3,068 research outputs found

    Two-dimensional patterns with distinct differences; constructions, bounds, and maximal anticodes

    Get PDF
    A two-dimensional (2-D) grid with dots is called a configuration with distinct differences if any two lines which connect two dots are distinct either in their length or in their slope. These configurations are known to have many applications such as radar, sonar, physical alignment, and time-position synchronization. Rather than restricting dots to lie in a square or rectangle, as previously studied, we restrict the maximum distance between dots of the configuration; the motivation for this is a new application of such configurations to key distribution in wireless sensor networks. We consider configurations in the hexagonal grid as well as in the traditional square grid, with distances measured both in the Euclidean metric, and in the Manhattan or hexagonal metrics. We note that these configurations are confined inside maximal anticodes in the corresponding grid. We classify maximal anticodes for each diameter in each grid. We present upper bounds on the number of dots in a pattern with distinct differences contained in these maximal anticodes. Our bounds settle (in the negative) a question of Golomb and Taylor on the existence of honeycomb arrays of arbitrarily large size. We present constructions and lower bounds on the number of dots in configurations with distinct differences contained in various 2-D shapes (such as anticodes) by considering periodic configurations with distinct differences in the square grid

    Manhattan orbifolds

    Get PDF
    We investigate a class of metrics for 2-manifolds in which, except for a discrete set of singular points, the metric is locally isometric to an L_1 (or equivalently L_infinity) metric, and show that with certain additional conditions such metrics are injective. We use this construction to find the tight span of squaregraphs and related graphs, and we find an injective metric that approximates the distances in the hyperbolic plane analogously to the way the rectilinear metrics approximate the Euclidean distance.Comment: 17 pages, 15 figures. Some definitions and proofs have been revised since the previous version, and a new example has been adde

    A generalization of the Minkowski distance and a new definition of the ellipse

    Full text link
    In this paper, we generalize the Minkowski distance by defining a new distance function in n-dimensional space, and we show that this function determines also a metric family as the Minkowski distance. Then, we consider three special cases of this family, which generalize the taxicab, Euclidean and maximum metrics respectively, and finally we determine circles of them with their some properties in the real plane. While we determine some properties of circles of the generalized Minkowski distance, we also discover a new definition for the ellipse.Comment: 18 pages, 18 figure

    Metric and topo-geometric properties of urban street networks: some convergences, divergences and new results

    Get PDF
    The theory of cities, which has grown out of the use of space syntax techniques in urban studies, proposes a curious mathematical duality: that urban space is locally metric but globally topo-geometric. Evidence for local metricity comes from such generic phenomena as grid intensification to reduce mean trip lengths in live centres, the fall of movement from attractors with metric distance, and the commonly observed decay of shopping with metric distance from an intersection. Evidence for global topo-geometry come from the fact that we need to utilise both the geometry and connectedness of the larger scale space network to arrive at configurational measures which optimally approximate movement patterns in the urban network. It might be conjectured that there is some threshold above which human being use some geometrical and topological representation of the urban grid rather than the sense of bodily distance to making movement decisions, but this is unknown. The discarding of metric properties in the large scale urban grid has, however, been controversial. Here we cast a new light on this duality. We show first some phenomena in which metric and topo-geometric measures of urban space converge and diverge, and in doing so clarify the relation between the metric and topo-geometric properties of urban spatial networks. We then show how metric measures can be used to create a new urban phenomenon: the partitioning of the background network of urban space into a network of semi-discrete patches by applying metric universal distance measures at different metric radii, suggesting a natural spatial area-isation of the city at all scales. On this basis we suggest a key clarification of the generic structure of cities: that metric universal distance captures exactly the formally and functionally local patchwork properties of the network, most notably the spatial differentiation of areas, while the top-geometric measures identifying the structure which overcomes locality and links the urban patchwork into a whole at different scales
    • 

    corecore