5 research outputs found

    A PERCEPTRON-BASED FEATURE SELECTION APPROACH FOR DECISION TREE CLASSIFICATION

    Get PDF
    The use of OBIA for high spatial resolution image classification can be divided in two main steps, the first being segmentation and the second regarding the labeling of the objects in accordance with a particular set of features and a classifier. Decision trees are often used to represent human knowledge in the latter. The issue falls in how to select a smaller amount of features from a feature space with spatial, spectral and textural variables to describe the classes of interest, which engenders the matter of choosing the best or more convenient feature selection (FS) method. In this work, an approach for FS within a decision tree was introduced using a single perceptron and the Backpropagation algorithm. Three alternatives were compared: single, double and multiple inputs, using a sequential backward search (SBS). Test regions were used to evaluate the efficiency of the proposed methods. Results showed that it is possible to use a single perceptron in each node, with an overall accuracy (OA) between 77.6% and 77.9%. Only SBS reached an OA larger than 88%. Thus, the quality of the proposed solution depends on the number of input features

    Dimension Reduction Using Semi-Supervised Locally Linear Embedding for Plant Leaf Classification

    No full text
    5th International Conference on Intelligent Computing, ICIC 2009, Ulsan, 16-19 September 2009Plant has plenty use in foodstuff, medicine and industry, and is also vitally important for environmental protection. So, it is important and urgent to recognize and classify plant species. Plant classification based on leaf images is a basic research of botanical area and agricultural production. Due to the high nature complexity and high dimensionality of leaf image data, dimensional reduction algorithms are useful and necessary for such type of data analysis, since it can facilitate fast classifying plants, and understanding and managing plant leaf features. Supervised locally linear embedding (SLLE) is a powerful feature extraction method, which can yield very promising recognition results when coupled with some simple classifiers. In this paper, a semi-SLLE is proposed and is applied to plant classification based on leaf images. The experiment results show that the proposed algorithm performs very well on leaf image data which exhibits a manifold structure.Department of Civil and Environmental Engineerin

    Evolutionary optimization using equitable fuzzy sorting genetic algorithm (EFSGA)

    Get PDF
    https://ieeexplore.ieee.org/document/8598717This paper presents a fuzzy dominance-based analytical sorting method as an advancement to the existing multi-objective evolutionary algorithms (MOEA). Evolutionary algorithms (EAs), on account of their sorting schemes, may not establish clear discrimination amongst solutions while solving many-objective optimization problems. Moreover, these algorithms are also criticized for issues such as uncertain termination criterion and difficulty in selecting a final solution from the set of Pareto optimal solutions for practical purposes. An alternate approach, referred here as equitable fuzzy sorting genetic algorithm (EFSGA), is proposed in this paper to address these vital issues. Objective functions are defined as fuzzy objectives and competing solutions are provided an overall activation score (OAS) based on their respective fuzzy objective values. Subsequently, OAS is used to assign an explicit fuzzy dominance ranking to these solutions for improved sorting process. Benchmark optimization problems, used as case studies, are optimized using proposed algorithm with three other prevailing methods. Performance indices are obtained to evaluate various aspects of the proposed algorithm and present a comparison with existing methods. It is shown that the EFSGA exhibits strong discrimination ability and provides unambiguous termination criterion. The proposed approach can also help user in selecting final solution from the set of Pareto optimal solutions

    Data-driven method for enhanced corrosion assessment of reinforced concrete structures

    Get PDF
    Corrosion is a major problem affecting the durability of reinforced concrete structures. Corrosion related maintenance and repair of reinforced concrete structures cost multibillion USD per annum globally. It is often triggered by the ingression of carbon dioxide and/or chloride into the pores of concrete. Estimation of these corrosion causing factors using the conventional models results in suboptimal assessment since they are incapable of capturing the complex interaction of parameters. Hygrothermal interaction also plays a role in aggravating the corrosion of reinforcement bar and this is usually counteracted by applying surface protection systems. These systems have different degree of protection and they may even cause deterioration to the structure unintentionally. The overall objective of this dissertation is to provide a framework that enhances the assessment reliability of the corrosion controlling factors. The framework is realized through the development of data-driven carbonation depth, chloride profile and hygrothermal performance prediction models. The carbonation depth prediction model integrates neural network, decision tree, boosted and bagged ensemble decision trees. The ensemble tree based chloride profile prediction models evaluate the significance of chloride ingress controlling variables from various perspectives. The hygrothermal interaction prediction models are developed using neural networks to evaluate the status of corrosion and other unexpected deteriorations in surface-treated concrete elements. Long-term data for all models were obtained from three different field experiments. The performance comparison of the developed carbonation depth prediction model with the conventional one confirmed the prediction superiority of the data-driven model. The variable importance measure revealed that plasticizers and air contents are among the top six carbonation governing parameters out of 25. The discovered topmost chloride penetration controlling parameters representing the composition of the concrete are aggregate size distribution, amount and type of plasticizers and supplementary cementitious materials. The performance analysis of the developed hygrothermal model revealed its prediction capability with low error. The integrated exploratory data analysis technique with the hygrothermal model had identified the surfaceprotection systems that are able to protect from corrosion, chemical and frost attacks. All the developed corrosion assessment models are valid, reliable, robust and easily reproducible, which assist to define proactive maintenance plan. In addition, the determined influential parameters could help companies to produce optimized concrete mix that is able to resist carbonation and chloride penetration. Hence, the outcomes of this dissertation enable reduction of lifecycle costs
    corecore