5,785 research outputs found

    Energy efficient offloading techniques for heterogeneous networks

    Get PDF
    Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. The concept of offloading refers to the exploitation of network heterogeneity with the objective to mitigate the load of the cellular network infrastructure. In this thesis a multicast protocol for short range networks that exploits the characteristics of physical layer network coding is presented. In the proposed protocol, named CooPNC, a novel cooperative approach is provided that allows collision resolutions with the use of an indirect inter-network cooperation scheme. Through this scheme, a reliable multicast protocol for partially overlapping short range networks with low control overhead is provided. It is shown that with CooPNC, higher throughput and energy efficiency are achieved, while it presents lower delay compared to state-of-the-art multicast protocols. A detailed description of the proposed protocol is provided, with a simple scenario of overlapping networks and also for a generalised scalable scenario. Through mathematical analysis and simulations it is proved that CooPNC presents significant performance gains compared to other state-of-the-art multicast protocols for short range networks. In order to reveal the performance bounds of Physical Layer Network Coding, the so-called Cross Network is investigated under diverse Network Coding (NC) techniques. The impact of Medium Access Control (MAC) layer fairness on the throughput performance of the network is provided, for the cases of pure relaying, digital NC with and without overhearing and physical layer NC with and without overhearing. A comparison among these techniques is presented and the throughput bounds, caused by MAC layer limitations, are discussed. Furthermore, it is shown that significant coding gains are achieved with digital and physical layer NC and the energy efficiency performance of each NC case is presented, when applied on the Cross Network.In the second part of this thesis, the uplink offloading using IP Flow Mobility (IFOM) is also investigated. IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF. To overcome these limitations, a weighted proportionally fair bandwidth allocation algorithm is proposed, regarding the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation algorithm for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. With the proposed approach, the energy efficiency of the UEs is improved, and the offloaded data volume is increased under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, both the different upload data needs of the UEs, along with their LTE spectrum efficiency are considered, and an access mechanism is proposed that improves the use of WiFi access in uplink offloading. In the LTE part, a two-stage pricing-based rate allocation is proposed, under both linear and exponential pricing approaches, with the objective to satisfy all offloading UEs regarding their LTE uplink access. The existence of a malicious UE is also considered that aims to exploit the WiFi bandwidth against its peers in order to upload less data through the energy demanding LTE uplink and a reputation based method is proposed to combat its selfish operation. This approach is theoretically analysed and its performance is evaluated, regarding the malicious and the truthful UEs in terms of energy efficiency. It is shown that while the malicious UE presents better energy efficiency before being detected, its performance is significantly degraded with the proposed reaction method.La derivación del tráfico de datos móviles (en inglés data offloading) ha sido propuesta como una solución al problema de la congestión de la red, un problema que empeora continuamente debido al incremento de la demanda de datos móviles. El concepto de offloading se entiende como la explotación de la heterogeneidad de la red con el objetivo de mitigar la carga de la infraestructura de las redes celulares. En esta tesis se presenta un protocolo multicast para redes de corto alcance (short range networks) que explota las características de la codificación de red en la capa física (physical layer network coding). En el protocolo propuesto, llamado CooPMC, se implementa una solución cooperativa que permite la resolución de colisiones mediante la utilización de un esquema indirecto de cooperación entre redes. Gracias a este esquema, se consigue un protocolo multicast fiable i con poco overhead de control para redes de corto alcance parcialmente solapadas. Se demuestra que el protocolo CooPNC consigue una mayor tasa de transmisión neta (throughput) y una mejor eficiencia energética, a la vez que el retardo se mantiene por debajo del obtenido con los protocolos multicast del estado del arte. La tesis ofrece una descripción detallada del protocolo propuesto, tanto para un escenario simple de redes solapadas como también para un escenario general escalable. Se demuestra mediante análisis matemático y simulaciones que CooPNC ofrece mejoras significativas en comparación con los protocolos multicast para redes de corto alcance del estado del arte. Con el objetivo de encontrar los límites de la codificación de red en la capa física (physical layer network coding), se estudia el llamado Cross Network bajo distintas técnicas de Network Coding (NC). Se proporciona el impacto de la equidad (fairness) de la capa de control de acceso al medio (Medium Access Control, MAC), para los casos de repetidor puro (pure relaying), NC digital con y sin escucha del medio, y NC en la capa física con y sin escucha del medio. En la segunda parte de la tesis se investiga el offloading en el enlace ascendente mediante IP Flow Mobility (IFOM). El IFOM permite a los usuarios móviles de LTE mantener dos flujos de datos concurrentes, uno a través de LTE y el otro a través de la tecnología de acceso WiFi, que presenta limitaciones en el enlace ascendente debido a la equidad (fairness) inherente del diseño de IEEE 802.11 DCF. Para superar estas limitaciones, se propone un algoritmo proporcional ponderado de asignación de banda para el volumen de datos derivado a través de WiFi, junto con un algoritmo de asignación de tasa de transmisión basado en pricing para el volumen de datos del enlace ascendente de LTE. Con la solución propuesta, se mejora la eficiencia energética de los usuarios móviles, y se incrementa el volumen de datos que se pueden derivar gracias a la utilización concurrente de tecnologías de acceso que permite IFOM. En el algoritmo proporcional ponderado de asignación de banda de WiFi, se toman en consideración tanto las distintas necesidades de los usuarios en el enlace ascendente como su eficiencia espectral en LTE, y se propone un mecanismo de acceso que mejora el uso de WiFi para el tráfico derivado en el enlace ascendente. En cuanto a la parte de LTE, se propone un algoritmo en dos etapas de asignación de tasa de transmisión basada en pricing (con propuestas de pricing exponencial y lineal) con el objetivo de satisfacer el enlace ascendente de los usuarios en LTE. También se contempla la existencia de usuarios maliciosos, que pretenden utilizar el ancho de banda WiFi contra sus iguales para transmitir menos datos a través del enlace ascendente de LTE (menos eficiente energéticamente). Para ello se propone un método basado en la reputación que combate el funcionamiento egoísta (selfish).Postprint (published version

    Dynamic algorithms for multicast with intra-session network coding

    Get PDF
    The problem of multiple multicast sessions with intra-session network coding in time-varying networks is considered. The network-layer capacity region of input rates that can be stably supported is established. Dynamic algorithms for multicast routing, network coding, power allocation, session scheduling, and rate allocation across correlated sources, which achieve stability for rates within the capacity region, are presented. This work builds on the back-pressure approach introduced by Tassiulas et al., extending it to network coding and correlated sources. In the proposed algorithms, decisions on routing, network coding, and scheduling between different sessions at a node are made locally at each node based on virtual queues for different sinks. For correlated sources, the sinks locally determine and control transmission rates across the sources. The proposed approach yields a completely distributed algorithm for wired networks. In the wireless case, power control among different transmitters is centralized while routing, network coding, and scheduling between different sessions at a given node are distributed

    Simulation analysis of algorithms for interference management in 5G cellular networks using spatial spectrum sharing

    Get PDF
    In this thesis we completely overhaul past techniques to the new millimeter wave frequencies used in 5G and the aim is to study algorithm, protocols and architectures enablers to allow spatial spectrum sharing between different networks at these frequencies. With the use of specific modules of the network simulator ns-3, studies of simulations has been made in order to analyse performance of several sharing procedure with the goal of increase performance in a 5G mobile networkope

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version
    corecore