2,480 research outputs found

    Design Simulation of Multiple Differential Transceiver at 2.0 GHz for Third Generation Mobile Communication System

    Get PDF
    Third generation mobile communication system is widely used nowadays. One of its parameter standard, which is QPSK modulation has been adopted by International Telecommunication Union (ITU) to be used in IMT-2000. However, due to amplitude variations introduced in QPSK, a rather robust and reliable data modulation technique, namely the 7c/4-shift Differential QPSK is proposed. For detection purposes, two types of detectors are evaluated for their performance in AWGN and Rayleigh fading channels. A differential detection technique called multiple differential detection technique which uses maximum-likelihood sequence estimation (MLSE) of the transmitted phases is compared with conventional differential detection which uses symbol-bysymbol detection. By using some of the IMT-2000 standard parameters, the simulation results show that multiple differential detection scheme performs much better than conventional differential detection scheme

    Performance Evaluation of Multiple Differential Detection for Third Generation Mobile Communication System

    Get PDF
    Third generation mobile communication system is widely used nowadays. One of its parameter standard, which is QPSK modulation has been adopted by International Telecommunication Union (ITU) to be used in IMT-2000. However, due to amplitude variations introduced in QPSK, a rather robust and reliable data modulation technique, namely the p/4-shift Differential QPSK is proposed. For detection purposes, two types of detectors are evaluated for their performance in AWGN and Rayleigh fading channels.A differential detection technique called multiple differential detection technique which uses maximumlikelihood sequence estimation (MLSE) of the transmitted phases is compared with conventional differential detection which uses symbol-by-symbol detection. By using some of the IMT-2000 standard parameters, the simulation results show that multiple differential detection scheme performs much better than conventional differential detection scheme

    Investigation into PRS-precoded, constant-envelope, continuous-phase digital modulation schemes

    Get PDF
    Bibliography: leaves 78-79.Partial response signaling ( PRS) has been used successfully to improve the spectral properties of Pulse Amplitude Modulated (PAM) digital transmission systems. This thesis investigation studied the effect of PRS on frequency- and phase-modulated carrier systems, in particular on their spectral performance and their maintenance of constant envelope

    Design of an efficient binary phase-shift keying based IEEE 802.15.4 transceiver architecture and its performance analysis

    Get PDF
    The IEEE 802.15.4 physical layer (PHY) standard is one of the communication standards with wireless features by providing low-power and low-data rates in wireless personal area network (WPAN) applications. In this paper, an efficient IEEE 802.15.4 digital transceiver hardware architecture is designed using the binary phase-shift keying (BPSK) technique. The transceiver mainly has transmitter and receiver modules along with the error calculation unit. The BPSK modulation and demodulation are designed using a digital frequency synthesizer (DFS). The DFS is used to generate the in-phase (I) and quadrature-phase (Q) signals and also provides better system performance than the conventional voltage-controlled oscillator (VCO) and look up table (LUT) based memory methods. The differential encoding-decoding mechanism is incorporated to recover the bits effectively and to reduce the hardware complexity. The simulation results are illustrated and used to find the error bits. The design utilizes less chip area, works at 268.2 MHz, and consumes 108 mW of total power. The IEEE 802.15.4 transceiver provides a latency of 3.5 clock cycles and works with a throughput of 76.62 Mbps. The bit error rate (BER) of 2×10-5 is achieved by the proposed digital transceiver and is suitable for real-time applications. The work is compared with existing similar approaches with better improvement in performance parameters

    Field programmable gate array based multiple input multiple output transmitter

    Get PDF
    MIMO is an advanced antenna technology compared to Single Input Single output (SISO), Multiple Input Single Output (MISO), and Single Input Multiple Output (SIMO) and is used to obtain high data rate in the system. Multiple-Input Multiple-Output (MIMO) systems have at least two transmitting antennas, each generating unique signals. However some applications may require three, four, or more transmitting devices to achieve the desired system performance. This thesis describes a comparison between different approaches like the microcontroller, ASICs and the FPGA available in the market for baseband signal generation. It also describes the design of a scalable MIMO transmitter, based on field programmable gate array (FPGA) technology that was selected among the processors due to its capability to provide reconfigurable hardware and software. Each module of the MIMO transmitter contains a FPGA, and associated digital-to-analog converters, I/Q modulators, and RF amplifiers needed to power one of the MIMO transmitters. The system is designed to handle up to a 10 Mbps data rate, and transmit signals in the unlicensed 2.4 GHz ISM band --Abstract, page iii

    An Architecture for High Data Rate Very Low Frequency Communication

    Get PDF
    Very low frequency (VLF) communication is used for long range shore-to-ship broadcasting applications. This paper proposes an architecture for high data rate VLF communication using Gaussian minimum shift keying (GMSK) modulation and low delay parity check (LDPC) channel coding. Non-data aided techniques are designed and used for carrier phase synchronization, symbol timing recovery, and LDPC code frame synchronization. These require the estimation of the operative Eb/N0 for which a kurtosis based algorithm is used. Also, a method for modeling the probability density function of the received signal under the bit condition is presented in this regard. The modeling of atmospheric radio noise (ARN) that corrupts VLF signals is described and an algorithm for signal enhancement in the presence of ARN in given. The BER performance of the communication system is evaluated for bit rates of 400 bps, 600 bps, and 800 bps for communication bandwidth of ~200 Hz.Defence Science Journal, 2013, 63(1), pp.25-33, DOI:http://dx.doi.org/10.14429/dsj.63.376

    New implementation of a GMSK demodulator in linear software radio receiver

    Get PDF
    This paper proposes a practical linear software-radio architecture (dealing with linear modulations) that is suitable for multi-mode operation. In particular, it is shown how to integrate GMSK into the proposed architecture. Coherent and noncoherent detections of GMSK signals are detailed for the implementation of the proposed software radio.published_or_final_versio

    Software-defined radio using LabVIEW and the PC sound card: A teaching platform for digital communications

    Get PDF
    Different modulation techniques and protocols require a standard communications laboratory for engineering courses to be equipped with a broad set of equipment, tools and accessories. However, the high costs involved in a hardware-based laboratory can become prohibitively expensive for many institutions. Software simulations alone can replicate most real-world applications with much lower costs. Nevertheless, they do not replace the real-world feeling provided by hardware-based systems, which can produce and receive physical signals to and from the exterior media. Advances in computer technology are allowing software-defined radio (SDR) concepts to be applied in many areas of communications. In this type of system, the baseband processing is performed completely in software while an analog RF front end hardware can be used for RF processing. The use of a software-defined radio platform in a digital communications laboratory can offer the benefits of software simulations coupled with the enthusiasm presented by hardware-based systems. A low-cost software-defined radio teaching platform implemented in LabVIEW using the personal computer sound card was developed for a digital communications laboratory along with a set of exercises to help students assimilate the concepts involved in communications theory and system implementation. This system allows for the generation, reception, processing, and analysis of signals in a 4 QAM (quadrature amplitude modulation) transceiver using the personal computer sound card to transmit and receive modulated signals. This teaching platform provides the means necessary to explore the theoretical concepts of digital communication systems in a laboratory environment. National Instruments\u27 LabVIEW graphical programming environment allows a more intuitive way of coding, which helps students to spend more time learning the relevant theory concepts and less time coding the applications. Being a flexible and modular system, modifications can be made for optimization and use with different and/or more complex techniques
    • …
    corecore