
  

 

 

Tilburg University

Investigating Trade-offs in Utility, Fairness and Differential Privacy in Neural Networks

Pannekoek, Marlotte; Spigler, Giacomo

Published in:
arXiv

Publication date:
2021

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Pannekoek, M., & Spigler, G. (2021). Investigating Trade-offs in Utility, Fairness and Differential Privacy in
Neural Networks. Unpublished.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/5d9275d1-2541-44c6-a63a-70f90f0bb95f


ar
X

iv
:2

10
2.

05
97

5v
1 

 [
cs

.L
G

] 
 1

1 
Fe

b 
20

21

Investigating Trade-offs in Utility, Fairness and Differential Privacy in Neural

Networks

Marlotte Pannekoek 1 Giacomo Spigler 1

Abstract

To enable an ethical and legal use of machine

learning algorithms, they must both be fair and

protect the privacy of those whose data are be-

ing used. However, implementing privacy and

fairness constraints might come at the cost of

utility (Jayaraman & Evans, 2019; Gong et al.,

2020). This paper investigates the privacy-utility-

fairness trade-off in neural networks by compar-

ing a Simple (S-NN), a Fair (F-NN), a Differen-

tially Private (DP-NN), and a Differentially Pri-

vate and Fair Neural Network (DPF-NN) to eval-

uate differences in performance on metrics for

privacy (ǫ, δ), fairness (risk difference), and util-

ity (accuracy). In the scenario with the high-

est considered privacy guarantees (ǫ = 0.1, δ =

0.00001), the DPF-NN was found to achieve bet-

ter risk difference than all the other neural net-

works with only a marginally lower accuracy

than the S-NN and DP-NN. This model is consid-

ered fair as it achieved a risk difference below the

strict (0.05) and lenient (0.1) thresholds. How-

ever, while the accuracy of the proposed model

improved on previous work from Xu, Yuan and

Wu (2019), the risk difference was found to be

worse.

1. Introduction

Machine learning algorithms are employed with great goals

in mind, such as improved decision-making or increased

efficiency. These benefits explain the ubiquitous use of

such algorithms. However, potential harms should not be

overlooked. Firstly, using personal data for training can

cause leakage of private information. In addition, individu-

als can be unfairly affected when outcomes are dependent

on race, sex, religious beliefs, sexual orientation, or eco-

nomic status. For machine learning algorithms trained on
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personal data to be viable in today’s society, they must

ensure fairness and privacy for their users. This is re-

quired for both ethical and legal reasons (Xu et al., 2019;

Wood et al., 2018). In this paper, we build on existing re-

search to investigate how algorithms can ensure privacy

while remaining fair and useful. To this extent, we tested

how applying the fairness method Reject Option Classi-

fication influences the performance of a neural network

(Briggs & Hollmén, 2020). Furthermore, the effects of

adding a privacy-preserving optimizer to a simple and to

a fair neural network were investigated.

Prior research has shown that when personal data are used

for training machine learning models, these data can be re-

trieved by observing the behavior or structure of the learn-

ing algorithms (Yeom et al., 2020). This can negatively af-

fect social status, employment chances, and insurance costs

for end users of the systems (Wood et al., 2018). Therefore,

it appears critical to develop and apply privacy-preserving

methods. Along this direction, here we focus on the dif-

ferential privacy framework, which is currently considered

state-of-the-art (Gong et al., 2020). Its goal is to produce

an approximately equal output, whether an individual is in-

cluded in the analysis or not (Wood et al., 2018). An essen-

tial element of differential privacy is the privacy budget ǫ,

which controls how well privacy is protected. In general,

lower values of ǫ imply more privacy protection. Nonethe-

less, choosing the best value for the parameter is still diffi-

cult (Jayaraman & Evans, 2019).

Finally, fairness entails that the behavior of a machine

learning system does not dependent on protected attributes

such as race and gender (Zhu et al., 2020). It is often

assumed that algorithms are fair and impartial since de-

cisions are based on data instead of human judgment

(Corbett-Davies & Goel, 2018). However, several stud-

ies provide evidence that algorithms can be negatively bi-

ased towards protected groups, which could, for example,

cause men to be preferred over women with similar skills

by hiring algorithms (Xu et al., 2019). Several methods

have been developed to achieve fairness via manipulation

of the data or of the algorithms during pre-processing, in-

processing, or post-processing phases. In this research, the

post-processing method of “Reject Option Classification”

was applied to a simple and a differentially private neural

http://arxiv.org/abs/2102.05975v1
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network to explore its effect on the performance of the net-

work.

The existing empirical research on differentially private and

fair algorithms has mainly focused on logistic regression

(Xu et al., 2019; Jagielski et al., 2019; Ding et al., 2020).

Research by Friedler et al. (2019), however, shows that the

trade-off between accuracy and fairness can differ greatly

depending on the specific algorithm being used. This sug-

gests that it would be useful to research the combination of

fairness and privacy on a wider range of machine learning

systems.

In recent years both differential privacy and fairness have

received much attention (Caton & Haas, 2020; Yeom et al.,

2020). However, several authors have argued more

research on algorithms that can achieve both goals

(Ekstrand et al., 2018; Zhu et al., 2020; Xu et al., 2019;

Datta et al., 2018). Earlier work on differential privacy

has shown that there can be trade-offs between util-

ity and privacy-preservation (Jayaraman & Evans, 2019;

Gong et al., 2020). Similar work has been done on

the trade-off between utility and fairness (Feldman et al.,

2015). Here we investigate the trade-off between utility,

privacy, and fairness when the goal of an algorithm is to

perform well on all three metrics.

Specifically, we explore how the privacy-utility-fairness

trade-off in neural networks is affected by:

- the Reject Option Classification method for fairness;

- a differentially private optimizer, under varying privacy

budgets;

- the joint use of a differentially private optimizer and the

Reject Option Classification method for fairness.

We finally compare the different cases with corresponding

state-of-the-art results by Xu, Yuan, and Wu (2019).

2. Related Work

The combination of fairness and differential privacy has

been the subject of recent empirical research (Xu et al.,

2019). The work by Xu, Yuan and Wu (2019) in partic-

ular compared two algorithms with respect to utility and

fairness, under different choices of the privacy budget (ǫ).

The algorithms were tested on two benchmarks; the Adult

and the Dutch dataset. The metrics used for utility and fair-

ness were accuracy and risk difference, respectively. For

their first algorithm, logistic regression was used, and a

penalty was added to the objective function to ensure fair-

ness. A technique known as the functional mechanism was

then applied to the objective function to ensure differen-

tial privacy. In the second algorithm, the objective function

was corrupted by noise sampled from a Laplace distribu-

tion of which the mean was shifted according to a fairness

constraint, therefore satisfying both fairness and differen-

tial privacy. Both algorithms achieved differential privacy

and fairness with reasonable utility. Their results show that

as ǫ was decreased, thus increasing the degree of privacy

protection, the accuracy decreased, with a dynamics con-

sistent across both datasets and methods.

Further, Jagielski et al. (2019) compared the use of

a post-processing method for achieving fairness with an

in-processing method. Only the algorithm using post-

processing achieved a reasonable fairness-accuracy-privacy

trade-off. However, only privacy with regard to the sensi-

tive attribute was taken into account.

Ding et al. (2020) also combined privacy and fairness and

explored varying the amount of noise added to different at-

tributes. They also used a less strict definition of differen-

tial privacy. Using these techniques, they improved on the

results achieved by Xu, Yuan and Wu (2019). Their results

suggest that increasing ǫ from 0.1 to 1 results in a higher in-

crease in accuracy than increasing ǫ from 10 to 100. How-

ever, this difference was not tested for significance. For

most values of ǫ, their algorithms achieved reasonable val-

ues of risk difference.

Cummings, Gupta, Kimpara and Morgenstern (2019)

found that exact fairness and differential privacy in their

set-up could not be achieved, although a trade-off could be

achieved by relaxing the notion of exact fairness to ‘approx-

imate fairness’.

Hajian, Domingo-Ferrer, Monreale, Pedreschi and Gi-

annotti (2015) investigated the application of privacy-

preserving and fairness techniques on patterns derived by a

classifier using multiple association rules. Their approach

can be classified as a post-processing approach as they al-

tered the classifier’s results instead of the classifier itself

or the data it was trained on (Hajian et al., 2015). They

investigate both k-anonymity and differential privacy to

achieve privacy. Their empirical analyses demonstrate that

k-anonymity distorted the patterns less than the differen-

tial privacy approach. Additionally, their results show that

applying the privacy technique after the fairness technique

can deteriorate the achieved fairness.

3. Experiments

3.1. Dataset Description

The experiments presented here were performed using the

Adult dataset (Dua & Graff, 2017), due to its importance in

research on privacy and fairness, and to allow for a direct

comparison with state-of-the-art results (Xu et al., 2019).

The importance of the Adult dataset in the field is due to

the presence of sensitive attributes that could be used for

personal identification or potentially threaten the fairness
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of models trained on it. The dataset is openly available

and consists of 45,222 cases and 14 variables. In this re-

search, only ’sex’ was regarded as a sensitive attribute, and

’income’ was regarded as the dependent variable. Income

is treated as a binary variable, separating incomes of less

than 50,000 (income = 0) and more than 50,000 (income =

1). The sex variable refers to biological sex with male and

female as the possible values.

3.2. Data Pre-Processing

To ensure comparability, the same pre-processing steps

were applied as in the study by Xu, Yuan and Wu (2019).

Specifically, list-wise deletions were performed, dummy

codes were used for the categorical variables, and contin-

uous variables were normalized. The Adult dataset already

contained a separate train and test set. The train dataset

was further split up into train and validation sets. The train,

validation, and test dataset constitute 53.4%, 13.3%, and

33.3% of the total amount of data, respectively.

Initial data exploration showed a class imbalance in the la-

bels, with approximately 75% of the reported incomes be-

ing less than 50,000. Furthermore, data exploration showed

that females were underrepresented, making up around

32% of the cases. Approximately 88% of females earned

less than 50,000, against 69% of males, which motivated

applying fairness constraints.

3.3. Models

Four models were compared to explore the effect of differ-

ential privacy and fairness methods on the privacy-utility-

fairness trade-off: a baseline ‘Simple’ neural network (S-

NN), and a Fair (F-NN), a Differentially Private (DP-NN),

and a Differentially Private and Fair neural network (DPF-

NN). All models were implemented using Keras (Chollet,

2015). When no specific parameter settings are mentioned,

the default settings were used.

Simple Neural Network (S-NN). The S-NN consisted of

three fully connected layers with six neurons in the first

and second layer and one neuron in the final layer. The

first and the second layer used a ReLu activation, while the

last layer used a sigmoid activation. Binary cross-entropy

was used as the loss function and Adam as the optimizer

(Kingma & Ba, 2017). Training was performed for a fixed

duration of 20 epochs of Stochastic Gradient Descent with

minibatches of size mb = 20.

Fair Neural Network (F-NN). The network used for the

F-NN was equal to the S-NN. However, the ‘Reject Op-

tion Classification’ method was added to alter the output

labels after prediction in an effort to improve fairness. The

method was chosen as the best performing of six fairness

methods that were previously evaluated. Results from

the comparison are reported in the Supplementary Mate-

rials. The pre-processing and post-processing techniques

to ensure fairness were implemented using the Artificial In-

telligence Fairness 360 library (AIF 360) (Bellamy et al.,

2018).

Differentially Private Neural Network (DP-NN). The

network used for the DP-NN was equal to the S-NN. How-

ever, training was performed using a differentially pri-

vate variant of the Adam optimizer (DPAdamGaussianOpti-

mizer) (McMahan et al., 2019). This optimizer adds Gaus-

sian noise to the gradient to ensure differential privacy. The

noise multiplier parameter was used to specify the amount

of noise added to the model. This parameter’s value de-

pends on the target value for ǫ and δ (quantifying the prob-

ability of not achieving privacy within the privacy budget.),

and was calculated using the compute dp sgd privacy func-

tion. Another notable aspect of the differentially private

optimizer is that norm clipping is applied after the data

are split up into minibatches, but before adding the noise.

Training was repeated for values of ǫ ∈ {0.1, 1, 10, 100}
and δ ∈ {0.01, 0.001, 0.0001, 0.00001}, as they are com-

monly used values in differential privacy applications

(Xu et al., 2019; Ding et al., 2020).

Differentially Private and Fair Neural Network (DPF-

NN).

The DPF-NN finally integrated the F-NN and the DP-

NN, combining the use of the Reject Option Classification

method from F-NN with the differentially private optimizer

from DP-NN. The same values of ǫ and δ as the DP-NN

were used.

3.4. Evaluation Criteria

The different models were tested for accuracy and risk dif-

ference to assess the utility and fairness of the models, re-

spectively. All experiments were repeated ten times with

different random seeds. This procedure is compatible with

the previous work by Xu, Yuan and Wu (2019).

A mean accuracy above 75.4% on test data was consid-

ered an improvement over an algorithm that chooses the

majority label. Risk difference was used as the metric

to evaluate model fairness. A risk difference of 0 was

considered optimal for fairness. Standard thresholds be-

low which models are considered fair include 0.05 and 0.1

(Briggs & Hollmén, 2020; Xu et al., 2019). Both were con-

sidered and will be referred to as the strict and the lenient

threshold, respectively, throughout this paper.

The risk difference and accuracy scores (for given values

of ǫ and δ) were compared to the thresholds and the scores

achieved by the baseline models by Xu, Yuan and Wu

(2019). Independent t-tests were applied to assess signif-

icant differences between algorithms, using a significance
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level of 0.05. Lastly, linear regression was performed to

test for an effect of ǫ and δ on mean accuracy in the DP-

NN and DPF-NN models.

4. Results

The accuracy and risk difference for all the neural networks

(ǫ = 0.1, δ = 0.00001) are shown in Table 1, together

with the results achieved by the equivalent models from

Xu, Yuan and Wu (2019). Further comparisons between

the models are available in the Supplementary Materials.

Table 1. Comparison between the performance of the neural net-

works from this work (top half) and the logistic regression models

by Xu, Yuan and Wu (2019) (bottom half). The order of the mod-

els indicate correspondence between the models proposed in this

work and those of Xu, Yuan and Wu (simple baseline - LR; fair

network - FairLR; differentially private network - PrivLR; differ-

entially private and fair network - PFLR*). The privacy parame-

ters ǫ = 0.1, δ = 0.00001 were used in the models that applied

differential privacy constraints. Performance is shown as mean

accuracy (in percentage) and risk difference (with standard devi-

ations). Higher values are preferred for accuracy, whereas lower

values are preferred for risk difference.

ACCURACY RISK DIFFERENCE

S-NN 84.14 ± 0.34 0.1310 ± 0.0147
DP-NN 84.03 ± 0.05 0.1355 ± 0.0024
F-NN 79.25 ± 3.50 0.0566 ± 0.0065
DPF-NN 82.98 ± 0.19 0.0475 ± 0.0020

LR 83.80 ± 0.23 0.1577 ± 0.0064
PRIVLR 62.63 ± 14.80 0.0883 ± 0.0805
FAIRLR 77.39 ± 5.21 0.0095 ± 0.0071
PFLR* 74.91 ± 0.40 0.0028 ± 0.0039

T-tests were applied to assess whether the differences be-

tween the different neural networks and the models by Xu,

Yuan and Wu (2019) are significant at a significance level

of 0.05. The results from these t-tests regarding the mean

accuracy and risk difference scores can be found in Table 2

and Table 3, respectively.

Simple Neural Network (S-NN). As shown in Table 1 the

S-NN achieved an average accuracy of 84.14% (SD = 0.34).

This is slightly but significantly higher than the simple lo-

gistic regression (LR) by Xu, Yuan and Wu (2019), t(18)

= 2.6, p = .017, which achieved an average accuracy of

83.80% (SD = 0.23). The average risk difference for the S-

NN was 0.1310 (SD = 0.0147), which is slightly but signifi-

cantly lower than the 0.1577 (SD = 0.00064) risk difference

from the model by Xu, Yuan and Wu (2019), t(18) = -5.3,

p < .001. The achieved accuracy of the S-NN is above the

threshold of an algorithm that chooses the majority label.

Fair Neural Network (F-NN).

The F-NN achieved an average accuracy of 79.25% (SD =

3.50), which is above the majority label threshold and a

significant decrease of 4.89 compared to the S-NN (M =

84.14%, SD = 0.34), t(18) = 4.4, p < .001. Compared to

the average accuracy from the fair model by Xu, Yuan and

Wu (2019) (M = 77.39%, SD = 5.21), this is an increase of

0.0186 in average accuracy. However, this difference is not

significant, t(18) = 0.9, p = .361. The mean risk difference

achieved by the F-NN is 0.0566 (SD = 0.0065), which is

slightly above the 0.05 threshold. Compared to the risk dif-

ference of the S-NN (M = 0.1310, SD = 0.0147), this is a

0.0744 decrease, which was found to be significant, t(18)

= -14.6, p < .001. Compared to the fair logistic regres-

sion model by Xu, Yuan and Wu (2019), which achieved

an average risk difference of 0.0095 (SD = 0.0071), this is

a significant increase of 0.0471, t(18) = 15.5, p < .001.

In conclusion, the application of Reject Option Classifica-

tion in the F-NN did lead to a decreased risk difference

compared to the S-NN. The mean risk of the F-NN was be-

low the lenient 0.1 threshold. However, it is still slightly

above the 0.05 threshold and higher than the average risk

difference achieved by the fair logistic regression model by

Xu, Yuan and Wu (2019). The fair model’s accuracy is

lower compared to the S-NN but still acceptable and higher

than that of the fair logistic model.

Differentially Private Neural Network (DP-NN).

A table can be found in the appendix that displays the mean

accuracy and risk difference for the DP-NN with differing

values for ǫ and δ. A linear regression was run to determine

whether there was a significant effect of ǫ and δ on average

accuracy and risk difference for the DP-NN. No significant

effect on risk difference (F (6, 9) = 3.15, p = .0597, R2 =
0.68) or accuracy (F (6, 9) = 2.88, p = .0748, R2 = 0.66)

could be observed for varying values of ǫ and δ. Across all

δ and ǫ values, the overall average of the average accuracy

is 84.05% (SD = 0.05). The overall average of the average

risk difference is 0.1345 (SD = 0.0016).

The average accuracy of the DP-NN model with ǫ = 0.1

and δ = 0.00001, so with the highest privacy guarantee, is

84.03% (SD = 0.05). With the highest privacy guarantee,

the DP-NN achieved a mean accuracy that was 0.11 lower

than that of the S-NN (M = 84.14%, SD = 0.34). This differ-

ence was, however, not significant (t(18) = -1.0, p = .325).

The average risk difference of the model with the highest

privacy guarantee is 0.1355 (SD = 0.0024), a difference of

0.0045 compared to the S-NN (M = 0.1310, SD = 0.0147).

However, this difference is not significant, t(18) = 1.0, p =

.352.

In the appendix a summary table is given of the accuracy

and risk difference for differing values of ǫ and δ = 0.00001

for the DP-NN and the differentially private logistic regres-
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Table 2. Difference in mean accuracy between all models. A positive score means that the model defined in the row performed better

than the model defined in the column. Eq. Model refers to the equivalent model from Xu, Yuan and Wu (2019). For example, FairLR is

the equivalent model for the F-NN. An independent t-test was performed to test if the difference in means was significant at significance

level α = .05 (indicated by *). DF = 18 for all t-tests. The t-statistic is reported in brackets. The privacy parameters ǫ = 0.1,

δ = 0.00001 were used in the models that applied differential privacy constraints.

S-NN DP-NN F-NN DPF-NN EQ. MODEL

S-NN 0 (0.0) 0.11 (1.0) 4.89* (4.4) 1.16* (9.4) 0.34* (2.6)
DP-NN 0 (0.0) 4.78* (4.3) 1.05* (16.9) 21.40* (4.6)
F-NN 0 (0.0) -3.73* (-3.4) 1.86 (0.9)
DPF-NN 0 (0.0) 8.07* (57.6)

Table 3. Difference in mean risk difference between all models. A negative score means that the model defined in the row performed

better than the model defined in the column. Eq. Model refers to the equivalent model from Xu, Yuan and Wu (2019). For example,

FairLR is the equivalent model for the F-NN.* means that the difference is significant at a 0.05 significance level. DF = 18 for all

t-tests. The t-statistic is reported in brackets. The privacy parameters ǫ = 0.1, δ = 0.00001 were used in the models that applied

differential privacy constraints.

S-NN DP-NN F-NN DPF-NN EQ. MODEL

S-NN 0 (0.0) -0.0045 (-1.0) 0.0744* (14.6) 0.0835* (17.8) -0.0267* (-5.3)
DP-NN 0 (0.0) 0.0789* (36.0) 0.0880* (89.1) 0.0472 (1.9)
F-NN 0 (0.0) 0.0091* (4.2) 0.0471* (15.5)
DPF-NN 0 (0.0) 0.0447* (32.3)

sion model by Xu, Yuan and Wu (2019). When comparing

the models with the lowest ǫ, the DP-NN model’s average

risk difference (M = 0.1355, SD = 0.0024) is 0.0472 higher

than that of the differentially private logistic regression (M

= 0.0883, SD = 0.0805). However, this is not a significant

difference, t(18) = 1.9, p = .080. The DP-NN model (M

= 84.03%, SD = 0.05) does significantly improve the aver-

age accuracy by 21.40, t(18) = 4.6, p < .001, in compari-

son with the differentially private logistic regression (M =

62.63%, SD = 14.80). When comparing the models with

the highest ǫ, DP-NN also achieved a higher average ac-

curacy (M = 84.03%, SD = 0.05) in comparison with the

logistic regression model (M = 82.95%, SD = 0.32). The

difference is smaller (10.08) but still significant, t(18) =

10.5, p < .001.

In conclusion, no trend in average accuracy or risk differ-

ence was found for varying values of ǫ and δ. Furthermore,

there were no significant differences in average accuracy or

risk difference between the DP-NN and the S-NN (ǫ = 0.1,

δ = 0.00001). The DP-NN does, however, improve the aver-

age accuracy compared to the differentially private logistic

regression.

Differentially Private and Fair Neural Network (DPF-

NN). In the appendix a table is provided that shows the aver-

age accuracy and risk difference for varying values of ǫ and

δ for the DPF-NN. As with the DP-NN, the mean risk dif-

ference and the accuracy barely differ for different values

of δ and ǫ. This is supported by the results from a simple

linear regression that was performed to determine whether

there was a significant effect of ǫ and δ on mean accuracy

and risk difference. These results show no significant effect

on mean accuracy (F (6, 9) = 0.66, p = .687, R2 = 0.30)

or risk difference (F (6, 9) = 0.57, p = .748, R2 = 0.27).

Across all values of δ and ǫ the average of the mean accu-

racy scores is 82.96 % (SD = 0.25). The overall average

for the average risk difference is 0.0475 (SD = 0.0017). All

averages for risk difference, including the overall average,

are below the 0.05 threshold.

The DPF-NN with the highest privacy guarantee (ǫ = 0.1

and δ = 0.00001) has a mean accuracy of 82.98% (SD =

0.19). Compared to the S-NN (M = 84.14%, SD = 0.34),

that is a 1.16 lower average accuracy. This is a significant

difference (t(18) = -9.4, p < .001). The DPF-NN with the

highest privacy guarantee achieved a mean risk difference

of 0.0475 (SD = 0.0020), which is a 0.0835 lower average

risk difference compared to the S-NN (M = 0.1310, SD =

0.0147). This is also a significant difference, t(18) = -17.8,

p < .001.

Compared to the F-NN (M = 79.25%, SD = 3.50), the most

private DPF-NN (M = 82.98%, SD = 0.19) has a signifi-

cantly higher average accuracy (t(18) = 3.4, p = .003). The

difference between the models is 3.73. The average risk
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difference of the DPF-NN (M = 0.0475, SD = 0.0020) is

0.0091 lower compared to the most private F-NN (M =

0.0566, SD = 0.0065), which is a significant difference

(t(18) = -4.2, p = .001).

When ǫ equals 0.1 and δ equals 0.00001, the average ac-

curacy of the DPF-NN (M = 82.98%, SD = 0.19) is signif-

icantly lower by 1.05 (t(18) = -16.9, p < .001) compared

to the DP-NN (M = 84.03%, SD = 0.05). With respect to

average risk difference, the DPF-NN (M = 0.0475, SD =

0.0020) has a significantly lower average compared to the

DP-NN (M = 0.1355, SD = 0.0024). This difference of

0.0880 is significant (t(18) = -89.1, p < .001).

When the results for δ = 0.00001 for the DPF-NN are com-

pared to the results from the PFLR* model by Xu, Yuan

and Wu (2019), some conclusions can be drawn. Firstly,

for all values of ǫ, the PFLR* model achieves lower aver-

age risk difference than the DPF-NN model. However, the

average accuracy scores are also lower for the PFLR*. The

difference in risk difference between the two models is at

most 0.0447, with the lowest ǫ. In this case the difference

between the DPF-NN (M = 0.0475, SD = 0.0020) and the

PFLR* (M = 0.0028, SD = 0.0039) is significant (t(18) =

32.3, p < .001). The minimal difference in risk difference

between the DPF-NN (M = 0.0437, SD = 0.0154) and the

PFLR* (M = 0.0204, SD = 0.0140) is 0.0233 when ǫ equals

10. This difference is still significant (t(18) = 3.5, p = .002).

For average accuracy, the largest difference between the

DPF-NN (M = 82.98%, SD = 0.19) and the PFLR* (M =

74.91%, SD = 0.40) was 8.07, for the lowest privacy budget.

This is a significant difference (t(18) = 57.6, p < .001). The

smallest difference in average accuracy between the DPF-

NN (M = 83.04%, SD = 0.23) and the PFLR* (M = 79.13%,

SD = 2.00) was for the highest ǫ and came down to a dif-

ference of 3.91. This smallest difference is also significant

(t(18) = 6.1, p < .001).

In conclusion, adding differential privacy and fairness to

a simple neural network decreased the average risk differ-

ence below the 0.05 threshold. The average accuracy also

decreased but was still well above the 75.4% threshold.

Adding both differential privacy and fairness compared to

only adding fairness increased the accuracy and decreased

the risk difference. Adding both differential privacy and

fairness compared to only adding differential privacy de-

creased the risk difference and slightly decreased the ac-

curacy. When the DPF-NN (δ = 0.00001) is compared to

the DPFLR* by Xu, Yuan and Wu (2019), the DPF-NN

achieves a higher average risk difference, though still un-

der the strict 0.05 threshold, but higher average accuracy

for all values of ǫ.

5. Discussion

Four models were compared, a Simple (S-NN), a Fair (F-

NN), a Differentially Private (DP-NN), and a Differentially

Private and Fair Neural Network (DPF-NN). These models

were evaluated for different values of ǫ and δ on fairness

and utility metrics. The models were compared relative to

each other, to the models by Xu, Yuand and Wu (2019), and

to several threshold values.

Effects of Fairness Constraints on the Fairness-Utility

Trade-off.

Adding fairness constraints to the S-NN significantly re-

duced the mean accuracy but also significantly decreased

the mean risk difference. The F-NN model achieved a mean

risk difference of 0.0566 (SD = 0.0065). This is below the

lenient 0.1 threshold. However, it is close to but not below

the strict 0.05 threshold. The achieved accuracy was above

the threshold of choosing the majority label. Reductions

in statistical parity also decreased utility when Reject Op-

tion Classification was applied in the research by Huftham-

mer, et al. (2020). However, in the research by Briggs and

Hollmén (2020), the utility was improved.

Effects of Privacy Constraints on the Privacy-Utility

Trade-off. The performance of the DP-NN was evaluated

for different values of ǫ and δ. A linear regression showed

that no significant effect on risk differences or accuracy

could be observed as a function of ǫ and δ. Furthermore,

changing the standard Adam optimizer of the S-NN to the

differentially private optimizer in the DP-NN did not sig-

nificantly change the accuracy nor the risk difference when

the highest privacy constraints were applied (ǫ = 0.1, δ =

0.00001). This model achieved an accuracy well above the

majority label baseline. The risk difference was above both

the strict and the lenient thresholds, which is expected since

no fairness constraints were added to this model. Most no-

tably and contrary to previous results (Zhao et al., 2020;

Jayaraman & Evans, 2019; Gong et al., 2020), no disrup-

tion in accuracy was observed when using lower values of

ǫ and δ.

Effects of Fairness and Privacy Constraints on the

Privacy-Utility-Fairness Trade-off. Like the case of DP-

NN, no trend in risk differences or accuracy was observed

for varying values of ǫ and δ in the DPF-NN model. The

results on the DPF-NN showed that adding both fairness

and a strong privacy guarantee (ǫ = 0.1, δ = 0.00001) to the

S-NN model significantly increased its accuracy. However,

this also significantly decreased risk difference. While the

accuracy of the DPF-NN with ǫ = 0.1 and δ = 0.00001 was

lower, it was still well above the majority label baseline.

The achieved mean risk difference by this model was be-

low both the strict and lenient thresholds. The model is,

therefore, considered fair. Adding both fairness and differ-
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ential privacy (ǫ = 0.1, δ = 0.00001) significantly increased

accuracy compared to only adding fairness, but it decreased

accuracy compared to only adding differential privacy (ǫ =

0.1, δ = 0.00001). Adding both differential privacy and

fairness improved fairness compared to adding only differ-

ential privacy or fairness.

Comparison with Equivalent Models. The results from

Xu, yuan and Wu (2019) were used as baselines to compare

the performance of the proposed models.

The S-NN achieved a significantly higher mean accuracy

and a lower mean risk difference than the baseline simple

model. The F-NN achieved higher accuracy than the base-

line fair model though this difference is not significant. The

F-NN also produced a significantly higher mean risk differ-

ence and is, therefore, deemed less fair. There were no

significant changes in risk difference between the DP-NN

with the highest privacy guarantees (ǫ = 0.1, δ = 0.00001)

and the PFLR* with the highest privacy guarantees (ǫ =

0.1) by Xu, Yuan and Wu (2019). The DP-NN did, how-

ever, achieve a significantly higher mean accuracy. The

DPF-NN with the highest privacy guarantees (ǫ = 0.1, δ =

0.00001) significantly outperformed the baseline differen-

tially private and fair model with the highest privacy guar-

antees (ǫ = 0.1) on mean accuracy but produced a signifi-

cantly higher mean risk difference. It is, thus, less fair but

has more utility.

Limitations and Future Research.

In the present work, only the variable ‘sex’ was considered

as a sensitive attribute. However, in many practical appli-

cations, multiple sensitive variables may need to be consid-

ered. For example, the models may be considered fair with

respect to gender but still make discriminatory decisions

with respect to race. Likewise, Caton and Haas (2020) also

warned of the effects of variables that are themselves not

considered sensitive, but are still related to sensitive vari-

ables. Furthermore, only one fairness metric was consid-

ered in this research, risk difference, which is a measure of

demographic/statistical parity that captures group fairness.

As previously discussed, reduced unfairness according to

one metric may not reduce and it may even increase un-

fairness according to another metric (Lee & Kizilcec, 2020;

Hufthammer et al., 2020; Caton & Haas, 2020). If the mod-

els used in this research would be employed in real-life

settings it would, therefore, be crucial to consider if de-

mographic/statistical parity would be suitable for the spe-

cific application. Related to this are the chosen threshold:

for example, in this research, the limit of risk difference

beneath which a model was deemed fair was 0.05 for the

strict threshold and 0.1 for the lenient threshold. However,

whether these thresholds are suitable in a real-life applica-

tion may depend on the use case and legislative require-

ments (Datta et al., 2018). If the goal of fairness is pre-

ferred over utility, the fair and differentially private and

fair logistic regression models by Xu, Yuan and Wu (2019)

should be preferred over the equivalent models presented

here. Likewise, utility may be measured differently in dif-

ferent applications, which may require using balanced ac-

curacy, F1-score, or other metrics, which might lead to

different model rankings. Additionally, it would be inter-

esting to assess whether combining pre- and post- process-

ing fairness techniques would improve results. Lastly, a re-

laxed notion of differential privacy was considered in this

research, while in some applications, strict or traditional

differential privacy may be preferred.

Lastly, the results achieved by the differentially private and

fair model in this research are encouraging and should be

validated on a larger selection of datasets and using other

metrics to assess the privacy-utility-fairness trade-off.

6. Conclusion

In this paper, we explored the impact of differential privacy

and fairness constraints on the privacy-utility-fairness, both

when they are applied independently and when they are

combined together. Contrary to the previous research on

this topic, this research focused on neural networks instead

of logistic regression. Applying only fairness constraints

led to a model with high accuracy and fairness but no pri-

vacy. Applying only privacy constraints led to a private

but unfair model with high accuracy. The model that com-

bined privacy and fairness constraints achieved better fair-

ness than the model that only applied fairness constraints,

while maintaining high accuracy. While the accuracy of the

fair and private model significantly improved on previous

work from Xu, Yuan and Wu (2019), the risk difference

was found to be worse. Contrary to previous research both

the DP-NN and DPF-NN model did not show a trend of

a decrease in accuracy with an increase in the offered pri-

vacy. In conclusion, creating models that achieve fairness

and preserve privacy while maintaining satisfactory utility

is both possible and necessary. Hopefully, this and other

contributions to the existing research on private and fair

models can encourage and improve their use in real-world

applications.
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