15,075 research outputs found

    Microfluidics: Fluid physics at the nanoliter scale

    Get PDF
    Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the PĂŠclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world

    Iris segmentation

    Get PDF
    The quality of eye image data become degraded particularly when the image is taken in the non-cooperative acquisition environment such as under visible wavelength illumination. Consequently, this environmental condition may lead to noisy eye images, incorrect localization of limbic and pupillary boundaries and eventually degrade the performance of iris recognition system. Hence, this study has compared several segmentation methods to address the abovementioned issues. The results show that Circular Hough transform method is the best segmentation method with the best overall accuracy, error rate and decidability index that more tolerant to ‘noise’ such as reflection

    Communication and quorum sensing in non-living mimics of eukaryotic cells.

    Get PDF
    Cells in tissues or biofilms communicate with one another through chemical and mechanical signals to coordinate collective behaviors. Non-living cell mimics provide simplified models of natural systems; however, it has remained challenging to implement communication capabilities comparable to living cells. Here we present a porous artificial cell-mimic containing a nucleus-like DNA-hydrogel compartment that is able to express and display proteins, and communicate with neighboring cell-mimics through diffusive protein signals. We show that communication between cell-mimics allows distribution of tasks, quorum sensing, and cellular differentiation according to local environment. Cell-mimics can be manufactured in large quantities, easily stored, chemically modified, and spatially organized into diffusively connected tissue-like arrangements, offering a means for studying communication in large ensembles of artificial cells

    Transport in nanofluidic systems: a review of theory and applications

    Get PDF
    In this paper transport through nanochannels is assessed, both of liquids and of dissolved molecules or ions. First, we review principles of transport at the nanoscale, which will involve the identification of important length scales where transitions in behavior occur. We also present several important consequences that a high surface-to-volume ratio has for transport. We review liquid slip, chemical equilibria between solution and wall molecules, molecular adsorption to the channel walls and wall surface roughness. We also identify recent developments and trends in the field of nanofluidics, mention key differences with microfluidic transport and review applications. Novel opportunities are emphasized, made possible by the unique behavior of liquids at the nanoscale

    Electrically Guided DNA Immobilization and Multiplexed DNA Detection with Nanoporous Gold Electrodes.

    Get PDF
    Molecular diagnostics have significantly advanced the early detection of diseases, where the electrochemical sensing of biomarkers (e.g., DNA, RNA, proteins) using multiple electrode arrays (MEAs) has shown considerable promise. Nanostructuring the electrode surface results in higher surface coverage of capture probes and more favorable orientation, as well as transport phenomena unique to nanoscale, ultimately leading to enhanced sensor performance. The central goal of this study is to investigate the influence of electrode nanostructure on electrically-guided immobilization of DNA probes for nucleic acid detection in a multiplexed format. To that end, we used nanoporous gold (np-Au) electrodes that reduced the limit of detection (LOD) for DNA targets by two orders of magnitude compared to their planar counterparts, where the LOD was further improved by an additional order of magnitude after reducing the electrode diameter. The reduced electrode diameter also made it possible to create a np-Au MEA encapsulated in a microfluidic channel. The electro-grafting reduced the necessary incubation time to immobilize DNA probes into the porous electrodes down to 10 min (25-fold reduction compared to passive immobilization) and allowed for grafting a different DNA probe sequence onto each electrode in the array. The resulting platform was successfully used for the multiplexed detection of three different biomarker genes relevant to breast cancer diagnosis

    Induced-Charge Electro-Osmosis

    Get PDF
    We describe the general phenomenon of `induced-charge electro-osmosis' (ICEO) -- the nonlinear electro-osmotic slip that occurs when an applied field acts on the ionic charge it {\sl induces} around a polarizable surface. Motivated by a simple physical picture, we calculate ICEO flows around conducting cylinders in steady (DC), oscillatory (AC), and suddenly-applied electric fields. This picture, and these systems, represent perhaps the clearest example of nonlinear electrokinetic phenomena. We complement and verify this physically-motivated approach using a matched asymptotic expansion to the electrokinetic equations in the thin double-layer and low potential limits. ICEO slip velocities vary like us∝E02Lu_s \propto E_0^2 L, where E0E_0 is the field strength and LL is a geometric length scale, and are set up on a time scale τc=λDL/D\tau_c = \lambda_D L/D, where λD\lambda_D is the screening length and DD is the ionic diffusion constant. We propose and analyze ICEO microfluidic pumps and mixers that operate without moving parts under low applied potentials. Similar flows around metallic colloids with fixed total charge have been described in the Russian literature (largely unnoticed in the West). ICEO flows around conductors with fixed potential, on the other hand, have no colloidal analog and offer further possibilities for microfluidic applications.Comment: 36 pages, 8 figures, to appear in J. Fluid Mec
    • …
    corecore