668 research outputs found

    Enabling virtual radio functions on software defined radio for future wireless networks

    Get PDF
    Today's wired networks have become highly flexible, thanks to the fact that an increasing number of functionalities are realized by software rather than dedicated hardware. This trend is still in its early stages for wireless networks, but it has the potential to improve the network's flexibility and resource utilization regarding both the abundant computational resources and the scarce radio spectrum resources. In this work we provide an overview of the enabling technologies for network reconfiguration, such as Network Function Virtualization, Software Defined Networking, and Software Defined Radio. We review frequently used terminology such as softwarization, virtualization, and orchestration, and how these concepts apply to wireless networks. We introduce the concept of Virtual Radio Function, and illustrate how softwarized/virtualized radio functions can be placed and initialized at runtime, allowing radio access technologies and spectrum allocation schemes to be formed dynamically. Finally we focus on embedded Software-Defined Radio as an end device, and illustrate how to realize the placement, initialization and configuration of virtual radio functions on such kind of devices

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field

    Radio hardware virtualization for software-defined wireless networks

    Get PDF
    Software-Defined Network (SDN) is a promising architecture for next generation Internet. SDN can achieve Network Function Virtualization much more efficiently than conventional architectures by splitting the data and control planes. Though SDN emerged first in wired network, its wireless counterpart Software-Defined Wireless Network (SDWN) also attracted an increasing amount of interest in the recent years. Wireless networks have some distinct characteristics compared to the wired networks due to the wireless channel dynamics. Therefore, network controllers present some extra degrees of freedom, such as taking measurements against interference and noise, or adapting channels according to the radio spectrum occupation. These specific characteristics bring about more challenges to wireless SDNs. Currently, SDWN implementations are mainly using customized firmware, such as OpenWRT, running on an embedded application processor in commercial WiFi chips, and restricted to layers above lower Media Access Control. This limitation comes from the fact that radio hardware usually require specific drivers, which have a proprietary implementation by various chipset vendors. Hence, it is difficult, if not impossible, to achieve virtualization on the radio hardware. However, this status has been changing as Software-Defined Radio (SDR) systems open up the entire radio communication stack to radio hobbyists and researchers. The bridge between SDR and SDN will make it possible to bring the softwarization and virtualization of wireless networks down to the physical layer, which will unlock the full potential of SDWN. This paper investigates the necessity and feasibility of extending the virtualization of wireless networks towards the radio hardware. A SDR architecture is presented for radio hardware virtualization in order to facilitate SDWN design and experimentation. We do believe that by adopting the virtualization-oriented hardware accelerator design presented here, an all-layer end-to-end high performance SDWN can be achieved

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    What's Ahread in High-Speed Wireless Data Communications? The Future Will Be Better Tomorrow - And Different Than What We've Been Expecting

    Full text link
    The present situation in high-speed wireless data communications is examined. While there is growing demand for wireless bandwidth, the most pressing problem affecting this situation today is the attempt to increase bandwidth by using the same technology with tricks - rather than by using innovation. Opportunities for innovation are quite good with higher carrier frequencies, since these enable simplicity and low power consumption and opening the door to truly portable wireless peer-to-peer (WP2P) networking. Numerous challenges exist in technology and design methods; however, meeting these intellectual challenges is the only route to new and exciting wireless data technologies

    Recent Trends and Considerations for High Speed Data in Chips and System Interconnects

    Get PDF
    This paper discusses key issues related to the design of large processing volume chip architectures and high speed system interconnects. Design methodologies and techniques are discussed, where recent trends and considerations are highlighted

    SMARAD - Centre of Excellence in Smart Radios and Wireless Research - Activity Report 2011 - 2013

    Get PDF
    Centre of Excellence in Smart Radios and Wireless Research (SMARAD), originally established with the name Smart and Novel Radios Research Unit, is aiming at world-class research and education in Future radio and antenna systems, Cognitive radio, Millimetre wave and THz techniques, Sensors, and Materials and energy, using its expertise in RF, microwave and millimeter wave engineering, in integrated circuit design for multi-standard radios as well as in wireless communications. SMARAD has the Centre of Excellence in Research status from the Academy of Finland since 2002 (2002-2007 and 2008-2013). Currently SMARAD consists of five research groups from three departments, namely the Department of Radio Science and Engineering, Department of Micro and Nanosciences, and Department of Signal Processing and Acoustics, all within the Aalto University School of Electrical Engineering. The total number of employees within the research unit is about 100 including 8 professors, about 30 senior scientists and about 40 graduate students and several undergraduate students working on their Master thesis. The relevance of SMARAD to the Finnish society is very high considering the high national income from exports of telecommunications and electronics products. The unit conducts basic research but at the same time maintains close co-operation with industry. Novel ideas are applied in design of new communication circuits and platforms, transmission techniques and antenna structures. SMARAD has a well-established network of co-operating partners in industry, research institutes and academia worldwide. It coordinates a few EU projects. The funding sources of SMARAD are diverse including the Academy of Finland, EU, ESA, Tekes, and Finnish and foreign telecommunications and semiconductor industry. As a by-product of this research SMARAD provides highest-level education and supervision to graduate students in the areas of radio engineering, circuit design and communications through Aalto University and Finnish graduate schools. During years 2011 – 2013, 18 doctor degrees were awarded to the students of SMARAD. In the same period, the SMARAD researchers published 197 refereed journal articles and 360 conference papers

    Optimisation of Bluetooth wireless personal area networks

    Get PDF
    In recent years there has been a marked growth in the use of wireless cellular telephones, PCs and the Internet. This proliferation of information technology has hastened the advent of wireless networks which aim to increase the accessibility and reach of communications devices. Ambient Intelligence (Ami) is a vision of the future of computing in which all kinds of everyday objects will contain intelligence. To be effective, Ami requires Ubiquitous Computing and Communication, the latter being enabled by wireless networking. The IEEE's 802.11 task group has developed a series of radio based replacements for the familiar wired ethernet LAN. At the same time another IEEE standards task group, 802.15, together with a number of industry consortia, has introduced a new level of wireless networking based upon short range, ad-hoc connections. Currently, the most significant of these new Wireless Personal Area Network (WPAN) standards is Bluetooth, one of the first of the enabling technologies of Ami to be commercially available. Bluetooth operates in the internationally unlicensed Industrial, Scientific and Medical (ISM) band at 2.4 GHz. unfortunately, this spectrum is particularly crowded. It is also used by: WiFi (IEEE 802.11); a new WPAN standard called Zig- Bee; many types of simple devices such as garage door openers; and is polluted by unintentional radiators. The success of a radio specification for ubiquitous wireless communications is, therefore, dependant upon a robust tolerance to high levels of electromagnetic noise. This thesis addresses the optimisation of low power WPANs in this context, with particular reference to the physical layer radio specification of the Bluetooth system
    corecore