1,680 research outputs found

    Flux-Limited Diffusion for Multiple Scattering in Participating Media

    Full text link
    For the rendering of multiple scattering effects in participating media, methods based on the diffusion approximation are an extremely efficient alternative to Monte Carlo path tracing. However, in sufficiently transparent regions, classical diffusion approximation suffers from non-physical radiative fluxes which leads to a poor match to correct light transport. In particular, this prevents the application of classical diffusion approximation to heterogeneous media, where opaque material is embedded within transparent regions. To address this limitation, we introduce flux-limited diffusion, a technique from the astrophysics domain. This method provides a better approximation to light transport than classical diffusion approximation, particularly when applied to heterogeneous media, and hence broadens the applicability of diffusion-based techniques. We provide an algorithm for flux-limited diffusion, which is validated using the transport theory for a point light source in an infinite homogeneous medium. We further demonstrate that our implementation of flux-limited diffusion produces more accurate renderings of multiple scattering in various heterogeneous datasets than classical diffusion approximation, by comparing both methods to ground truth renderings obtained via volumetric path tracing.Comment: Accepted in Computer Graphics Foru

    Interactive translucent volume rendering and procedural modeling

    Get PDF
    Journal ArticleDirect volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volume metric data and materials. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects to produce volumetric shadows and the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for real and synthetic volumetric data

    Fast Rendering of Forest Ecosystems with Dynamic Global Illumination

    Get PDF
    Real-time rendering of large-scale, forest ecosystems remains a challenging problem, in that important global illumination effects, such as leaf transparency and inter-object light scattering, are difficult to capture, given tight timing constraints and scenes that typically contain hundreds of millions of primitives. We propose a new lighting model, adapted from a model previously used to light convective clouds and other participating media, together with GPU ray tracing, in order to achieve these global illumination effects while maintaining near real-time performance. The lighting model is based on a lattice-Boltzmann method in which reflectance, transmittance, and absorption parameters are taken from measurements of real plants. The lighting model is solved as a preprocessing step, requires only seconds on a single GPU, and allows dynamic lighting changes at run-time. The ray tracing engine, which runs on one or multiple GPUs, combines multiple acceleration structures to achieve near real-time performance for large, complex scenes. Both the preprocessing step and the ray tracing engine make extensive use of NVIDIA\u27s Compute Unified Device Architecture (CUDA)

    Model for volume lighting and modeling

    Get PDF
    Journal ArticleAbstract-Direct volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volumetric data and materials. For many volumes, homogeneous regions pose problems for typical gradient-based surface shading. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects that incorporates volumetric shadows, an approximation to phase functions, an approximation to forward scattering, and chromatic attenuation that provides the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for both real and synthetic volumetric data

    Efficient Many-Light Rendering of Scenes with Participating Media

    Get PDF
    We present several approaches based on virtual lights that aim at capturing the light transport without compromising quality, and while preserving the elegance and efficiency of many-light rendering. By reformulating the integration scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive, high-quality lighting on surfaces, and one for handling scenes with participating media

    Planets of the solar system

    Get PDF
    Venera and Mariner spacecraft and ground based radio astronomy and spectroscopic observations of the atmosphere and surface of venus are examined. The composition and structural parameters of the atmosphere are discussed as the basis for development of models and theories of the vertical structure of the atmosphere, the greenhouse effect, atmospheric circulation and cloud cover. Recommendations for further meteorological studies are given. Ground based and Pioneer satellite observation data on Jupiter are explored as well as calculations and models of the cloud structure, atmospheric circulation and thermal emission field of Jupiter

    Efficient rendering of atmospheric phenomena

    Get PDF
    Journal ArticleRendering of atmospheric bodies involves modeling the complex interaction of light throughout the highly scattering medium of water and air particles. Scattering by these particles creates many well-known atmospheric optical phenomena including rainbows, halos, the corona, and the glory. Unfortunately, most radiative transport approximations in computer graphics are ill-suited to render complex angularly dependent effects in the presence of multiple scattering at reasonable frame rates. Therefore, this paper introduces a multiple-model lighting system that efficiently captures these essential atmospheric effects. We have solved the rendering of fine angularly dependent effects in the presence of multiple scattering by designing a lighting approximation based upon multiple scattering phase functions. This model captures gradual blurring of chromatic atmospheric optical phenomena by handling the gradual angular spreading of the sunlight as it experiences multiple scattering events with anisotropic scattering particles. It has been designed to take advantage of modern graphics hardware; thus, it is capable of rendering these effects at near interactive frame rates
    corecore