21,219 research outputs found

    Stochastic Differentially Private and Fair Learning

    Full text link
    Machine learning models are increasingly used in high-stakes decision-making systems. In such applications, a major concern is that these models sometimes discriminate against certain demographic groups such as individuals with certain race, gender, or age. Another major concern in these applications is the violation of the privacy of users. While fair learning algorithms have been developed to mitigate discrimination issues, these algorithms can still leak sensitive information, such as individuals' health or financial records. Utilizing the notion of differential privacy (DP), prior works aimed at developing learning algorithms that are both private and fair. However, existing algorithms for DP fair learning are either not guaranteed to converge or require full batch of data in each iteration of the algorithm to converge. In this paper, we provide the first stochastic differentially private algorithm for fair learning that is guaranteed to converge. Here, the term "stochastic" refers to the fact that our proposed algorithm converges even when minibatches of data are used at each iteration (i.e. stochastic optimization). Our framework is flexible enough to permit different fairness notions, including demographic parity and equalized odds. In addition, our algorithm can be applied to non-binary classification tasks with multiple (non-binary) sensitive attributes. As a byproduct of our convergence analysis, we provide the first utility guarantee for a DP algorithm for solving nonconvex-strongly concave min-max problems. Our numerical experiments show that the proposed algorithm consistently offers significant performance gains over the state-of-the-art baselines, and can be applied to larger scale problems with non-binary target/sensitive attributes.Comment: ICLR 202

    Fair Differentially Private Federated Learning Framework

    Full text link
    Federated learning (FL) is a distributed machine learning strategy that enables participants to collaborate and train a shared model without sharing their individual datasets. Privacy and fairness are crucial considerations in FL. While FL promotes privacy by minimizing the amount of user data stored on central servers, it still poses privacy risks that need to be addressed. Industry standards such as differential privacy, secure multi-party computation, homomorphic encryption, and secure aggregation protocols are followed to ensure privacy in FL. Fairness is also a critical issue in FL, as models can inherit biases present in local datasets, leading to unfair predictions. Balancing privacy and fairness in FL is a challenge, as privacy requires protecting user data while fairness requires representative training data. This paper presents a "Fair Differentially Private Federated Learning Framework" that addresses the challenges of generating a fair global model without validation data and creating a globally private differential model. The framework employs clipping techniques for biased model updates and Gaussian mechanisms for differential privacy. The paper also reviews related works on privacy and fairness in FL, highlighting recent advancements and approaches to mitigate bias and ensure privacy. Achieving privacy and fairness in FL requires careful consideration of specific contexts and requirements, taking into account the latest developments in industry standards and techniques.Comment: Paper report for WASP module

    Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach

    Full text link
    A critical concern in data-driven decision making is to build models whose outcomes do not discriminate against some demographic groups, including gender, ethnicity, or age. To ensure non-discrimination in learning tasks, knowledge of the sensitive attributes is essential, while, in practice, these attributes may not be available due to legal and ethical requirements. To address this challenge, this paper studies a model that protects the privacy of the individuals sensitive information while also allowing it to learn non-discriminatory predictors. The method relies on the notion of differential privacy and the use of Lagrangian duality to design neural networks that can accommodate fairness constraints while guaranteeing the privacy of sensitive attributes. The paper analyses the tension between accuracy, privacy, and fairness and the experimental evaluation illustrates the benefits of the proposed model on several prediction tasks

    Investigating Trade-offs in Utility, Fairness and Differential Privacy in Neural Networks

    Get PDF
    To enable an ethical and legal use of machine learning algorithms, they must both be fair and protect the privacy of those whose data are being used. However, implementing privacy and fairness constraints might come at the cost of utility (Jayaraman & Evans, 2019; Gong et al., 2020). This paper investigates the privacy-utility-fairness trade-off in neural networks by comparing a Simple (S-NN), a Fair (F-NN), a Differentially Private (DP-NN), and a Differentially Private and Fair Neural Network (DPF-NN) to evaluate differences in performance on metrics for privacy (epsilon, delta), fairness (risk difference), and utility (accuracy). In the scenario with the highest considered privacy guarantees (epsilon = 0.1, delta = 0.00001), the DPF-NN was found to achieve better risk difference than all the other neural networks with only a marginally lower accuracy than the S-NN and DP-NN. This model is considered fair as it achieved a risk difference below the strict (0.05) and lenient (0.1) thresholds. However, while the accuracy of the proposed model improved on previous work from Xu, Yuan and Wu (2019), the risk difference was found to be worse
    • …
    corecore