74 research outputs found

    Comparison of manual and semi-automated delineation of regions of interest for radioligand PET imaging analysis

    Get PDF
    BACKGROUND As imaging centers produce higher resolution research scans, the number of man-hours required to process regional data has become a major concern. Comparison of automated vs. manual methodology has not been reported for functional imaging. We explored validation of using automation to delineate regions of interest on positron emission tomography (PET) scans. The purpose of this study was to ascertain improvements in image processing time and reproducibility of a semi-automated brain region extraction (SABRE) method over manual delineation of regions of interest (ROIs). METHODS We compared 2 sets of partial volume corrected serotonin 1a receptor binding potentials (BPs) resulting from manual vs. semi-automated methods. BPs were obtained from subjects meeting consensus criteria for frontotemporal degeneration and from age- and gender-matched healthy controls. Two trained raters provided each set of data to conduct comparisons of inter-rater mean image processing time, rank order of BPs for 9 PET scans, intra- and inter-rater intraclass correlation coefficients (ICC), repeatability coefficients (RC), percentages of the average parameter value (RM%), and effect sizes of either method. RESULTS SABRE saved approximately 3 hours of processing time per PET subject over manual delineation (p 0.8) for both methods. RC and RM% were lower for the manual method across all ROIs, indicating less intra-rater variance across PET subjects' BPs. CONCLUSION SABRE demonstrated significant time savings and no significant difference in reproducibility over manual methods, justifying the use of SABRE in serotonin 1a receptor radioligand PET imaging analysis. This implies that semi-automated ROI delineation is a valid methodology for future PET imaging analysis

    APOE Ξ΅4 is associated with disproportionate progressive hippocampal atrophy in AD.

    Get PDF
    OBJECTIVES: To investigate whether APOE Ξ΅4 carriers have higher hippocampal atrophy rates than non-carriers in Alzheimer's disease (AD), mild cognitive impairment (MCI) and controls, and if so, whether higher hippocampal atrophy rates are still observed after adjusting for concurrent whole-brain atrophy rates. METHODS: MRI scans from all available visits in ADNI (148 AD, 307 MCI, 167 controls) were used. MCI subjects were divided into "progressors" (MCI-P) if diagnosed with AD within 36 months or "stable" (MCI-S) if a diagnosis of MCI was maintained. A joint multi-level mixed-effect linear regression model was used to analyse the effect of Ξ΅4 carrier-status on hippocampal and whole-brain atrophy rates, adjusting for age, gender, MMSE and brain-to-intracranial volume ratio. The difference in hippocampal rates between Ξ΅4 carriers and non-carriers after adjustment for concurrent whole-brain atrophy rate was then calculated. RESULTS: Mean adjusted hippocampal atrophy rates in Ξ΅4 carriers were significantly higher in AD, MCI-P and MCI-S (p≀0.011, all tests) compared with Ξ΅4 non-carriers. After adjustment for whole-brain atrophy rate, the difference in mean adjusted hippocampal atrophy rate between Ξ΅4 carriers and non-carriers was reduced but remained statistically significant in AD and MCI-P. CONCLUSIONS: These results suggest that the APOE Ξ΅4 allele drives atrophy to the medial-temporal lobe region in AD

    Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration.

    Get PDF
    OBJECTIVE: To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD). METHODS: Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral. RESULTS: We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003). CONCLUSIONS: The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD

    Quantitative magnetic resonance techniques as surrogate markers of Alzheimer’s disease

    Get PDF

    Reproducibility of hippocampal atrophy rates measured with manual, FreeSurfer, AdaBoost, FSL/FIRST and the MAPS-HBSI methods in Alzheimer's disease

    Get PDF
    The purpose of this study is to assess the reproducibility of hippocampal atrophy rate measurements of commonly used fully-automated algorithms in Alzheimer disease (AD). The reproducibility of hippocampal atrophy rate for FSL/FIRST, AdaBoost, FreeSurfer, MAPS independently and MAPS combined with the boundary shift integral (MAPS-HBSI) were calculated. Back-to-back (BTB) 3D T1-weighted MPRAGE MRI from the Alzheimer's Disease Neuroimaging Initiative (ADNI1) study at baseline and year one were used. Analysis on 3 groups of subjects was performed – 562 subjects at 1.5 T, a 75 subject group that also had manual segmentation and 111 subjects at 3 T. A simple and novel statistical test based on the binomial distribution was used that handled outlying data points robustly. Median hippocampal atrophy rates were βˆ’1.1%/year for healthy controls, βˆ’3.0%/year for mildly cognitively impaired and βˆ’5.1%/year for AD subjects. The best reproducibility was observed for MAPS-HBSI (1.3%), while the other methods tested had reproducibilities at least 50% higher at 1.5 T and 3 T which was statistically significant. For a clinical trial, MAPS-HBSI should require less than half the subjects of the other methods tested. All methods had good accuracy versus manual segmentation. The MAPS-HBSI method has substantially better reproducibility than the other methods considered

    APOE Ξ΅4 Is Associated with Disproportionate Progressive Hippocampal Atrophy in AD.

    Get PDF
    To investigate whether APOE Ξ΅4 carriers have higher hippocampal atrophy rates than non-carriers in Alzheimer's disease (AD), mild cognitive impairment (MCI) and controls, and if so, whether higher hippocampal atrophy rates are still observed after adjusting for concurrent whole-brain atrophy rates

    Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers.

    No full text
    Medial temporal lobe atrophy (MTA) and cerebrospinal fluid (CSF) markers of Alzheimer's disease (AD) pathology may aid the early detection of AD in mild cognitive impairment (MCI). However, the relationship between structural and pathological markers is not well understood. Furthermore, while posterior atrophy (PA) is well recognized in AD, its value in predicting conversion from late-onset amnestic MCI to AD is unclear. In this study we used visual ratings of MTA and PA to assess their value in predicting conversion to AD in 394 MCI patients. The relationship of atrophy patterns with CSF AΞ²1-42, tau, and p-tau(181) was further investigated in 114 controls, 192 MCI, and 99 AD patients. There was a strong association of MTA ratings with conversion to AD (p < 0.001), with a weaker association for PA ratings (p = 0.047). Specific associations between visual ratings and CSF biomarkers were found; MTA was associated with lower levels of AΞ²1-42 in MCI, while PA was associated with elevated levels of tau in MCI and AD, which may reflect widespread neuronal loss including posterior regions. These findings suggest both that posterior atrophy may predict conversion to AD in late-onset MCI, and that there may be differential relationships between CSF biomarkers and regional atrophy patterns

    Clinical Characteristics and Neuroanatomical Predictors of Acute Antidepressant Outcome for Patients with Comorbid Depression and Mild Cognitive Impairment

    Full text link
    Background: Older adults presenting with both a depressive disorder (DEP) and cognitive impairment (CI) represent a unique, understudied population. The classification of cognitive impairment severity continues to be debated though it has recently been subtyped into late (LMCI) versus early (EMCI) stages. Previous studies have found associations between treatment outcome and both cortical thickness and white matter hyperintensities (WMH), though report inconsistent directionality and affected regions. In this study, we examined baseline clinical characteristics and neuroanatomical features as prognostic indicators for older adults with comorbid DEP and CI participating in an open antidepressant trial. EMCI is hypothesized to have greater cortical thickness and global cognition than LMCI. Antidepressant treatment remitters and responders are hypothesized to have greater cortical thickness and lower WMH burden than non-remitters and non-responders. Methods: Key inclusion criteria were diagnosis of major depression or dysthymic disorder with Hamilton Depression Rating Scale (HDRS) score \u3e14, and cognitive impairment defined by MMSE score β‰₯21 and impaired performance on the WMS-R Logical Memory II test. Patients were classified as EMCI or LMCI based on the 1.5 SD cutoff on tests of verbal memory, and compared on baseline clinical, neuropsychological, and anatomical characteristics. All patients underwent a baseline MRI scan and received open antidepressant treatment for 8 weeks. Cortical thickness was extracted using an automated brain segmentation and reconstruction program (FreeSurfer). Vertex-wise analyses were conducted using general linear models to evaluate the relationships between cortical thickness and clinical variables. Results: 79 DEP-CI patients were recruited, of whom 39 met criteria for EMCI and 40 for LMCI. The mean age was 68.9 and mean HDRS was 23.0. LMCI patients had significantly worse global cognition and smaller right hippocampal volume compared to EMCI patients. EMCI patients had thicker right medial orbitofrontal cortex than LMCI. MRI indices of cerebrovascular disease did not differ between MCI subtypes. Remitters had greater deep WMH burden, left medial orbitofrontal gyrus thickness, and right superior frontal gyrus thickness than non-remitters. Greater HDRS depressive severity was positively correlated with right pars triangularis thickness. Stronger ADAS-Cog global cognitive performance was positively correlated with thickness in diffuse cortical areas. Conclusions: Cognitive and neuronal loss markers differed between EMCI and LMCI among patients with DEP-CI, with LMCI being more likely to have the clinical and neuronal loss markers known to be associated with Alzheimer’s disease. Samples of DEP-CI exhibit unique patterns of cortical thickness and WMHs compared to their non-CI peers. Cortical thickness may serve as predictor of treatment remission and relates to both depressive severity and global cognition
    • …
    corecore