99 research outputs found

    A Security Analysis of IoT Encryption: Side-channel Cube Attack on Simeck32/64

    Get PDF
    Simeck, a lightweight block cipher has been proposed to be one of the encryption that can be employed in the Internet of Things (IoT) applications. Therefore, this paper presents the security of the Simeck32/64 block cipher against side-channel cube attack. We exhibit our attack against Simeck32/64 using the Hamming weight leakage assumption to extract linearly independent equations in key bits. We have been able to find 32 linearly independent equations in 32 key variables by only considering the second bit from the LSB of the Hamming weight leakage of the internal state on the fourth round of the cipher. This enables our attack to improve previous attacks on Simeck32/64 within side-channel attack model with better time and data complexity of 2^35 and 2^11.29 respectively.Comment: 12 pages, 6 figures, 4 tables, International Journal of Computer Networks & Communication

    A Survey of ARX-based Symmetric-key Primitives

    Get PDF
    Addition Rotation XOR is suitable for fast implementation symmetric –key primitives, such as stream and block ciphers. This paper presents a review of several block and stream ciphers based on ARX construction followed by the discussion on the security analysis of symmetric key primitives where the best attack for every cipher was carried out. We benchmark the implementation on software and hardware according to the evaluation metrics. Therefore, this paper aims at providing a reference for a better selection of ARX design strategy

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Security in 1-wire system : case study : Home automation /

    Get PDF
    La automatización de viviendas es un campo de la tecnología que siempre se encuentra en crecimiento, desarrollando sistemas que reducen los costos de los dispositivos. Por esto, se ha logrado que la domótica esté al alcance de todos. Desde la aparición de productos que permiten crear tu propio sistema domótico, y la reciente popularidad que ha tenido el Internet de las cosas (IoT), la industria de la automatización de viviendas ha cambiado mucho. Tener la habilidad de controlar dispositivos a través de Internet crea numerosas vulnerabilidades al sistema, permitiendo a un atacante controlar y ver todo lo que ocurre. En este trabajo se estudia un sistema domótico que usa 1-wire como protocolo de comunicación. Originalmente, el sistema carece de seguridad. Nuestro objetivo es implementar seguridad de la información a través de la encriptación de los comandos del sistema, para así poder proveer Confidencialidad, Integridad y Disponibilidad (CIA). Los resultados muestran no sólo la implementación exitosa del módulo criptográfico dentro del sistema domótico para proveer seguridad, sino que también se demuestra que añadir este proceso no afectaría el modo en que el usuario maneja sus dispositivos.Incluye referencias bibliográfica

    A new intelligent hybrid encryption algorithm for IoT data based on modified PRESENT-Speck and novel 5D chaotic system

    Get PDF
    Modern application based on IoT sensors/devices are growth in several fields. In several cases, the sensing data needs to be secure in transmission to control / administrator side. In this paper, the proposed secure Internet of Things data sensing and proposed algorithms will be explained, based on the main overarching novel 5-D Hyper chaotic system and new encryption mechanisms (contains hybrid encryption and two modified encryption algorithms) controlled by Fuzzy rules. The encryption mechanism combined by using the structure of PRESENT and SPECK algorithm with novel 5-D chaotic system. Also, for encryption will use the modified mechanisms of Round steps in PRESENT algorithm by SPEECK which were adopted on an IoT sensing data transferring. This proposed system provides a high level of security for any sensitive information that may be generated from sensors that may be installed in an important location to protect buildings and offices from theft by making certain modifications to the algorithms necessary to maintain the safety and security of the information, etc., which must be protected from Attacks. This system is designed to be effective in providing security features for data contents that include confidentiality, authentication and non-repudiation, and is compatible with all types of remote sensing data and sensors to send the final notification to the final administrator view. The proposed system is designed to provide users with high flexibility and ease in managing change operations, speeding up encryption operations and intruding the contents of message packets (types and forms of different sensor data) at the point of origin and decrypting and checking packet integrity messages upon receipt. These features make users of this system more confident with each other. The proposed encryption mechanism and novel chaotic system passed different testes. The generated chaos key space at least 22560probable different combinations of the secret keys to break the system used brute force attack

    Modern and Lightweight Component-based Symmetric Cipher Algorithms: A Review

    Get PDF
    Information security, being one of the corner stones of network and communication technology, has been evolving tremendously to cope with the parallel evolution of network security threats. Hence, cipher algorithms in the core of the information security process have more crucial role to play here, with continuous need for new and unorthodox designs to meet the increasing complexity of the applications environment that keep offering challenges to the current existing cipher algorithms. The aim of this review is to present symmetric cipher main components, the modern and lightweight symmetric cipher algorithms design based on the components that utilized in cipher design, highlighting the effect of each component and the essential component among them, how the modern cipher has modified to lightweight cipher by reducing the number and size of these components, clarify how these components give the strength for symmetric cipher versus asymmetric of cipher. Moreover, a new classification of cryptography algorithms to four categories based on four factors is presented. Finally, some modern and lightweight symmetric cipher algorithms are selected, presented with a comparison between them according to their components by taking into considerations the components impact on security, performance, and resource requirements
    corecore