4,262 research outputs found

    Differential Chow Form for Projective Differential Variety

    Full text link
    In this paper, a generic intersection theorem in projective differential algebraic geometry is presented. Precisely, the intersection of an irreducible projective differential variety of dimension d>0 and order h with a generic projective differential hyperplane is shown to be an irreducible projective differential variety of dimension d-1 and order h. Based on the generic intersection theorem, the Chow form for an irreducible projective differential variety is defined and most of the properties of the differential Chow form in affine differential case are established for its projective differential counterpart. Finally, we apply the differential Chow form to a result of linear dependence over projective varieties given by Kolchin.Comment: 17 page

    Semipurity of tempered Deligne cohomology

    Full text link
    In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semi-purity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties

    Rota-Baxter algebras, singular hypersurfaces, and renormalization on Kausz compactifications

    Get PDF
    We consider Rota-Baxter algebras of meromorphic forms with poles along a (singular) hypersurface in a smooth projective variety and the associated Birkhoff factorization for algebra homomorphisms from a commutative Hopf algebra. In the case of a normal crossings divisor, the Rota-Baxter structure simplifies considerably and the factorization becomes a simple pole subtraction. We apply this formalism to the unrenormalized momentum space Feynman amplitudes, viewed as (divergent) integrals in the complement of the determinant hypersurface. We lift the integral to the Kausz compactification of the general linear group, whose boundary divisor is normal crossings. We show that the Kausz compactification is a Tate motive and that the boundary divisor and the divisor that contains the boundary of the chain of integration are mixed Tate configurations. The regularization of the integrals that we obtain differs from the usual renormalization of physical Feynman amplitudes, and in particular it may give mixed Tate periods in some cases that have non-mixed Tate contributions when computed with other renormalization methods.Comment: 35 pages, LaTe
    corecore