjr (2.22) 
v=l r=l 

where the second component comes from the internal decorrelation and the third component 
from the external decorrelation. That is, 

p+n; 

wi(p+l) = Wi(p+l) - E wf(p+1)W11W11 ( 2. 2 3 )  
v=l 

Comparing Eq. 2. 2 3  with Eq. 2. 1 1 ,  we draw the conclusion that with the external decorrelation 
each weight vector in the two sub-matrices can be decorrelated as if it is computed within one 
matrix. For decorrelation of more than two sub -matrices, the proof is similar. 

Generally speaking, in the parallel ICA algorithm, not only the sub -matrices can be esti­
mated in parallel mode, the external decorrelation processes can also be carried out in a dis­
tributed fashion, as shown in Fig. 2. 5 . 
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2.3.2 Message Passing Interface (MPI) 

To evaluate the parallel ICA algorithm, we implement it on a Message Passing Intetface (MPI) 
environment of four computers. 

MPI is a message-passing library standard and extended message -passing model [5 9]. It 
specifies point to point communication in the form of various sending and receiving calls, 
collective communication calls, and the ability to defining complex data types and virtual 
topologies of communications. There are several implementations of MPI in existence, such 
as MPICH from Argonne National Laboratory and Mississippi State University, LAM from 
the Ohio Supercomputer Center, CHIMP/MP! from the Edinburgh Parallel Computing Center 
(EPCC), and UNIFY from the Mississippi State University [2 0, 62]. 

MPI provides access to parallel computers, clusters, and heterogeneous networks, therefore 
it is a powerful and efficient technique to express parallel programs which consist of multiple 
processes. The communications among processes consist of synchronization and movement of 
data from one process's address to another's. In MPI environments, processes send data to one 
another as messages which may be received in any order. The message -passing approach makes 
the exchange of data cooperative. 

Figure 2. 6 demonstrates the MPI diagram of parallel ICA. In this diagram, the weight ma­
trix is first divided into 4 sub-matrices, each of which is processed on one computer. Computers 
2 and 4 then respectively send their sub-matrices to computers 1 and 3, which execute the corre­

sponding external decorrelations. After that, computer 3 sends its decorrelated weight vectors to 
computer 1. Computer 1 finally decorrelates all weight vectors, compares the average absolute 
weight coefficients for all spectral bands, and outputs the selected independent bands. 

2.4 Summary 
In this chapter, we first reviewed the principles and properties of ICA algorithm, as well as 
the procedure of FastICA. ICA estimates source signals given only the observations which 
are linear mixtures of the source signals. Taking this advantage, we then present the ICA­
based band selection, which chooses independent bands containing the most information of the 
original hyperspectral images. To speed up the ICA based band selection, we developed the 
parallel ICA algorithm which estimates and decorrelates weight vectors in a parallel mode. The 

results of the parallel !CA -based band selection serve as the input to the classifiers described in 
the next chapter. 
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Figure 2.6: MPI diagram of parallel ICA. 
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Chapter 3 

Classifiers Design 

Many classification techniques have been applied to hyperspectral images. Most of these tech­
niques belong to one of the two categories: the unsupervised classification and the supervised 
classification. In this chapter, we discuss three unsupervised classifiers, k-means, winner-take­
all (WTA) and Kohonen maps, and one supervised classifier, k-Nearest-Neighbor (kNN) and 
apply them to classify pixels in hyperspectral images. In addition, we use the pixel classifica­
tion error rate to identify mixture pixels. 

3.1 Unsupervised Classifiers 

Unsupervised classification refers to the process that tries to find the intrinsic structure of un­
labeled data by organizing it into groups or clusters [21] .  In hyperspectral image analysis, the 
unsupervised classifiers can classify each pixel into different clusters, which denote different 
materials, without using any training set. The cluster centers can be used to represent the pixels 
within their corresponding clusters. 

3.1.1 k-means Classifier 

As an unsupervised classifier, k-means, also known as c-means, minimizes a performance met­

ric which is defined as the sum of the squared distances between pixels and the corresponding 
cluster centers [2 1] .  k stands for the number of cluster centers, µ 1 ,  · · · , µk . 

As shown in Fig. 3. 1 ,  the k-means algorithm assumes there are k clusters, i .e., the hyper­
spectral image includes k kinds of materials. It first arbitrarily divides pixels into k clusters by 
randomly initializing cluster centers µ1 , • • • , µk and assigning pixels to the nearest cluster by 
measuring the Euclidean distance. The cluster centers can then be iteratively updated by the 
mean value of the cluster members, shown in Eq. 3. 1 .  

N ·  

1 , 

µ, = N·  E Xi, Xi E s, 
3 i=l 
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Figure 3.1: The diagram of k-means algorithm. 

where µ; is the updated cluster center of the ;th cluster S;, N; is the number of cluster members 
in S; which could vary at different iterations. With the updated cluster centers, cluster members 
are accordingly reassigned to the nearest renewed cluster by Eq. 3. 2, 

x E S3 , if l lx - µ; I I � l lx - µi l l  for all i = 1 ,  .. · , k ( 3. 2) 

This loop lasts until no cluster member changes its membership, that is, all cluster centers 
remain the same. The cluster centers can then be used to represent all the members in each 
corresponding cluster. 

3.1.2 Winner-take-all (WTA) Classifier 

As a generalized approach to the k-means, the winner-take-all (WTA) algorithm, also called 
competitive learning [5 4], begins again with k arbitrary cluster centers Wi, where i = 1, • • • , k. 
For each input pixel x, the closest cluster center Wa is obtained the same way as in Eq. 3.2, with 
a change of notation, as shown in Eq. 3.3, where we use w0 to denote the winning cluster center 
[ 2 1 ]. 

x E Sa , if l lx - wa l l � l lx - wi l l for all i = 1 ,  ... , k  ( 3.3) 
The difference between WTA and k-means is that the winning cluster center is also justified by 
each pixel it claims membership of: 

Wa = Wa + e-(x - Wa) (3.4) 

where c is a learning parameter and has a typical value in the range of 0.01 r..1 0.1 [ 47]. The 
equation says that besides identifying a winner, each pixel also "pulls" the winner towards itself 
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Figure 3.2: Winner-take-all : update of winner. 

Figure 3.3: Kohonen feature maps: updating BMU and its surrounding neurons . 

a little bit which can be interpreted as a privilege of the pixel over its winner. The pulling 
process of each pixel on its winner is illustrated in Fig. 3 . 2. 

Similarly, the algorithm converges when all the cluster centers remain the same . 

3.1.3 Kohonen Maps Classifier 

Compared to the k-means and WTA, Kohonen maps, also called self-organizing feature maps, is 
an unsupervised neural network which represents pixels with one layer of neurons and assumes 
a problem-dependent topological distance between the neurons [47]. 

Following the principle of k-means and WTA, Kohonen maps also defines the neurons (clus­
ter centers) with weight vectors and randomly initializes them. For each input pixel, the closest 
neuron, called the Best Matching Unit (BMU) [40], is activated and adjusted to closely resemble 
the input pixel. The difference is that besides the BMU, the surrounding neurons of BMU are 
simultaneously adjusted according to their topological distance to the BMU, which is illustrated 
in Fig. 3.3. 

As shown in Fig. 3.3, the BMU w0 and its surrounding neurons, w1 , w2, w3, W4, are modified 
by Eq. 3.5. 

( 3.5) 

where i = 1, • • • , a, • • • , N and N is the number of neurons. 
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E is the learning rate and given as below. 
( Emin ) �  E = E,na:r --

Emaz 
(3.6) 

where Emin and Ema:r: are the minimum and maximum learning rate, 0 � Emin � Ema:r: � 1 ,  
nmax i s  the maximum iteration number, and n i s  the current iteration number. Emin , Ema:r: and nmaz are set at the beginning of the process. As n increases, E decreases which makes 
the learning process slower and the neural network more stable. To simplify the computing 
complexity, E is typically set to 0.01 .  

<I> in  Eq. 3 .5  i s  defined as 

<I> =  exp (- llwa - Wi l l2 ) 2u2 (3.7) 

which is a Gaussian function with respect to the distance between the neuron and the BMU. 
The closer the neuron to the BMU, the more it is affected. q is the variance defining the neigh­
borhood factor, 

( qmin ) ;;;!;;  q = O'ma:r: --O'maz 
where Umin is set at i�itialization and qmax = q_.. 

(3.8) 

Similar to WTA, Kohonen maps iteratively employ input pixels until all neurons remain the 
same or n > nmaz , The neurons then represent pixels surrounding them. 

An important benefit of Kohonen maps algorithm is that it can not only classify the pixels, 
it is also able to cluster the neurons resembling the pixels. For example, if the assumed number 
of neurons is larger than the actual number of material types, some neurons may represent the 
most typical ones while other surrounding neurons may only represent the less typical pixels. 
Thus, these less representative neurons can be clustered with their adjacent primary neurons and be neglected in the following iterations. 

3.2 Supervised Cl�ssifiers 

By possessing a training set of labeled samples, we can employ the supervised classifiers. De­
pending on whether we know the form of the sample density function, the supervised classifiers 
can be divided into two categories: parametric and non-parametric [2 1 ] .  For example, assume the density function of the data is known and has the shape of Gaussian function, the paramet­
ric classifiers include the maximum a-posteriori (MAP) classifier and the linear discriminant functions. On the other hand, without assuming the density function to be known a-priori, the 
non-parametric classifiers include the k-nearest-neighbor classifier and the neural network. In 
this work, we implement the k-Nearest-Neighbor classifier in hyperspectral image analysis. 
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Figure 3.4: kNN classification. The circle indicates the region centering at the input pixel and 
containing k training samples. The circle represents the input pixel. Squares represent the 
training samples in class 1. Triangles represent the training samples in class 2. 

3.2.1 k-Nearest-Neighbor Classifier 

k-Nearest-Neighbor (kNN) classifier is a non-parametric supervised classification technique 
[23] in that there is no assumption that the forms of the densities are known. kNN inputs a pixel 
x to the training set and expands a region centered at the input pixel until this region contains k 
training samples, as demonstrated in Fig. 3.4. 

In general, k is a function of the number of samples in the training set, n, and typically set 
to k = ./n [47] .  The category of the input pixel is then estimated by comparing the number of 
training samples from different categories within the k nearest neighbors. Suppose k R of the k 
nearest neighbors belong to category R, then the probability of x belonging to category R is 

kR 
p(wR I x) =  k (3.9) 

If p(wR I x) is larger than the probabilities of all other categories, kNN assigns the input pixel 
to category R. 

Besides classifying input pixels to the known categories, kNN can also help to simultane­
ously identify mixture pixels in hyperspectral images for further processing. 

3.2.2 Mixture Pixels Identification 

As described in chapter 1 ,  we cannot achieve a high classification accuracy without proper 
consideration of pixel pureness. In other words, there always exists a distance between an 
input pixel and the training sample nearest to it. We call this distance, caused by noise or 
pixel unpureness, as pixel classification error. The noise in hyperspectral image comes mainly 
from the air, environment, or equipment condition, and has less effect on the classification 
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results than the pixel unpureness. On the other hand, the pixel unpureness comes from mixing of different materials in one pixel, which can sometimes dramatically affect the classification 
result. Therefore, we compare the pixel classification errors for all pixels, find the mixture 
pixels that have higher pixel classification errors, and separate these pixels from hyperspectral 
image for further processing. In order to compare the pixel classification errors, we define a 
classification error rate in Eq. 3. 10. 

d - Dmin 
e = -----

Dmax .- Dmin 
(3. 10) 

where d = Ix - cl is the distance between the input pixel x and the training sample c nearest to 
it. Dmaz = maxv:t d, and Dmin = minv:t d. Then, we assume an acceptable error rate as the threshold, and compare it with the classifi­
cation error rate of each pixel. If the error rate of a pixel is less than the acceptable error rate, 
we consider it as a pure pixel. However, if the error rate of a pixel is greater than the acceptable 
error rate, it will be marked as a mixture pixel for further processing. 

3.3 Summary 

This chapter reviews the procedures of the k-means, winner-take-all ,  Kohonen maps and kNN 
classifiers. k-means, winner-take-all and Kohonen maps are unsupervised classifiers which 
cluster pixels and represent them with cluster centers. kNN is a non-parameter supervised 
classification technique based on its nearest neighbors. Upon applying kNN and obtaining 
classification results, we evaluate the pixel classification error rate and use it as a criterion to 
identify pure pixels from mixture ones in hyperspectral images. The identification results will 
be evaluated in chapter 5. 
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Chapter 4 

Synthesis of Parallel I CA on FPGAs 

An integrated Circuit (IC) is a microelectronic semiconductor device consisting of many inter­
connected transistors that implement logic components such as inverters, AND gates, OR gates, 
etc. An IC is fabricated on a die, which is a small rectangle cut from a silicon wafer. From the 
Small Scale Integration (SSI) containing tens of transistors in early years, IC technology has 
developed through Medium Scale Integration (MSI), which includes hundreds of transistors, 
to Large Scale Integration (LSI) with capacity of thousands of transistors. Today, Very Large­
Scale Integrated Circuit (VLSI) allows user to implement large complex designs using millions 
of transistors (22]. 

To synthesize a design, microelectronic system designers first specify the architectural re­
quirements using a Hardware Description Language (HDL). Then, the synthesis is verified 
through a series of simulations considering both accuracy and efficiency. Finally, the design 
is implemented on Application-Specific Integrated Circuits (ASICs). 

Field Programmable Gate Arrays (FPGAs), a member in the ASIC family, is the best se­
lection for fast design implementation. It features low prototyping costs, reconfigurabil ity and 
less production time. However, for some complex designs, a single FPGA may be insufficient 
in providing the required capacity and speed. A solution to this is High Performance Recon­
figurable Computing (HPRC), a growing research field which provides performance gains by 
connecting FPGA-based computing nodes and processors together [45] .  

In  this chapter, ASIC is first introduced. Furthermore, the features of FPGA and the archi­
tecture of HPRC are presented in detail . We then briefly review the (Very High Speed Integrated 
Circuit) Hardware Description Language (VHDL), the re-configurable components in VHDL 
and the synthesis procedure. Finally, we focus on the synthesis of parallel ICA on an FPGA 
using re-configurable components. 
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ASICs can be divided into two categories: semi-custom group and full-custom group, as demon­
strated in Fig. 4. 1 .  In full-custom group, designers develop their ICs using analog and digital 
mixed technologies where the silicon can be used in the most efficient manner. Designers imple­
ment to 10,000,000 gates or more for their ICs. However, the high cost of the workstation-based 
development system ($ 150,000) [7] and the slow turnaround time (usually 8 weeks) [7] make it 
unsuitable for small and moderate size designs and fast implementations. 

The semi-custom group includes user programmable ICs and non-programmable ICs. The 
non-programmable ICs consist of Mask Gate Arrays (MGAs) and Standard Library Cells. With 
non-programmable devices, designers can implement their designs by specifying interconnec­

tions on ICs during the latter stages of the manufacturing process. 
MGA, containing 10,000,000 gates or more, is the best for moderate size designs. Before 

implementation, MGA vendors prefabricate rows of gates on wafers, where designers can spec­
ify and interconnect two layers to implement logic functions. To achieve higher performance, 
Random Access Memory (RAM) may be embedded inside MGAs. Normally, a workstation­
based development system of MGA would cost $50,000 and it takes 3,..,,5 weeks to implement 
a prototype [7]. 

Compared to MGAs, Standard Library Cells are the best selections for large amount of 
production applications with significant functions such as multipliers and CPU. For Standard 
Library Cells, vendors develop library disk files of significant functions, while users select 
cells, which is a logic level component with constant height on chip, according to their designs 
and specify two layers of interconnections to fulfill the whole scheme. Even though Standard 
Library Cells make the implementation of complicated designs possible, there are two disad­
vantages hindering their widely usage: the cost of the workstation-based development system 
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goes as high as $ 100,000 and the turnaround time for prototypes is around 8 weeks [7]. 
The user programmable ICs include Programmable Logic Devices (PLDs) and FPGAs, 

which are developed based on re-configurable technology [44]. Using programmable devices, 
designers can implement and modify their designs multiple times. 

PLO, which includes 3 0 0 to 8,000 gates within a single package of 2 0"' 8 4  pins [7], is the 
best choice for simple design with many inputs and outputs. PLO vendors fabricate multiple 
sets of gates with programmable connections, with which users can specify to implement logic 
functions. Although the capacity of PLO limits the complexity of designs that are targeted to 
it, the low.est development expense and the shortest turnaround time make PLO very flexible to 
handle simple designs. A PC -based PLO development system costs only $ 3,000r.1$ 5,000 [7], 
and designers can electrically program and erase their designs once within minutes. 

4.1.2 Features of FPGAs 

An FPGA, which is larger and more complicated than a PLO, but cheaper and faster in imple­
mentation than a MGA, is the best choice for small amount of production applications. FPGAs 
cover high-end PLO applications and low -end MGA applications at the same time [7]. Com­
pared to PLDs, FPGAs are suitable for more complicated designs since FPGAs contain more 
gates and use architectures which support a balance between logic resources and routing re­
sources [9]. On the other hand, compared to MGAs, FPGAs reduce the time -to-market and 
result in profitability increasing, since designers can program the interconnections in a few 
hours instead of waiting several weeks for the final metalization of the MGAs. 

FPGAs consist of a two -dimensional array of logic blocks. These logic blocks, also called 
configurable logic blocks (CLBs) [51], are programmable and can be used to implement logic 
functions. FPGA vendors prefabricate rows of gates and programmable connections, and de­
signers specify the programmable connections, which are programmed to connect the CLBs, to 
implement complex logic functions. 

From the internal structure point of view, currently there are four main categories of FPGAs: 
symmetrical array, row-based, hierarchical PLO, and sea of gates [ 1 8 ] ,  as shown in Fig. 4. 2. 

In current commercial FPGAs, the products of Altera employ the hierarchical -PLO struc­
ture, Xilinx utilizes the symmetrical array structure, while Actel FPGAs use the row -based 
structure. Figure 4.3 shows the physical layouts of Xilinx Virtex and Altera FLEX -lOK. 

As re-programmable !Cs, FPGAs feature rapid prototyping, low testing cost and risk, stan­
dard product advantages, and reusable life cycle. Moreover, FPGAs have advantages on devel­
opment flexibil i ty and expense. A PC -based development system costs only $ 5,000r.1$ 1 0, 000 
[7]. 

On the other hand, FPGAs also have the disadvantages of lower circuit speed and lower 
gate density. From the view of ICs instead of development systems, an FPGA, which typically 
contains 2,000 to 2, 000,000 gates [8], may be 2 to 1 0  times slower on processing and 2 to 1 0  
times more expensive than MGA with equivalent number of gates. 

Additionally, capacities of most single FPGAs are not adequate to the application require­
ments of some complicated designs, where system capacity indicates the physical resources 
available on a single FPGA while application requirement indicates the resource needed for 
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Figure 4. 2: Four types of FPGAs [1 8]. 
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Figure 4. 3: Layout of FPGAs [7]. (a) is a Xilinx FPGA using the symmetrical array structure. 
(b) is an Altera FPGA using the hierarchical-PLO structure. 
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Figure 4 . 4: Architecture of HPRC [4 5] . 

specific design. HPRC provides solutions for such capacity problems by connecting FPGA­
based computing nodes in a network [4 5] . 

4.1.3 HPRC 

Based on FPGAs, HPRC exploits the parallel processing benefits of High Performance Comput­
ing (HPC), which seeks extreme computing power with supercomputers and parallel computing, 
in conjunction with adaptive hardware acceleration associated with Reconfigurable Computing 
(RC) [1 1], which employs the re-programmable feature of FPGAs by modifying hardware at 
runtime [ 2]. As shown in Fig. 4.4, the HPRC platform consists of a number of computing 
nodes and RC boards, which are reconfigurable computing elements associated with the com­
puting nodes. For the purpose of data exchanging and synchronization, all computing nodes are 
connected by the interconnection network (ICN) or reconfigurable ICN. 

4.2 Synthesis Procedure 
To implement a design on FPGA or HPRC, first of all, the designers should have a thorough 
understanding of the application requirements, followed by the interpretation of desired func­
tionality, timing and architectural specifications with HDL. In the end, the function and structure 
representations are synthesized on the structural level for a specified FPGA. 

4.2.1 VHDL 

As one of the HDLs, VHDL was originally developed by the US Department of Defense in 
198 1 for the purpose of maintenance and redesign. Its standard was approved by IEEE in 1987 

[3]. In contrast to software languages, VHDL is designed to describe digital electronic systems. 
VHDL possesses many features to fulfill the needs of hardware design. First of all, VHDL 

allows the description of the structure of a system. Thus, designers can decompose the design 
of a system into multiple subsystems and interconnect them. In each subsystem, VHDL al­
lows concurrent processes, such that the designers can modularize their function into parallel 
components, visualize the designed processes and manipulate them efficiently. Additionally, 
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Figure 4.5 : Design flow using re-configurable components. 

VHDL allows a complicated design to be synthesized from a high-level specification, such as 
reconfigurable components. As a result, designers can concentrate more on abstract design in­
stead of low-level implementation. Furthermore, by implementing the design of a system using 
VHDL, the designers can compare different design options and validate the design with a series 
of simulations in a short time. 

When we represent a design using VHDL, we first develop an initial architectural specifi­
cation, followed by decomposing the design into subsystems, each of which consists of several 
processes. Consequently, we draw a block diagram of the top level, develop the structural 
VHDL for all levels to show the interconnections of subsystems, and then develop the VHDL 
codes for each subsystem. Accordingly, each subsystem and the top level block are compiled 
and tested individually for functionality validation. Finally, the tested subsystems are integrated 
and the whole system is tested as well. 

4.2.2 Re-configurable Components 

In the procedure of representing a system with VHDL, re-configurable components (RC) make 

system design and synthesis faster, easier and more efficient. The best benefit of using the RCs 
is the reduced time-to-market which directly leads to higher revenues. It has been shown that, 
compared to the effort of one-time use, it takes about 50% more time to prepare code for reuse 
and re-configuration [7]. Although reuse still requires a little amount of time to integrate and 
verify the RCs in the specific environment, the designers would benefit for 70% or more design 
time reduction from the RCs developed by predecessors [7]. As another advantage, the well­
tested RCs not only shrink the design time, they also reduce the risk of mistakes by avoiding the 
development and verification of available RCs, and thus sparing more effort on system structure 
and other specific processes. 

When a system is designed using the RCs, designers should thoroughly understand the 
. system architecture and the design requirements as well. If a RC is needed and is available in 
the library, designers can fetch and configure it, as demonstrated in Fig. 4.5. 

To integrate and interconnect all necessary components, one top level block, as shown in 
Fig. 4.6, is designed, which can arrange the RCs in distributed or parallel modes on multiple 
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Figure 4.6: Structure of the re -configurable components specification. 

layers. 

4.2.3 Re-configurable Components in Parallel I CA Synthesis 

In the parallel ICA synthesis, we develop re-configurable components of the one unit process, 
decorrelation process and comparison process for the ICA based band selection, as shown in 
Fig. 4.7. 

The one unit component consists of 5 processes: computing, rounder, updating, error rate 
computing and output. Compared to the other 4 basic functional processes, the rounder process 
is necessary for avoiding overflow, since the 1 6-bit vector instead of floating point number is 
used as data format in the computing. 

The decorrelation component contains processes of decorrelating, updating, error rate com­
puting and output. For different number of input weight vectors, the designer needs to modify 
the number of input ports for the decorrelation component. The comparison component com­
pares and sorts all decorrelated weight vectors, and selects the specified number of the most 
independent bands. 

4.2.4 Synthesis on FPGA 

Synthesis focuses on high level design and relies on synthesis software and programmable logic 
to produce prototypes in short time. Therefore, the prototypes can be easily modified if the 
requirement changes. 

The synthesis procedure begins from synthesizing the structural description, which consists 
of a set of function blocks and interconnections, using VHDL and re-configurable components 
from library. The synthesis procedure includes: 

• Translating VHDL into Boolean mathematical representations. 
• Optimizing the representations based on criteria such as size, delay and testability. 
• Mapping the optimized mathematical representations to a technology -specific library of 

components. 
From the simulation point of view, t�e synthesis procedure can be summarized into four 

steps as illustrated in Fig. 4.8 : the prelayout simulation, the gate level simulation, the placement 
and routing, and the postlayout simulation. 
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Figure 4. 7: The re-configurable components in synthesis. 
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Figure 4 .8: Synthesis on FPGA. 

The prelayout simulation, also called behavioral simulation, is the first level test and verifi­

cation in the synthesis procedure. At this stage, any error in the design can be corrected easily 
and fast. The prelayout simulation focuses on the functionality test and ignores the timing and 

unit delay simulation related to the target technology by setting the delay to a fixed value. In 
other words, the prelayout simulation is a technology independent simulation. 

Following the functionality test in the prelayout simulation, the gate level simulation syn­
thesizes the high-level design descriptions written in VHDL into optimized gate-level design. 

In this step, synthesis software, such as FPGA Compiler II (FC2) provided by Synopsys, uses 
the target library to optimize the design. As a result, the frequency and slices utilization of the 

design are achieved and evaluated. Additionally, in the gate-level simulation, synthesis soft­

ware can use user-specified standard cell and gate array libraries to translate the design from 
one technology to another. 

After the gate level simulation, the design has been mapped with the target library and the 
technology has been specified. The placement and routing process can then synthesize function 
blocks on FPGA through programming interface and test bench. The process generates the 
physical layout of the design as well as the standard delay format such as the logic-cell delays 
and the interconnection delays. 

As the final test and verification step, the postlayout simulation simulates the function blocks 
on FPGA. Compared to prelayout simulation, postlayout simulation is technology-dependent 

and relies on the target library. The delays corresponding to different technology would vary. 

Different from the gate level simulation, the postlayout simulation estimates the signal outputs 
delay of the design. If the postlayout simulation result is satisfied, the whole synthesis procedure 
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Figure 4.9: Architectural specification of parallel ICA. (Solid lines denote data exchange and 
configuration. Dotted lines indicate the virtual processing flow.) 

is completed and the system is ready to be downloaded to a prototype board for demonstration. 
Generally speaking, synthesis reduces the design time required to achieve and verify a 

given functionality, since multiple candidate solutions can be constructed quickly and accu­
rately. Moreover, prototyping with FPGAs also speeds up verification and reduces design risk. 

4.3 Synthesis of Parallel I CA 

Taking the advantages of synthesis on FPGA, the parallel ICA process containing 4 independent 
components is synthesized according to the architectural specification demonstrated in Fig. 4.9. 

Inside the system, a top level block is designed to configure and interconnect the 4 one unit 
components, 3 decorrelation components and I comparison component. In the mean while, the 
top level block also transfers input data, controls internal signals among different components 
and outputs final results. 

As the first step, each hyperspectral pixel is extracted from the hyperspectral image by 
representing its reflectance percentage on each band with a 16-bit binary. The hyperspectral 
pixels are then input to the parallel ICA system and distributed by the top level block to the 4 
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one unit re-configurable components. Each one unit component processes samples and feeds a 
weight vector back to the top level block, which in turn sends the weight vectors to correspond­
ing decorrelation components. Consequently, the decorrelation components decorrelate weight 
vectors and generate the final weight matrix. Finally, the comparison component receives the 
weight matrix through the top level block, compares and selects the corresponding independent 
bands. The selected bands are the outputs from the top level block. 

4.4 Summary 

In this chapter, we compared the advantages and disadvantages of members in the ASIC family. 
We reviewed the features and architectures of FPGA and HPRC. FPGA is the best selection for 
moderate designs and fast implementations , while HPRC interconnects FPGA -based computing 
nodes and takes the re-programmable feature of FPGA. In addition, we presented the synthesis 
procedure of the parallel ICA based band selection on an FPGA, Xilinx Vl0 OOE. In the synthe­
sis, we developed three re-configurable components, which can be reused and reconfigured for 
other designs. Simulations and layouts will be presented in chapter 5 . 

43 



Chapter 5 

Experiments and Performance 

Evaluation 

In this chapter, we present the experimental results for the algorithms and methods proposed 
in previous chapters. As demonstrated in Fig. 5.1, this chapter first describes the multispectral 
and hyperspectral image data sets used in the experiments. The parallel ICA is then applied to 
these data sets to select the most independent spectral bands. Both unsupervised and supervised 
classifiers are applied to the original and the band reduced spectral images. The classification 
results are evaluated from several aspects. Mixture pixels are identified by comparing the pixel 
classification error rates. Finally, the parallel ICA based band selection is synthesized on FPGA, 
and the relationship between the number of independent components and capacity utilization of 
FPGA is analyzed. 

5.1 Experimental Data Sets 
The data sets used in the designed experiments are obtained from three sources: multispectral 
images taken at North Carolina State University, hyperspectral images taken by NASA AVIRIS 
and synthetic hyperspectral images generated based on the JPL and USGS spectral library. 
These data sets are used to evaluate the band selection algorithm we proposed. 

5.1.1 Multispectral Image Set 

The multispectral image data set is provided by researchers of the Image Analysis Laboratory 
at NCSU [48]. They use a custom-made Pulnix digital color camera and an infrared camera 
sensitive in the 3,.., 5µm range combined with filters obtained from ThermoOriel, as shown in 
Fig. 5 . 2. The system provides us multispectral images with 6 bands: red, green, blue, and three 
infrared bands of J,..,J. 2µm, 3.2,.., 4.2µm and 4. 2,.., 5µm [ 48]. 

The red band of one multispectral image used in our experiments is shown in Fig. 5. 3. 
The scene is composed of three targets: a hot object, a toy truck and a cold object [ 4 9]. The 
hot object (the leftmost target) is a steel vessel containing warm water, the toy truck (middle 
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Figure 5.2: IR camera with filters [48]. 

Figure 5.3: The red band of one multispectral image used in experiments. 

target) has rubber tires and a body made of plastic and metal, while the cold object (right of the 
truck) is a steel vessel containing a slush of ice and water. Along with these targets on grass, a 
rectangular plastic box with a circle cut-out in its center is put on the rightmost. A sidewalk is in front on these targets, while a traffic sign and some trees are behind them. A bui lding is located behind the traffic sign and those trees. Additionally, the background of this scene includes sky and a window on the building. In this scene, we define 14 categories of materials which are 
listed in Table 5 . 1 .  The multispectral image set used in our experiments consists of 41 multispectral images in a multispectral close-in sequence, which is collected by taking a sequence of multispectral images as the camera is moving closer to the targets [49]. The main objective of this work is 
to emulate a "smart" missile, equipped with a multispectral camera, closing on a target. The 
multispectral image set is taken to emulate several seconds of flight. 
5.1.2 AVIRIS Hyperspectral Images 

The hyperspectral image set is obtained from NASA AVIRIS. Each hyperspectral image in the 
AVIRIS data set contains 224 spectral bands ranging from 369.85 nm to 2506.81  nm with a 
9.8 nm interval between adjacent bands. Figure 5.4 shows a hyperspectral image taken over 
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Table 5. 1 :  Categories in training set. 
II Category I 2 I 3 I 4 5 

Material box grass brick tree sky 
Note rightmost wall & 

rectangular sidewalk 

Category 6 7 8 9 10  
Material window metal target mixtures target! top target! bottom 
Note glass & traffi C three leftmost, leftmost, 

frame sign targets hot object hot object 

Category 1 1  12 13 14 
Material target2 top target2 bottom target3 top target3 bottom 
Note middle, middle, right to the truck, right to the truck, 

truck cargo truck tires cold object cold object 

Figure 5.4: A hyperspectral image taken from AVIRIS (RGB). 
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Table 5.2: Categories in spectral library . 
Category 

Number of Samples 

man-made rocks soils vegetation 

·t 
30 

30 

30 

j_ 

45 296 41 4 

:-c· · · · · 30 ·· ·�·· · ·  30 · · -�· - · · ·30 · - -� 

Miture 
Rocks I Water 

Pixels I 

Miturc 
Soil Vcgatation Pixcls 2 
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Rocks 2 

Pixcls 3 

water 

6 

Figure 5.5:  Composition of synthetic hyperspectral image. 

minerals 

26 

Lunar Lake in NV on October 1 4, 199 7 by AVIRIS operated by NASA JPL. AVIRIS collects 
data at a rate of 2 km2 /sec with a resolution of 1 7  m2 • Each obtained hyperspectral image has 
the spatial size of 61 4x5 1 2  pixels and covers a 10.5 km2 area. AVIRIS saves image data using 
interleave-by -pixel with dimensions of ( 2 2 4, 61 4, 5 1 2) [channel, sample, line]. Each reflectance 
is a binary IEEE 1 6-bit signed integer multiplied by 10000. 

5.1.3 Synthetic Hyperspectral Image 

The third set of testing images is synthetic, generated from the JPL and USGS spectral library 
[29, 60] for the availabi l ity of the ground truth . The JPL ASTER spectral l ibrary includes about 
2000 spectra of natural and man made materials, and the USGS spectral library contains about 
400 spectra of minerals and a few plants. 

Since the ground truth of the AVIRIS hyperspectral image is unava ilable, it is not appropri­
ate in algorithm evaluation. Therefore, we develop a spectral library whose wavelength range, 
number of bands and interval are the same as those of the AVIRIS images. As listed in Table 
5.2, this spectral library includes 418 samples of 6 categories of materials: man-made, rocks, 
soils, vegetation, water and minerals. 

Using samples in this spectral library, we then generate a 2 2 4-band synthetic hyperspectral 
image whose spatial size is 90x90 (row xcolumn) in pixel. As shown in Fig. 5.5, this synthetic 
hyperspectral image consists of 9 blocks, with each block containing either pure or mixture ma­
ter ials. Each pure material block includes 4 kinds of samples from the corresponding category , 
while each mixture block is composed of multiple materials according to Eqs. 5.1 r.,J 5.3. 

Mixture_l (SW M) = soil x 30% + water x 30% + manmade x 40% (5.1) 
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Figure 5.6: A label image of the corresponding synthetic hyperspectral im�ge . 

M ixture-2(RV M) = rocks x 30% + vegatation x 30% + man made x 40% (5.2) 

Mixture_3 (SRV) = soil x 30% + rocks x 30% + vegatation x 40% (5.3) 
Figure 5. 6 shows a label image of the corresponding synthetic hyperspectral image , with the 
color red , black , yellow, green, blue and white pixels representing man-made, rocks, soils, 
vegetation , water materials and mixture pixels, respectively. 

In order to simulate the effect of noise, we also add different noises into the original syn-
thetic hyperspectral image. 

5.2 Parallel ICA based Band Selection 

The first experiment we conduct is to apply the parallel ICA developed in chapter 2 to all the 
three data sets in order to select the most independent bands. 

5.2.1 Independent Bands 
We first apply the parallel ICA to the multispectral images from NCSU. For the multispectral 
image shown in Fig. 5.3, we assume 4 independent bands, instead of the original 6 bands, are 
enough to represent the information. The sorted weight according to Eq. 2. 1 4  shows descending 
order of red, IR 3 (4.2 "' 5µm), blue, IR 2 (3.2 "' 4.2µm), IRl (3 "' 3.2µm) and green. In 
other words, ICA considers the band of red, blue and the IR bands of 4.2 "' . 5µm �nd 3.i "' . . 
4.2µm containing the most information of all materials .  Figure 5. 7 illustrates the independence 
sequence of all spectral bands and the 4 independent bands selected for the NCSU m�ltispectral 
image set. 

To evaluate the effect of !CA-based band selection on real hyperspectr� ; images, we then 
apply the parallel ICA to the AVIRIS data set shown in Fig. 5.4. Table 5.3 lists the 150 mos_t . 
independent bands out of the total 2 2 4  bands. In order to illustrate the importance of the inde-. 
pendent bands within the spectrum ,  we randomly pick a pixel from Fig. 5. 4 and plot its spectral 
profile in Fig. 5. 8. Then, the independence sequence of all spectral bands is demonstrated and 
the first 150, 100, 50, 30 and 10 most independent bands are highlight on the profile respec­
tively. As displayed in Fig. 5.8, the independent bands on the spectral profile contain the most 
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(b) Refuctance spectra of different materials 
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Figure 5. 7: The ICA selected independent bands for the NCSU multispectral image set. 

Table 5.3: Bands for 150-channel weight matrix. 
Band 44 1 16 141 1 5 1  109 46 1 1 1  10 1  91 172 

134 155 124 103 122 2 16  1 83 2 1  1 28 150 

80 14 224 138 30 206 99 192 73 1 84 

175 17 176 156 79 39 1 8 1  43 67 1 80 

56 204 194 1 1  159 40 94 48 23 1 17 

1 8  70 153 5 24 74 108 222 200 104 

178 135 10  66 1 85 1 86 87 92 1 1 8 201 

27 21 1 50 4 1  142 86 190 220 62 88 

161 106 7 1  1 7 1  28 152 78 85 83 25 

36 34 133 208 1 54 68 2 13  89 6 1  75 

52 203 82 158 174 130 45 1 36 95 1 6  

2 15  207 69 2 14  125 2 19  1 66 22 1 90 55 

107 93 123 2 1 8  5 8  49 19 1  1 15 42 105 

35 148 47 1 2  22 13 145 20 98 96 

38 26 1 62 157 1 87 2 17  1 10 3 29 139 
� 
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Figure 5. 8: The ICA selected independent bands for the AVIRIS hyperspectral image. 
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important information to characterize the curve, including the maxima, minima and inflection 
points. In other words, we can represent the original spectral profile with these independent 
bands, as plotted in Fig. 5.9. Generally speaking, spectral profiles represented by the selected 
independent bands preserve most characteristics of the curve. The more spectral bands selected, 
the closer it is to the original profile, but the less redundancy has been reduced. According to 
the spectra discrepancies between the objective materials and their surroundings, we need to 
assume enough numbers of independent bands considering specific cases. 

We repeat the same experiment on the synthetic hyperspectral image without noise, with 
uniform noise (0 ""' 0.1) ,  and different degrees of Gaussian noises. The results are shown in 
Figs. 5. lOr-w 5.13 .  Obviously, for this specific pixel, 50 independent bands instead of the original 
224 bands are enough to well represent its spectral signature. The spectra and the order of the 
independent bands vary a little for the reason of different noises. 

S.2.2 Computation Time of Parallel I CA 

Both the proposed parallel ICA algorithm and FastICA are applied to reduce the dimensionality 
of the 224-band AVIRIS hyperspectral images. We assume the number of materials m=l0, 30, 
50, 100, respectively, and correspondingly select 10, 30, 50 and 100 independent bands. The 
weight matrix W is estimated by the profile of all pixels in the hyperspectral image. 

In this experiment, we employ the MPI environment of 4 computers, Pentium4 2.53 with 
2GB memory and two Pentium4 2.53 with 1 GB memory. The weight matrix is evenly di­
vided into 4 sub-matrices. After performing estimations of sub-matrices and internal decor­
relations, we then execute the external decorrelation process for every 2 sub-matrices. Thus 
all sub-matrices can be decorrelated with 3 external decorrelations. The computation time of 
the parallel ICA includes both computation and communication time. For FastICA, we em­
ploy a computer of Pentium4 2.53 with 2GB memory to estimate the weight matrix and obtain 
corresponding computation time. 

Figure 5. 14 compares the computation time consumed by the FastICA and parallel ICA. 
As we observe, the parallel ICA consumes at most 35.35% of the time needed by the FastICA. 

5.3 Effect of Band Selection Using Unsupervised Classifiers 

The second experiment conducted in this thesis is to use unsupervised classification to eval­
uate the effect of using the band-selected image set vs. original image set. We only use the 
multispectral data set in this experiment. 

For the 6-band NCSU multispectral image set, we set the cluster number to 10 according to 
the material categories we describe before. The classification results of the three unsupervised 
classifiers (k-means, winner-take-all, and Kohonen maps) are respectively shown using the label 
images in Fig. 5 . 15 . These label images are generated by representing different clusters with 
different gray scales. 

k-means classifies most pixels of the truck (target 2) to the category of surrounding grass, 
while winner-take-all has a better classification result on the truck (target 2) but confuses the 
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Figure 5.9: Spectral profiles from the original image and the band-selected image from Fig­
ure 5.8. 
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Figure 5.1 0: The ICA selected independent bands for the synthetic hyperspectral image without 
noise. 
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Figure 5. 1 2: The ICA selected independent bands for the synthetic hyperspectral image with 
Gaussian noise (cr = 0.1). 
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Figure 5. 13: The ICA selected independent bands for the synthetic hyperspectral image with 
Gaussian noise (a = 0.3). 
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Figure 5. 1 4: Computation time comparison between FastICA and parallel ICA. 

(a) k-means (b) Winner-take-all. ( c) Kohonen maps. 

Figure 5. 1 5: Unsupervised classifications on the NCSU multispectral image. 
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(a) k-means (b) Winner-take-all. (c) Kohonen maps. 

Figure 5. 16: Unsupervised classifications on the 4-band NCSU multispectral image. 

background. Kohonen maps best represents the original multispectral images. 

As we have presented before, for the multispectral image, ICA selects the band of red, 

blue and the two IR bands of 4.2 � 5µm and 3.2 � 4.2µm from the original 6 bands. To 

see if the band selection process has any effect on the classification, we also apply the three 

unsupervised classifiers to the 4-band multispectral image and show the corresponding label 

images in Fig. 5 . 16. Obviously, the band selection least affects the classification result from 

k-means. For the winner-take-all, although the band selection does not take much effect on the 

classification of the background, it distinguishes the target from the surrounding grass a little 

bit better. The Kohonen map is seriously affected by the band selection. In Kohonen maps, 

each input pixel modifies both the BMU and its surrounding neurons, thus 4-band pixels are 

less efficient to separate neurons than the 6-band pixels do. As a result, most pixels of the target 

are classified to the category of surrounding grass. 

5.4 Effect of Band Selection Using Supervised Classifier 

The third experiment we conduct in this thesis is to use supervised classification to evaluate the 
effect of using the band-selected image set vs. original image set. We use the multispectral data 

set and the synthetic hyperspectral data sets in this experiment. 

S.4.1 Experiments on N CSU Multispectral Image 

Training Sets and Testing Sets 

To employ the supervised classification, we first extract a training set from the multispectral 

image data set. In this work, 1 ,000 samples are extracted for each of the 14 categories of 

materials. Consequently, we randomly divide the total 14,000 samples into 10 sets, each of 

which containing 1 ,400 samples. Alternately, one of these 10 sets is utilized as testing set in the 

following classification, while other 9 sets are combined to form the training set. 
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Figure 5. 1 7: Accuracy rates for 1 4  categories. 

Table 5 4· Confusion matrix of kNN classification 
2 3 4 5 6 7 8 9 10 I I  

19 6 14 0 2 16 5 13 32 10 
849 5 4 0 4 16 8 3 0 17 
5 982 0 0 0 4 0 I 0 0 
34 14 728 0 I 58 2 1  14  14 47 
0 0 0 991 0 0 0 0 0 2 
30 29 4 0 853 8 7 5 0 0 
25 8 7 0 0 901 3 25 9 0 
89 80 62 0 40 90 393 23 53 24 

I I  16 5 33 61 35 0 731 0 29 
15 12 12 0 12  39 50 78 674 24 

75 0 22 0 0 4 7 33 13  673 
72 4 31 0 25 62 50 49 47 120 
103 0 I I 3 0 I I I  0 105 
45 0 14 0 10 35 17 63 75 43 
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Classifi cation on 6-band Multispectral Image and Result Evaluation 

Correct 
1 3  14  rate 

0 14 0.855382 

2 1  29 0.848984 

0 0 0.981801 
2 1 8  0.726069 

3 I 0.991369 

0 I 0.853840 

0 5 0.900926 

15 33 0.393899 

33 16 0.731428 
2 47 0.674020 

109 50 0.670207 
63 41 0.416817 

748 22 0.749748 

38 631 0.630413 

On these generated training sets and testing sets, we employ kNN classifier and set k = 2 0. We 
use Euclidean distance for distance comparison. 

After classifying all samples, we obtain an overall accuracy rate of 0. 7 4457 1 for all 1 4  
categories. The accuracy rate of each category is compared in Fig. 5. 1 7. Comparing all accuracy 
rates, we find that categories of sky, brick and metal possess the highest accuracy rates, as they 
are least mixed with any other material. For the categories of the object mixtures and the target 
bottom, samples which would highly mix with other materials, the accuracy rates are as low as 
0.393 899 and 0.4 16 8 17, respectively. 

For more detailed analysis, the classification results are demonstrated in the confusion ma­
trix, shown in Table 5. 4. 

As displayed in Fig. 5. 1 8, in the classification results of the target 2 top (truck cargo, cate­
gory 1 1 ), the category of target 3 top (cold object, category 1 3) includes the most misclassified 
samples. Analyzing the classification results of object 3 top, we find that the category of the 
target top just includes the most misclassified samples. The reason is that samples of these two 
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Figure 5.1 8: Classification results of target top. 
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(a) Samples in  RGB bands. (b) Samples in IR bands. 

Figure 5 . 19 : Sample distributions of categories of the target top and the object 3 top. 

categories overlap seriously, as shown in Fig. 5. 19. 
Surrounded by grass, the target top have many boundary pixels overlapping ( or mixing) 

with grass. Therefore, the category of grass contains 75 misclassified samples from the target 
top. The distributions of the categories of target top and grass are displayed in Fig. 5 .20. Even 
though these two categories highly overlap in the RGB bands, they are a little further away from 
each other in the IR bands. 

The category of the target bottom has a classification accuracy rate of 0.416817. As shown 
in Fig. 5.21, in the classification results of the target bottom, the category of the target top con­
tains the most misclassified samples . As displayed in Fig. 5.2 2, samples of these two categories 
overlap in some regions. The reason is that these two categories have same material in common. 
The yellow -color cargo of the toy truck is made of steel, while the wheel of the truck contains 
one steel axis in yellow color as well. Obviously, there are more yellow steel samples in the 
category of the truck top than those in the category of truck bottom. Therefore, even though 
some samples of these two categories overlap, few samples of the truck top are misclassified to 
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Figure 5.20: Sample distributions of categories of the target top and grass. 
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Figure 5.22: Sample distributions of categories of the target bottom and the target top. 
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Figure 5.2 3: Sample distributions of categories of the target bottom and the grass. 

Category 

Figure 5.2 4: Accuracy rates for 10 categories. 

the truck bottom. 
Almost covered by grass , the target bottom has the same problem as the target top. Therefore, 

the category of grass contains 7 2  misclassified samples from the target bottom. The distributions 
of these two categories are shown in Fig. 5. 2 3. 

As another reason that results in the low classification accuracy , the scene of the multi ­
spectral image set is over divided. Therefore, we eliminate the target mixture category and 
respectively combine the original target I top and bottom, target 2 top and bottom, target 3 top 
and bottom. The category reduced data set then includes 10 types of materials , each of which 
consists of I 000 pixels. We apply the kNN classifier to this 6-band, IO-category multispectral 
data set , and obtain an overall accuracy rate of 0.8153. Fig. 5. 2 4  compares the accuracy rate of 
each category. 
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Figure 5 .25 : Accuracy rate comparison for the original 6-band data set and the 4-independent 
band data set. 
Classifi cation on 4-band Multispectral Image and Results Comparisons 

To evaluate band reduced data set obtained by ICA-based band selection, we apply the kNN 
classifier to the 4-band multispectral image as well, and obtain an overall accuracy rate of 
0. 7718. As a benefit, the time spent in classification of the 4-band data set is only 77. 207 4 % of 
that of the original 6-band data set. 

For illustration purpose, the accuracy rates of the original 6-band data set and the 4-band 
data sets are compared in Fig. 5.25 in bar chart. For all categories, the difference between the 
classification results on the two data sets is very small, meaning that the 4-band data has kept 
most of the information. However, the most critical advantage of the ICA based band selection 
is its computation efficiency even with a little compromise on classification accuracy. 

To broadly evaluate the ICA-based band selection, we compare this method with ICA trans­
formation and PCA transformation. First, we estimate 4 independent components by ICA transformation and apply the kNN classifier to this ICA transformation data set. The overall accuracy rate for 10 categories is 0.644. For the ICA transformation data set and the previous two data sets, the classification accuracy rates of each category are compared in Fig. 5.26. For all categories, the difference between the classification results of the original 6-band data set and the 4-independent band data set is much less than that of the original 6-band data set and the ICA transformation data set. In other words, the 4-independent band data set reserves more information than the ICA 
transformation data set does. Therefore, the !CA-based band selection is more effective than the dimensionality reduction method based on ICA transformation. 

Second, we derive 4 principal components from the eigenvectors corresponding to the max­
imum eigenvalues in the covariance matrix of the original 6-band data set. Then, the kNN 
classifier is applied to the data set obtained by PCA transformation . The overall accuracy rate is 0. 7198. For the original 6-band data set, the 4-independent data set and the PCA transforma­
tion data set, the classification accuracy rates of each category are compared in Fig. 5 .27. For 
most categories, the accuracy rates of the PCA transformation data set are less than those of 
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Figure 5.26: Classification results comparison for three data sets: original 6-band data set, 4-
independent band data set and ICA transformation data set. 
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Figure 5.27: Classification results comparison for three data sets: original 6-band data set, 4-
independent band data set and PCA transformation data set. 
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Figure 5.2 8: Classification results comparison for different numbers of independent bands: orig­
inal 6-band data set and 5, 4, 3, 2, l -independent band data sets. 

the 4-independent band data set . Therefore, the ICA-based band selection is superior than PCA 
transformation in dimensionality reduction .  

In addition, to  observe the difference between various numbers of independent bands, we 
respectively apply the kNN classifier to the 5, 3 , 2 and l independent band(s) data sets. The 
classification accuracy comparison is demonstrated in F ig. 5.2 8. It clearly shows that the ac­
curacy rates of most categories decrease greatly from 3-independent band data set . However, 
for some specific category such as sky (category 5), the accuracy rate remains at a high level 
even with few independent bands (2 independent bands). In other words, 2 independent bands 
instead of the original 6 bands are sufficient to detect this category. Hence , if we have prior 
knowledge of the interested materials, we can select the specific number of independent bands 
regarding to the target materia ls. 

5.4.2 Experiments on Synthetic Hyperspectral Images 

We apply the kNN classifier to the original 22 4-band and a series of band reduced synthetic 
hyperspectral images which are generated based on the spectral library we develop. In this 
spectral library, the number of samples for different categories vary greatly. For example, the 
vegetation category contains only 4 samples, while the rock category includes 29 6 sample. 
Therefore, we set k = 4 instead of k = ..fn, to avoid b iased classification results. Based on the 
classification results, we then identify mixture pixels by comparing the pixel classification error 
rates, given in Eq. 5. 4. 

d - Dm,n 
e = -----

Dmaz - Dmin 
(5. 4) 

where d = Ix - cl is the deviation between the input pixel x and the nearest training sample 
c. Dmaz = maxvx d, and Dm,n = minvx d. When we identify mixture pixels , we assume 
an acceptable error rate as described in chapter 3. The acceptable error rate corresponds to the 
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minimum acceptable distance between the testing pixel and the nearest training sample. 
For the synthetic hyperspectral image without noise, we set the acceptable error rate to 1 %. 

The classification results of 224 bands and 150, 100, 50, 30, 10 independent bands spectral 
images are shown respectively in Fig. 5.29. The classification results for all spectral images are 
100% correct. 

For the synthetic hyperspectral image with uniform noise (0 "' 0.1) , we set the acceptable 
error rate to 35%, 30% and 20%, respectively. The corresponding classification results of 224 
bands and 150, 100, 50, 30, 10 independent bands spectral images are shown respectively in 
Fig. 5.30, Fig. 5.3 1 and Fig. 5.32. When we set the acceptable error rate as high as 35%, 
most pixels with 224 bands are classified to the correct categories. With the number of bands 
decreasing, more mixture pixels are classified to certain pure material category, while more 
pure pixels are treated as mixture pixels. However, if we decrease the acceptable error rate to 
30% and 25%, the 224 band hyperspectral images generate a worse classification accuracy rate, 
while band reduced spectral images can generate a higher accuracy rate. 

For the synthetic hyperspectral image with Gaussian noise (u = 0.1), we set the acceptable 
error rate to 30%, 20% and 15%, respectively. The corresponding classification results of 224 
bands and 150, 100, 50, 30, 10  independent bands spectral images are shown respectively in 
Fig. 5.33, Fig. 5.34 and Fig. 5.35. 

For the synthetic hyperspectral image with Gaussian noise (u = 0.3), we set the acceptable 
error rate to 20%, 15% and 10%, respectively. The corresponding classification results of 224 
bands and 150, 100, 50, 30, 10 independent bands spectral images are shown respectively in 
Fig. 5.36, Fig. 5.37 and Fig. 5.38. 

5.5 Synthesis on FPGA 

To speed up the band selection process, the parallel ICA is synthesized on Xilinx V 1000EHQ240-
6 using re-configurable components presented in chapter 4. For the parallel ICA procedure, 3 
re-configurable components, one-unit process, decorrelation process and comparison process 
are employed. These re-configurable components are configured and connected by a top level 
block. Figure 5.39 shows the coverage of the reconfigurable components and the top level. The 
coverage parameter indicates the efficiency of the corresponding design. From Fig. 5.39, we 
observe that the coverage of top level and most re-configurable components reach 100%. 

To test the functionality of our design, we first execute the prelayout simulations on the three 
re-configurable components respectively and finally on the whole design. As demonstrated in 
Fig. 5.40, the design of parallel ICA outputs the band 1 ,  6, 3 and 5 which correspond to the band 
of red, the IR band of 3.2 "' 4.2µm, blue, and the IR bands of 4.2 "' 5µm respectively, which 
align with the result obtained from software implementation. Figure 5.41  shows the internal 
signals used in our design. From this figure, we can check the efficiency of the internal process 
and analyze which process causing the most delay. 

After the prelayout simulation, we used the Synopsys FC2 to synthesize the design of par­
allel ICA on the Xilinx VIRTEXE V1000EHQ240-6, and set clock frequency to 20 MHz. The 
design and device utilization are listed in Table 5.5. The parallel ICA uses 92% slices of the 
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(a) Original 224 bands. (b) 150 independent bands. (c) 100 independent bands. 

(d) 50 independent bands. ( e) 30 independent bands. (f) IO independent bands 

Figure 5.29: Supervised classification and mixture pixels identification with I% acceptable 
error rate for synthetic hyperspectral image without noise. 

I I 

(a) 224 bands. (b) 150 independent bands (c) 100 independent bands. 

(d) 50 independent bands. (e) 30 independent bands. (f) l 0 independent bands. 

Figure 5.30: Supervised classification and mixture pixels identification with 35% acceptable 
error rate for synthetic hyperspectral image with uniform noise (0 r-..1 0. 1 ) .  
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Figure 5.3 1 :  Supervised classification and mixture pixels identification with 30% acceptable 
error rate for synthetic hyperspectral image with unifonn noise (0 f"v 0. 1) .  
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(b) 1 50 independent bands (c) 100 independent bands . 

(e) 30 independent bands. (t) 10 independent bands. 

Figure 5 .32: Supervised classification and mixture pixels identification with 20% acceptable 
error rate for synthetic hyperspectral image with uniform noise (0 f"v 0.1) .  
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(a) 224 bands. (b) 1 50 independent bands (c) 100 independent bands. 

( d) 50 independent bands. (e) 30 independent bands. (f) 10 independent bands. 

Figure 5.33: Supervised classification and mixture pixels identification with 30% acceptable 
error rate for synthetic hyperspectral image with Gaussian noise (STD 0. 1 ). 

(a) 224 bands. (b) 150 independent bands (c) 100 independent bands. 

(d) 50 independent bands. (e) 30 independent bands. (f) 10 independent bands. 

Figure 5.34: Supervised classification and mixture pixels identification with 20% acceptable 
error rate for synthetic hyperspectral image with Gaussian noise (STD 0. 1 ). 
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(a) 224 bands. (b) 1 50 independent bands 

(d) 50 independent bands. (e) 30 independent bands. 

( c) 100 independent bands. 

� I I•: .. r;u-1; , �--
. .  . 

· ·. ' �� -� .· . .  • .  · ·1: 
I •  

• "·>• · 
. • • . �;\71:1 

(f) 10  independent bands. 

Figure 5.35: Supervised classification and mixture pixels identification with 15% acceptable 
error rate for synthetic hyperspectral image with Gaussian noise (STD 0. 1 ). 

(a) 224 bands. (b) 1 50 independent bands (c) 100 independent bands. 

(d) 50 independent bands. ( e) 30 independent bands. (f) 10 independent bands. 

Figure 5 .36: Supervised classification and mixture pixels identification with 20% acceptable 
error rate for synthetic hyperspectral image with Gaussian noise (STD 0.3). 
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(a) 224 bands. (b) 150 independent bands (c) 100 independent bands. 

(d) 50 independent bands. ( e) 30 independent bands. (t) IO independent bands. 

Figure 5. 3 7: Supervised classification and mixture pixels identification with 15% acceptable 
error rate for synthetic hyperspectral image with Gaussian noise (STD 0. 3). 

(a) 224 bands. (b) 150 independent bands (c) 100 independent bands. 

(d) 50 independent bands. (e) 30 independent bands. (t) 10 independent bands. 

Figure 5 . 3 8: Supervised classification and mixture pixels identification with 10% acceptable 
error rate for synthetic hyperspectral image with Gaussian noise (STD 0. 3). 
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Figure 5. 39: Coverage of the top level and re-configurable components. 
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Figure 5. 40: Prelayout simulation of the parallel ICA based band selection (1/0). 

Figure 5. 41: Prelayout simulation of the ICA based band selection (Internal s ignals). 
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Table 5.5: Design and device utilization report. 
Item Usage Usage Percentage 
Number of Slices: 1 1 ,3 1 8  out of 12,288 
Number of Slices 
containing unrelated logic 0 out of 4,774 
Number of Slice Flip Flops 6,061 out of 24,576 
Total Number 4 input LUTs 19,1 14 out of 24,576 
Number used as LUTs 18,259 
Number used as a route-thru 855 
Number of bonded IOBs 32 out of 158 
Number of GCLKs I out of 4 
Number of GCLKIOBs I out of 4 
Total equivalent gate count for design 229,500 
Additional ITAG gate count for IOBs 1 ,584 

Design of Parallel ICA 
(in VHDL) 

Place and Route 
Download 

Pilchard Board 

92% 

0% 
24% 
77% 

20% 
25% 
25% 

Figure 5.42: Implementation of parallel ICA on pilchard board. 

V IO00EHQ240-6. In the consequent placement and routing process, our design achieves 100% 
coverage, with 129,753, 145,344 paths, 26,884 nets, and 73, 169 connections. A brief summary 
of our synthesis is listed below. 

• Minimum period: 49.600ns (Maximum frequency: 20. 161MHz) 

• Maximum net delay: 13. 1 1 9ns 

• Number of Slices: 1 1 ,31 8  out of 12,288 92% usage 

Finally, our design of the parallel ICA is implemented on the so-called pilchard reconfig­
urable computing platform, as demonstrated in Fig. 5.42. Figure 5.43 shows the pilchard board 
plugged in a computer. As a unique feature, the pilchard board uses the DIMM RAM slot as an 
interface and is compatible with the 168 pin, 3.3 Volt, 133 MHz, 72-bit, registered synchronous 
DRAM in-line memory modules (SDRAM DIMMs) PC133 standard [46], thereby achieving 
a very high data transfer rate. In another word, designs on pilchard board can directly com­
municate with CPU on the 64-bit memory bus operating at 133 MHz. Pilchard board contains 
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Figure 5.43 : Pilchard board. 

an FPGA of Xilinx V 1000EHQ2 40- 6. The physical layout of the parallel ICA design on this 
Xilinx V lOOO is shown in Fig. 5.44. 

Based on the synthesis aiming at the Xilinx V 1 OOOE, we then perform the postlayout sim­
ulation to verify the functionality on circuit level. Figure 5.45 illustrates the inputs and outputs 
of the parallel ICA synthesized on Xilinx V 1 OOOE. 

We eventually synthesize parallel ICA on the FPGA of Xilinx V lOOOE that is embedded 
on pilchard board. As the pilchard board work flow shown in Fig. 5 .46, hyperspectral data 
sets are read in by an interface program written in c language. The interface program then 
advances hyperspectral data to parallel ICA synthesized on pilchard board, returns and outputs 
the selected independent bands. 

During the processes of simulation, placement and routing, we notice the capacity of single 
FPGA is very limited for some complex designs such as parallel ICA. Based on the synthesis 
of parallel ICA, the relationship between the number of the independent components and the 
capacity utilization of the FPGA Xilinx V lOOOE, evaluated with delay, slice, transistor and 
equivalent gate, is exhibited in Fig. 5.47. The dotted lines denote the maximum capacity of 
the FPGA. It clearly shows that at most 4 ICs estimations can be contained in a single FPGA. 
Even for one independent component estimation, the design utilizes 29% capacity of one Xilinx 
V lOOOE, as shown in Fig . 5.48 Obviously, if a more complex parallel ICA procedure needs to 
be synthesized on FPGA in the future, we would pursue re-configurable computing and HPRC 
techniques for better solutions, as described in chapter 4. 

5.6 Summary 

In this chapter, we evaluated the performance of the parallel ICA based band selection. We 
performed the algorithm evaluation by comparing the unsupervised and supervised classifica­
tion results on both the original and the band reduced multispectral and hyperspectral images. 
Using kNN, we also demonstrated the performance of mixture pixel identification based on 
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Figure 5. 44: Layout on Xilinx V lOOOE. 
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Figure 5.45: Postlayout simulation for Xilinx V lOOOE (1/0). 
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Figure 5 . 46: Pilchard board work flow. 
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Figure 5.47: Number of independent components and capacity utilization of a single FPGA. 
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Figure 5.48: Layout on Xilinx VlOOOE with one independent component estimation. 

the classification error rate. We depicted the FPGA synthesis procedure and simulations of the 
parallel ICA based band selection. We also presented the relationship between the number of 
independent components and capacity utilization of a single FPGA. 
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Chapter 6 

Conclusions and Future Work 

Hyperspectral images (HSI) analysis has been widely used in resource classification and target 
detection. One of the biggest challenges in HSI analysis is its high dimensionality. Independent 
Component Analysis (ICA) is an unsupervised signal separation algorithm. It estimates source 
signals given only their linear mixtures observations. This thesis concentrates on the study of 
dimensionality reduction using !CA-based band selection. 

The contributions of this thesis include: 
1 .  ICA-based band selection. This technique employs ICA to estimate the independence 

of individual bands, then selects the most independent bands to represent the original 
hyperspectral images. 

2. Parallel ICA algorithm. This algorithm divides the unmixing matrix in ICA model into 
multiple sub-matrices, then estimates and decorrelates weight vectors in parallel mode. 
This algorithm distributes the computation burden caused by the high dimensionality to 
multiple CPUs. 

3. Mixture pixels Identifi cation. This method identifies mixture pixels in hyperspectral 
images by comparing the supervised classification error rates of individual pixels. 

4. Synthesis of parallel ICA based band selection on FPGA. This procedure utilizes re­configurable components and sets up a distribute structure to implement the design. This synthesis provides hardware solution for parallel ICA and other ICA related designs. 
The following conclusions are drawn from the experiments and simulations: 
1. ICA based band selection plays an effective role in dimensionality reduction. It is dif­

ferent from the commonly used ICA methods in dimensionality reduction. First, this 
method evaluates the weight matrix W to observe the importance of each original in­
dividual band. Second, it avoids transforming the original hyperspectral images to the 
source signal S which is sensitive to the unknown number of materials m. Third, the se­
lected independent bands contain the maximum information of the original hyperspectral 
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images. The experimental results illustrate that ICA -based band selection is more effec­
tive than the dimensionality reduction methods based on ICA transformation and PCA 
transformation. 

2. The parallel ICA significantly reduces the computation time of the ICA process. 
3. For kNN classifier, the parallel ICA based band selection improves the computation ef­

ficiency with a little compromise on classification accuracy, decreasing the computation 
time by 2 2. 8% but losing classification accuracy by 5. 3 3% 

4. The re -configurable component makes the design structure clearer and easier to modify. 
Employing re -configurable components, 7 0% more process in our design are re-usable. 

5. A single FPGA Xilinx V 1000EHQ 2 4 0 - 6  is sufficient for a parallel ICA with at most 4 
independent components estimations, which takes 9 2% slices of this FPGA. 

Future work is need in following aspects: 

1. An objective function is needed to estimate the minimum number of independent bands 
for specific target materials. In this thesis, the number of independent bands is assumed 
by prior knowledge only. If the number of independent bands is inadequate, some im­
portant information of target materials would be lost. Additional analysis of the objective 
function would be helpful in accurate independent band estimation. 

2. Besides mixture pixel identification, unmixing is another challenge. 

3. More re-configurable components need to be developed for ICA synthesis. This thesis 
only develops three re-configurable components based on parallel ICA process. More re­
configurable components for other ICA algorithms would be helpful for complex designs. 

4. HPRC implementation. Considering the capacity limits of a single FPGA, this thesis 
discusses the features and architecture of HPRC for future implementations. This imple­
mentation requires more considerations and analysis on the re -programmable features of 
FPGAs. 
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