44,853 research outputs found

    Airstart performance of a digital electronic engine control system in an F-15 airplane

    Get PDF
    The airstart performance of the F100 engine equipped with a digital electronic engine control (DEEC) system was evaluated in an F-15 airplane. The DEEC system incorporates closed-loop airstart logic for improved capability. Spooldown and jet fuel starter-assisted airstarts were made over a range of airspeeds and altitudes. All jet fuel starter-assisted airstarts were successful, with airstart time varying from 35 to 60 sec. All spooldown airstarts at airspeeds of 200 knots and higher were successful; airstart times ranged from 45 sec at 250 knots to 135 sec at 200 knots. The effects of altitude on airstart success and time were small. The flight results agreed closely with previous altitude facility test results. The DEEC system provided successful airstarts at airspeeds at least 50 knots lower than the standard F100 engine control system

    Simulation of decelerating landing approaches on an externally blown flap STOL transport airplane

    Get PDF
    A fixed-base simulator program was conducted to define the problems and methods for solution associated with performing decelerating landing approaches on a representative STOL transport having a high wing and equipped with an external-flow jet flap in combination with four high-bypass-ratio fan-jet engines. Real-time digital simulation techniques were used. The computer was programed with equations of motion for six degrees of freedom and the aerodynamic inputs were based on measured wind-tunnel data. The pilot's task was to capture the localizer and the glide slope and to maintain them as closely as possible while decelerating from an initial airspeed of 140 knots to a final airspeed of 75 knots, while under IFR conditions

    In vitro evaluation of the modified forwarder knot used to end a continuous suture pattern in large‐gauge suture

    Get PDF
    Objective To evaluate the strength and size of forwarder end (FE) knots modified to end continuous suture lines compared with Aberdeen (AB), square (SQ), and surgeon's (SU) knots. Study design In vitro mechanical study. Study population Knotted suture. Methods Knots were tied with 2 USP (United States Pharmacopeia) polydioxanone, 2 USP, and 3 USP polyglactin 910 and tested on a universal testing machine under linear tension. Mode of failure and knot holding capacity (KHC) were recorded, and relative knot security (RKS) was calculated. Knot volume and weight were determined by digital micrometer and balance. Knot holding capacity, RKS, size, and weight between knot type, number of throws, and suture type and size were compared by using analysis of variance testing, with P  .080). Forwarder end/AB knots failed by suture breakage at the knot, whereas some SQ/SU knots unraveled. Forwarder end knots in 2 and 3 USP polyglactin 910 were 21.1% to 44.4% (1.2‐1.4 fold) smaller compared with SQ/SU knots (P < .028). Forwarder end knots in 2 and 3 USP polyglactin 910 were 40% to 99% (1.4‐2.0 fold) larger compared with AB knots (P < .001). Conclusion Forwarder end knots provided increased KHC/RKS compared with SQ/SU knots. Clinical relevance Forwarder end knots should be considered for closures when suture is placed under tension

    Effect of control logic modifications on airstart performance of F100 engine model derivative engines in an F-15 airplane

    Get PDF
    A series of airstarts were conducted in an F-15 airplane with two prototype Pratt and Whitney F100 Engine Model Derivative engines equipped with Digital Electronic Engine Control (DEEC) systems. The airstart envelope and the time required for airstarts were defined. Comparisons were made between the original airstart logic, and modified logic which was designed to improve the airstart capability. Spooldown airstarts with the modified logic were more successful at lower altitudes than were those with the original logic. Spooldown airstart times ranged from 33 seconds at 250 knots to 83 seconds at 175 knots. The modified logic improved the airstart time from 31% to 53%, with the most improved times at slower airspeeds. Jet fuel starter (JFS)-assisted airstarts were conducted at 7000 m and airstart times were significantly faster than unassisted airstarts. The effect of altitude on airstart times was small

    Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    Get PDF
    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees

    Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    Get PDF
    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots

    Approximation and geometric modeling with simplex B-splines associated with irregular triangles

    Get PDF
    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-splines and do generally not coincide with the abscissae of the data. Thus, this approach is well suited to process scattered data.\ud \ud With each vertex of a given triangle we associate two additional points which give rise to six configurations of five knots defining six linearly independent bivariate quadratic B-splines supported on the convex hull of the corresponding five knots.\ud \ud If we consider the vertices of the triangulation as threefold knots, the bivariate quadratic B-splines turn into the well known bivariate quadratic Bernstein-Bézier-form polynomials on triangles. Thus we might be led to think of B-splines as of smoothed versions of Bernstein-Bézier polynomials with respect to the entire domain. From the degenerate Bernstein-Bézier situation we deduce rules how to locate the additional points associated with each vertex to establish knot configurations that allow the modeling of discontinuities of the function itself or any of its directional derivatives. We find that four collinear knots out of the set of five defining an individual quadratic B-spline generate a discontinuity in the surface along the line they constitute, and that analogously three collinear knots generate a discontinuity in a first derivative.\ud Finally, the coefficients of the linear combinations of normalized simplicial B-splines are visualized as geometric control points satisfying the convex hull property.\ud Thus, bivariate quadratic B-splines associated with irregular triangles provide a great flexibility to approximate and model fast changing or even functions with any given discontinuities from scattered data.\ud An example for least squares approximation with simplex splines is presented

    Untangling Digital Knots

    Full text link

    Testing for New Physics: Neutrinos and the Primordial Power Spectrum

    Full text link
    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H0\mathrm{H}_0 and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in logk\log k. Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H0\mathrm{H}_0. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H0\mathrm{H}_0 measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.Comment: 23 pages, 9 figures, 8 tables; matches version published in JCA
    corecore