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Two-Dimensional Patterns with Distinct Differences
— Constructions, Bounds, and Maximal Anticodes

Simon R. Blackburn, Tuvi Etzion, Keith M. Martin and Maura Baterson

Abstract—A two-dimensional grid with dots is called aconfig-
uration with distinct differencesif any two lines which connect
two dots are distinct either in their length or in their slope.
These configurations are known to have many applications
such as radar, sonar, physical alignment, and time-positio
synchronization. Rather than restricting dots to lie in a square
or rectangle, as previously studied, we restrict the maximm
distance between dots of the configuration; the motivationdr this
is a new application of such configurations to key distributon
in wireless sensor networks. We consider configurations inhie
hexagonal grid as well as in the traditional square grid, wih
distances measured both in the Euclidean metric, and in the
Manhattan or hexagonal metrics.

We note that these configurations are confined inside maximal
anticodes in the corresponding grid. We classify maximal ati
codes for each diameter in each grid. We present upper boundm
the number of dots in a pattern with distinct differences cortained
in these maximal anticodes. Our bounds settle (in the negat)

will coincide with a mark from the lower ruler, unless they
are exactly superimposed. Golomb rulers arise in the titeea
from both theoretical and practical aspects (see [1], Bl}-[
It is well known that the largest order of a ruler of length
is /n + o(y/n), see [4], [5], [7].

There are various generalizations of one-dimensionatsule
into two-dimensional arrays. One of the most general was
given by Robinson [8]. A two-dimensional ruler is anx k
array withm dots such that al(’;‘) lines connecting two dots
in the array are distinct as vectors, i.e., any two have eithe
different length or slope. These arrays were also congidere
in [9], [10]. The case where = k was first considered sug-
gested by Costas and investigated by Golomb and Taylor [6].
Costas considered the case whes k and each row and each
column in the array has exactly one dot [6]. These arrays have

a question of Golomb and Taylor on the existence of honeycomb application to a sonar problem [6], [11] and also to radar,

arrays of arbitrarily large size. We present constructions and
lower bounds on the number of dots in configurations with
distinct differences contained in various two-dimensionhshapes
(such as anticodes) by considering periodic configurationsiith
distinct differences in the square grid.

Index Terms—Anticodes, Costas Arrays, Distinct-Difference
Configurations, Golomb Rectangles, Honeycomb Arrays

|. INTRODUCTION

Golomb ruler(or ruler for short) of orderm (also known
as aSidon setis a setS of integers with|.S| = m having
the property that all differences-b (for a, b € S, with a # b)

synchronization, and alignment; they are known as Costas
arrays. Sonar sequences are another class of arrays neghtion
in [6], wherem = k and each column has exactly one dot;
see [12]-[14].

Other two-dimensional generalizations of a Golomb ruler
have been considered in the literature, but do not havetdirec
connection to our current work. For the sake of completeness
we will mention them. Aradar array is ann x k array with
exactly one dot per column such that there are no two lines
connecting two disjoint pairs of dots, occupying the same
rows, which have the same length and slope. Radar arrays
were defined in [6] and considered in [8], [15]-[17]. Arrays

are distinct. They were first used by Babcock, in connectignwhich all lines have distinct slopes were considered 8{f1

with radio interference [1]. Théength of a Golomb rulerS
is the largest difference between any two elementsS oft

is easy to show that a ruler of order has length at least

('3); a ruler meeting this bound is callguerfect Golomb

[20]. Arrays in which the Euclidean distances of any pair of
lines are distinct were considered in [21].

The examples above are concerned with dots in an (infinite)
square grid that are restricted to lie in a given line segment

has shown that no perfect ruler exists with order greater thgquare or rectangle. More generally, we can define a set of
four [2]. The problem of finding the shortest possible lengtiiots in a grid to be alistinct difference configuratio(DDC)

of a Golomb ruler of a given order has been widely studief; the lines connecting pairs of dots are different either in
no general solution is known, but optimal rulers have beéength or in slope. Having surveyed the known structures of
determined for orders less than 24 (see [3] for details). Thgo-dimensional patterns with distinct differences, iess
elements of a Golomb ruler can be taken to represent matkat the following natural question has not been investigat

(‘dots’) on a physical ruler occurring at integer differesc

what is the maximum number of dots that can be placed on

from each other. The fact that the differences are all distina two-dimensional square grid such that all lines conngctin
implies that if a Golomb ruler is placed on top of a secon@dwo dots are different either in their length or their slope
identical, ruler then at most one mark from the upper ruleind the distance between any two dots is at mestin

This work was supported in part by the Israel Science FouordtSF)
under grant no. 230/08, as well as by EPSRC grants EP/DOBB28%
EP/F056486/1.

S.R. Blackburn, K.M. Martin and M.B. Paterson are with thepBxeément of
Mathematics, Royal Holloway, University of London, EghaBurrey TW20
OEX. T. Etzion is with the Computer Science Department, fenh-Israel
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other words, rather than considering the traditional regtdar
regions of the square grid, we consider dots which lie in
maximal anticodes of diametet. (An anticode of diameter

r is a set of positions in the grid such that any pair of
positions are at distance at mestSee Sectioh 1l for details.)
We will consider two notions of distance in the square grid:
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Manhattan and Euclidean. We also consider distinct diffeee

configurations in the hexagonal grid, using hexagonal désta

(also known as Manhattan distance) and Euclidean distance. 6|1
Our motivation for considering these configurations comes - 5[0

from a new application to key predistribution for wireless £ 413

sensor networks. We considered in [22] a key predistribbutio

scheme based on DDCs in general, and Costas arrays in
particular. A DDC A with m dots was shifted over theFrig. 1. The hexagonal model translation
two-dimensional square grid. For each shift we assigned the
same key to then entries of the two-dimensional grid which
coincide with them dots of A. In [22] we noted that a Hence, rows are indexed from bottom to top in increasing
Costas array is a DDC, and gave examples of DDCs witiider; columns are indexed from left to right in increasing
small numbers of dots. However, the questions of finding mooeder. (So this is the usual convention for a Cartesian co-
general constructions, and providing bounds on the numiberasdinate system, but is not the standard way of indexing the
dots in such configurations, were left open; it is these ssuentries of a finite array.)
that are addressed by the results of this paper. Other pieper
of_ll_DhDCs To:{i\;?ﬁed by thi.s applicf’;\ti%n ar? (I:Ionsidleresd igf_[fgh' The two models

e rest of this paper is organized as follows. In Sediibn ) . .
we describe the models on which we will consider our two- Th_e f|rs§ mOdS" is called thequare modglln this model,
dimensional patterns with distinct differences. We coarsid? pm_nt(z,g) € 27 has the following four neighbors when we
two two-dimensional grids: the square grid and the hexalgor‘fzﬁms'der the model as a connected graph:
grid. In the square grid we consider the Manhattan distance {(i=1,7),(6,7—1),(4,7+1),(i +1,5)}.
and the Euclidean distance, while in the hexagonal grid we
consider the hexagonal distance and the Euclidean distan®€ can think of the points inZ®> as being the centres
We define the classes of DDCs we will study, and li®f @ tiling of the plane by unit squares, with two centres
optimal examples for small parameter sizes. In Sedfidn éI wp€ing adjacent exactly when their squares share an edge. The
explain the relation between DDCs and maximal anticodefistanced((i1, j1), (i2, j2)) between two pointgiy,ji) and
We classify the maximal anticodes when we use Manhattéia,j2) in this model is the Manhattan distance defined by
distance and hexagonal distance. We also briefly review some
properties of anticodes iR? using Euclidean distance: these
properties will allow us to bound the size of an anticode in The second model is called theexagonal modelinstead
either grid when we use Euclidean distance. In Se¢fidn IV ved the square grid, we define the following graph. We start by
present upper bounds on the number of dots in a DDC whting the planeR? with regular hexagons whose sides have
we restrict the dots to lie in some simple regions (‘shapeddngth 1/4/3 (so that the centres of hexagons that share an
in the grid. The most important shapes we consider are thdge are at distandg. The vertices of the graph are the centre
anticodes, in particular the Lee sphere and the hexagopaints of the hexagons. We connect two vertices if and only if
sphere. As a consequence of our upper bound, we settletlagir respective hexagons share an edge. This way, ea@xvert
old question of Golomb and Taylor [24] (on the existence dfas exactly six neighbouring vertices.
honeycomb arrays of arbitrarily large size) in the negatime = We will often use an isomorphic representation of the
SectiondV an@ V1 we turn our attention to constructions arttexagonal model which will be of importance in the sequel.
lower bounds for the number of dots in the classes of DDThis representation ha&? as the set of vertices. Each point
defined in Sectionll. We generalize a folding technique thét,y) € Z? has the following neighboring vertices,
was used by Robinson [9] to construct Golomb rectangles,
and provide more good examples by constructing periodic {@tay+b)|abe{-1,0,1},a+b7#0}

infinite arrays that are locally DDCs. Our constructions aig may be shown that the two models are isomorphic by using
asymptotically optimal in the case of the square grid anfle mappings : R2 — R2, which is defined by¢(z,y) =

d((i1, 1), (i2, j2)) = liz — i1] + |72 — j1|-

Manhattan distance. (z+ %, 2L). The effect of the mapping on the neighbor set is
shown in Fig[ll. From now on, slightly changing notation, we
Il. GRIDS, DISTANCES, AND DDCs will also refer to this representation as the hexagonal hode

) _ _ _ _ . Using this new notation the neighbors of poiat;) are
We first define some new classes of two-dimensional distinct

difference configurations. We believe that the definitiors a {(; — 1,5 — 1), (i — 1, ), (i,j — 1), (i, + 1),

very nat_ural_ and are of Fheore‘ucal mtgrest, mdepen;lem‘tl G+1,7),6G+1,7+ 1)},
the application we have in mind. We will consider the square
grid and the hexagonal grid as our surface. We start with aThe hexagonal distancd(x,y) between two points: and
short definition of the two models. Before the formal defaniti y in the hexagonal grid is the smallessuch that there exists
we emphasize that we define a pojntj) to be the point in a path withr + 1 pointsx = p1,pe, ..., pr+1 = y, Wherep;
columni and row; of either a coordinate system or a DDCandp;,; are adjacent points in the hexagonal grid.



B. Distinct difference configurations +

We will now define our basic notation for the DDCs we  ~'° e . D D
will focus on.

Definition 1. A Euclidean square distinct difference configu- T . T
rationDD(m, r) is a set ofn dots placed in a square grid such 0 e <P D : .
that the following two properties are satisfied: * s _ T - *

1) Any two of the dots in the configuration are at Euclidean
distance at most apart.

2) Allthe (') differences between pairs of dots are distinct B | >
either in length or in slope. .
We will also study three more classes of DDCs: A BOmD EEEEOD :
square distinct difference configuratidnD (m,r) is defined . . . .

by replacing ‘Euclidean distance’ by ‘Manhattan distancéig. 2. Square distinct difference configurations with theyést number of
in Definition [I; a Euclidean hexagonal distinct difference’®ts possible for = 2,3, ..., 11.

configurationDD*(m, r) is defined by replacing ‘square grid’

by ‘hexagonal grid’ in Definition[11; ahexagonal distinct
difference configuratiorﬁ*(m,r) is defined by replacing
‘square grid’ by ‘hexagonal grid’, and ‘Euclidean distahce
by ‘hexagonal distance’ in Definition 1.

In the application in [22], dots in the DDC are associated
with sensor nodes, and their position in the square or hexag-
onal grid corresponds to a sensor’s position. The parameter
corresponds to a sensor’s wireless communication rage. So
the most relevant distance measure for the application we
have in mind is the Euclidean distance. Moreover, as the best
packing of circles on a surface is by arranging the circlea in
hexagonal grid (see [25]), the hexagonal model may be often
be better from a practical point of view. But the Manhattan
and hexagonal distances are combinatorially natural nnessu
to consider, and our results for these distance measures are
sharper. Note that Manhattan and hexagonal distance ahne bot
reasonable approximations to Euclidean distance (hexdgofig. 3. Hexagonal distinct difference configurations wiile targest number
distance being the better approximation). Indeed, sinee tff dots possible for =2,3,...,10.
distinct differences property does not depend on the distan
measure used, it is not difficult to show thatDaD(m,r)

is a DD(m,r), and aDD(m, ) is a DD(m, [v/2r]). Sim- _ An anticode of diameterr in the two-dimensional grid
ilarly a DD (m, r) is a DD*(m,r), and aDD*(m,r) is an (Square or hexagonal) is a sét of points such that for
ﬁ*(m, [(2/V/3)r]). each pair of pointst,y € S we haved(z,y) < r, where

the distance can be Manhattan, hexagonal, or Euclidean. An
anticodeS of diameterr is said to beoptimal if there is
C. Small parameters no anticodeS’ of diameterr such that|S’| > |S|. An

For small values ofr, we used a backtrack search tanticodeS of diameterr is said to bemaximalif {z} U S
exhaustively find abD(m,r) with m as large as possible.has diameter greater thanfor any # ¢ S. Anticodes are
The search shows that for= 2,3, the largest suchn are 3 jmportant structures in various aspects of coding theory an
and 4 respectively, and far < » < 11 the largest possible:  extremal combinatorics [26]—[32].
is r + 2. Fig.[d contains examples of configurations meeting The following two results provide an obvious connection

those bounds. _ R ~ between DDCs and anticodes.
Similarly, we found the best configuratiom®D (m,r) in

the hexagonal grid (see Figure 3) far< r < 10.
Lemmal. Any anticodeS of diameterr is contained in a

I1l. ANTICODES ANDDDCS maximal anticodeS’ of diameter-.

In this section we will show a trivial connection between
DDCs and maximal anticodes. This leads to a short invesBorollary2. A DD(m,r) is contained in a maximal anticode
gation of maximal anticodes in the square and the hexagooél(Euclidean) diameter. The same statement holds for a
grids. We find all maximal anticodes in these two models undBD (m, ), DD*(m,r) or DD (m,r) when the appropriate
the Manhattan and hexagonal distance measures respgctividistance measure is used.



(T of A lies on the liney = z, but no position lies below it.

| | The Manhattan distance between a point on the dine z +

| | | | 2p + 1 and a point on the lingg = x is at least2p + 1 and

henceA is bounded by the lineg = = andy = = + 2p + 1.

Similarly, without loss of generality we can assume thatehe

(@) (b) (© is a position of A on the liney = —z ory = —2 + 1 and

Fig. 4. Maximal anticodes in the square grid no position below this line, and sd is bounded by the lines
y=—zandy = —x +2p+ 1 or by the linesy = —z + 1
andy = —z + 2p+ 2. In either case, these four lines define a

A. Maximal anticodes in the square grid bicentred Lee sphere of radiys u

We start by defining three shapes in the square grid. WeFinally, the following theorem is interesting from a theire
will prove that these shapes are the only maximal anticodiegl point of view.
in the square grid when we use Manhattan distance. .

A Lee sphereof radius R is the shape in the square moddlheorem 4. There exists D (m, r) for which the only max-
which consists of one point as centre and all positions éhal anticode of diameter containing it is a Lee sphere
Manhattan distance at mo#& from this centre. The area of (bicentred Lee sphere, quadricentred Lee sphere) of déamet
this Lee sphere i8R +2R + 1. For the seminal paper on Leer.
spheres see [33]. Figué 4a illustrates a Lee sphere ofgadiu
2.

Proof: We provide the configurations that are needed. All

A bicentred Lee sphemef radius R is the shape in the squar%}lz fel":g;sr in the proof below are readily verified and left to

model which consists of two centre pointsAa 1 or anl x 2 Wh is odd take t int th
rectangle) and all positions of Manhattan distance at nﬁbsth X er: 7; II'S 0 ’hwtehagay af }N&_pom_s (}n 'et same
from at least one point of this centre. The area of this bigeht 0" 2oMa liN€ SUC (z,y) = r: this pair of points is

. o )
Lee sphere i R? 4+ 4R + 2. These shapes were used for two!! & bicentred Lee sphere of radiég=. Whenr is even, the

dimensional burst-correction in [34]. Figuké 4b illuseata same example 'S contameq in a Lee sphere of razd,iﬂsput
bicentred Lee sphere of radius 2. is not contained in a quadricentred Lee sphere of radlids

A quadricentred Lee spheref radius R is the shape in L}? sz; e\;eg, ar21c]i{set2€ 2:Rr/21' Thedp;;ts(lo,éz ; 1),
the square model which consists of four centre points {& 532(1% ;'h" )’t( ¢ N 7t o t)' ant( d_' ’ L) ormh
2 x 2 square) and all positions of Manhattan distance at m (5, 2R). This set of points is not contained in a Lee sphere

R — 1 from at least one point of this centre. The area & rfa\diusR, but is contained in a quadricentred Lee sphere of
this quadricentred Lee sphere 2?2 + 2R. These shapes radius R. u
were defined using the name ‘generalized Lee sphere’ in [35].
Figure[3c illustrates a quadricentred Lee sphere of radius 3. Maximal anticodes in the hexagonal grid
Theorem 5. There are exactly%] different types of maxi-
Theorem 3. mal anticodes of diameterin the hexagonal grid, namely the
« For evenr there are two different types of maximal antianticodes4y, A, . .. ’AFTT’W defined in the proof below.
codes of diameterin square grid: the Lee sphere of radius
5 and the quadricentred Lee sphere of radjus
o Foroddr there is exactly one type of maximal anticode
diametern- in the square grid: the bicentred Lee sphere
radius™5*.

Proof: We consider the translation of the hexagonal grid
gpto the square grid. By shifting it appropriately, any nraal
ghticodeA of diameter- can be located inside dn+1) x (r+
1) squareB with corners af{0, 0), (0,), (r,0), and(r,r). Let
1 be defined by the property that the lings= 2 — i contains
Proof: Let A be a maximal anticode of diametein the a point of A, but no point ofA lies below this line.
square grid. We claim thati > 0. To see this, assume for a contradiction
Assume first that is even, sor = 2p. We will embed. A thati < 0. Then .4 is contained in the region df bounded
in the two-dimensional square grid in such a way that thereby the linesy = z — ¢, y = r, andz = 0. But the point
position in.A on the liney = z, but no position below it. The (0,7 + 1) outsideB is within distance- from all the points of
Manhattan distance between a point on the line = + 2p  this region, contradicting the fact thdtis a maximal anticode.
and a point on the ling = = is at least2p and henced is Thus,i > 0 and our claim follows.
bounded by the lineg = = andy = x4+ 2p. Similarly, without All the points on the liney = x — i that are insideB
loss of generality we can assume that there is a positio# inare within hexagonal distancefrom all points on the lines
on the liney = —x or y = —x + 1 and no position below this y = 2 — i+ 7, 0 < j < r, that lie insideB. All the points on
line, soA is bounded by the lineg = —z andy = —z 4+ 2p, the liney = = — i inside B have hexagonal distance greater
or by the linesy = —z + 1 andy = —z + 2p + 1. These four thanr from all the points on the ling = x—i+r+1. Hence,
lines define a Lee sphere of radipor a quadricentred Lee as.A is maximal,.4 consists of all the points bounded by the
sphere of radiug. linesy = x—i andy = x —i+r inside B. It is easy to verify
Now, assume that is odd, sor = 2p + 1. We will embed that each one of the+ 1 anticodesA; defined in this way is
A in the two-dimensional square grid in a way that a positice maximal anticode. One can readily verify thé&t and A, _;



Fig. 5. Hexagonal sphere of radius 2 (a) (b) (C)
Fig. 6. Anticodes in the Euclidean distance

are equivalent anticodes, sincé._; is obtained by rotating
A; by 180 degrees. So the theorem follows. [ | Because maximal anticodes iR? determine the shape
of maximal anticodes in the square or hexagonal models,

Theorem 6.Leti be fixed, wher® < i < [*51]. There exists we conclude this section with a brief description of such

aDD (m,r) for which the only maximal anticode of diamete@nticodes.
r containing it is of the forn, . An anticode is confined to the area as depicted in Figlre 6a,
where dots are two elements in the anticode at distance
Proof: Again, we provide the configurations, and leavehe most obvious maximal anticode is a circle of diameter
the verification of the details to the reader. depicted in Figur€léb. Another maximal anticode is depicted
For eachi, 1 < i < 31, A; has six corner points. If in Figure[Bc, and is constructed by taking three dots at the
we assign a dot to each corner point then we will obtain\grtices of an equilateral triangle of sideand intersecting the
DDC which cannot be inscribed in another maximal anticodgircles of radius: about these dots. Between the ‘triangular’
Whenr = 2R these six points do not define a DDC #iz.  anticode and the circle there are infinitely many other max-
In this case we assign seven dotsAg as follows. In four jmal anticodes. We will need the following ‘isoperimetiica
consecutive corner points we assign a dot; in the next corigeorem; see Littlewood [36, Page 32] for a proof.
point we assign two dots in the adjacent points on the boyndar
of Ag; in the last corner point we assign a dot in the adjacefthaorem 7. Let A be a region oR? of diameten- and area.
point on the boundary ofir towards the first corner point. thapn, < (n/4)r2.
Wheni = 0, A; is a triangle and has three corner points. If
we assign a dot to each of these corner points we will obtain aWe remark that the example of a circle of diameteshows
DDC which cannot be inscribed in another maximal anticodghat the bound of this theorem is tight.
[
We now consider some basic properties of thésél]

anticodes. First, the number of grid points iy is (r + . ) ) , ,
1?2 — G4 (r=)1-) _ rDe+2) i(r — 7). The In this section we will provide asymptotic upper bounds

smallestQanticode is420, an isosceles2 right triangle with basé" the numbe_r of dots that can be cont,amed in a DDC,
and height of length + 1 containingm points. The using a tec“!“q“_e due to Erdos and Turan [18], [37]. We
largest anticode is thieexagonal Spherﬂ[r_;l-‘ of radiusr/2. §tartb_ycon3|der|ng Upper bounds on the numlqeof dots
1) _ in a DD.(m,T) and aDD (m,r), and then consider upper
The hexagonal sphere contai¥$ points whenr is odd, pounds in aDD(m, ) and DD*(m, r). The results for small
and contains®—tfr+t — 3 (g)2 +3(%) + 1 points whenr  parameters in Sectiof] Il might suggest thatDd (m,r)
is even. The hexagonal sphere of radius R is the shapecbn always contaim + 2 dots: our result (Theoref 9) that
the hexagonal model which consists of a centre point and all < %7’—!—0(7’) surprised us. Our techniques easily generalise
positions in hexagonal distance at mdstfrom this centre to DDCs where we restrict the dots to lie in various shapes in
(Fig.[8). the grid not necessarily related to distance measures: @e en
the section with a brief discussion of this general situatio

IV. UPPER BOUNDS ON THENUMBER OFDOTS

C. Maximal anticodes with Euclidean distance
It seems much more difficult to classify the maximal anA. Manhattan and hexagonal distances

ticodes in the square and hexagonal grids when we use Edmma 8.Letr be a non-negative integer. Latbe an anticode
clidean distance. Note that the representation of the g of Manhattan diameter in the square grid. Let be a positive
grid in the square grid does not preserve Euclidean d'mncﬁwtegersuch that < r, and letw be the number of Lee spheres

and so we cannot use the mgpWe expect that the overall o ragijys that intersectt non-trivially. Thenw < L(r420)2+
shape of a maximal anticode in both models should be similgj

since a maximal anticode in both models is just the inteisect

of a maximal anticode ilR? with the centres of our squares or Proof: Let A’ be the set of centres of the Lee spheres
hexagons respectively. But the ‘local’ structure of an@de we are considering, s = |A’|. We claim thatA’ is an
will be different: for example, in the hexagonal grid we caanticode of diameter at most+ 2¢. To see this, let, ¢’ € A'.
have three dots that are pairwise at distancbut this is not Since the spheres of radidsaboutc and¢’ intersectA non-
possible in the square grid. trivially, there exist elements, a’ € A such thatd(c,a) < ¢

).



andd(d,a’) < ¢. But then fixed pair of dots with vector differencé If we assume that
the first element of the pair of dots with vector differente
d(C, c/) < d(C, a) + d(a’a/) + d(a”c/) < {+r+0=1r+ 2@, lies at the Origin, we see that
and so our claim follows.

Let 4" be a maximal anticode of diametet2¢ containing ; k(d) = a(a —1)

A’. Theorem B implies thatd” is a Lee sphere, bicentred ) .
Lee sphere or quadricentred Lee sphere of radiusvhere SiNce there are exactlyLee spheres of radiuscontaining the

R = [(r+20)/2|. In all three cases,A”| = 2R? + O(R) = origin, and each such sphere contribute® k(d) for exactly

L(r +20)% + O(r). Since a — 1 values ofd. Thus we have established (1).
Now, the inequality [(l1) together with the fact that =
w = [A| < A", am/w imply that
the lemma follows. [ ] (p—1)m<a—1<a,
I ; and so
Theorem 9.IfaDD(m, r) exists, then m? < w (1 N @) . o
m < J5r+ (3/24%)? % 1 O(r1?). a
By Lemma[8,

Proof: We begin by giving a simple argument that leads 1 90
to a linear bound om: in terms ofr, with an inferior leading Vw < —r <1 +—+ O(r1)> ,
term to the bound in the statement of the theorem. There are V2 "

272 42r non-zero vectors of Manhattan lengtlor less, where and we have that

a vector is a line with direction which connects two points. - 2
The distinct difference property implies that each suchtarec (1+(m/a)) =1+ m/(2a) + O((m/a)7).
arises at most once as the vector difference of a pair of ddince m = O(r) anda > 202r*/3, these two inequalities
Since a configuration aof: dots gives rise ton(m — 1) vector combine with [2) to show that

differences, we find that m

1 ~1/3

m(m —1) < 2r% 4 2r. V2

In particular, we see that < v2r + o(r) = O(r). Sincem = O(r), this inequality implies thatn < \/%r +

We now establish the bound of the theorem. Since all tit&(r>/). Combining this tighter bound witi}3) we find that
dots are at distance at mastwe see that all dots are contained 1 1
in a fixed anticode4 of the square grid of diameter. Set m < ET (1 + (2a + NG 2) rml/3 4 0(7_2/3)) .
¢ = |ar?/?], where we will choose the constaatlater so @
as to optimize our bound. We covet with all the ‘small The expressior2a + 1/(4v/2a2) is minimized whena =
Lee spheres of radiué that intersect4 nontrivially. Every 275/¢ at the value3/2°/°, so choosing this value for we
point of A is contained in exactly small Lee spheres, wherededuce that
a = 20? + 2( + 1. Moreover, by Lemm@&l8, we have used 1 3 _1/3 _o/3
small Lee spheres, whete < 4 (r + 2¢)? + O(r). m < gr (L4 ger™ P+ 0(027))

Let m; be the number of dots in thith small Lee sphere. = %r + 52513 + O(r!/3),
Let ;. be the mean of the integers;. Since every dot is
contained in exactlys small Lee spheresy = am/w. We
aim to show that

w(p? — p) < imi(mi —1)<ala—1). 1)
i=1

+ 0(r*2/3)) )

as required. [ |
We now look at the hexagonal grid.

Lemma 10. Let r be a non-negative integer. Let be an
anticode of hexagonal diameteiin the hexagonal grid. Let
o o ) be a positive integer such thak r, and letw be the number
The first inequality in[(LL) follows from expanding the non¢ peyagonal spheres of raditishat intersectA non-trivially.
negative sumy_:” | (u—m;)?, so it remains to show the secondrpap,, < 3(r 4202 + O(r).
inequality. S

The sum)_"", m;(m; — 1) counts the number of pairs Proof: The set of centres of the hexagonal spheres of
(L,d) where £ is a small Lee sphere and is a vector radius/ that have non-trivial intersection witd clearly form
difference between two dots i Every differenced arises an anticode of diameter at mas#- 2¢. Therefore the number

from a unique ordered pair of dots jA, since the dots form w of such spheres is bounded by the maximal size of such

a distinct difference configuration. Thus an anticode. The results on the maximal anticodes in the
w hexagonal metric in Sectidn Il imply that
Z}mi(mi—l) <Zd:’“(d>’ w < L(3(r + 202 + 6(r +20) + 4)

_3 2
where we sum over all non-zero vector differenéesid where 4 (r+2607+0(r),
k(d) is the number of Lee spheres of radithat contain any as required. [ |



Theorem 11./faDD’ (m,r) exists, then Similarly, every point in a circle of radiug — (1/+/2) with
. centrec is contained inY. Hence
m < L2p 4 (313275323 L o(r1/3). ¢

R _ Tt = (1/V2)? < |X| < w(f+ (1/V2))%,
Proof: The dots in aDD (m,r) form an anticode of

diameterr. Let ¢ = [272/3371/6;2/3] We may cover these and so the lemma follows. u

dots with thew hexagonal spheres of radidsthat contain

one or more of these dots. By Lemrial 10, we have the@mmal4. Let r be a non-negative integer. Let be an

w < %(r +20)2 +0(r). anticode in the square grid of Euclidean diameteket ¢ be
Using the fact that a hexagonal sphere of radioentains a a positive integer such that< r, and letw be the number of

points in the hexagonal grid, wheae= 3¢% + 3¢+ 1, we may Ccircles of radiug whose centres lie in the square grid and that

argue exactly as in Theordrh 9 to produce the bolihd (2). Thénéersectd non-trivially. Themw < (m/4)(r + 20)* + O(r).

are O(r?) vectors in the hexagonal grid of hexagonal length

r or less, so the argument in the first paragraph of Thegiem 9

shows thatn = O(r). Sincem/a = O(r~'/3), the bound[(R) A

implies that

Proof: As in Lemmd3, it is not difficult to see that the set
of centres of circles we are considering form an anticode in
the square grid of diameter at most 2¢. Note thatw = |.A'|.

/3 Let X be the union of the unit squares whose centres lid’in

2/3 3 2/3 so X has areav. The maximum distance between the centre

m < Vw0l / )= o +0(r ). of a unit square and any other point in this squarg/ig2, and

This bound onm implies thatm/a = 21/33-1/6;=1/3 4 S0 X is an anticode iiR? of diameter at most+2/+(1/+/2).

O(r=2/3), and so applyind{2) once more we obtain the bourfd€nce; by Theorel & < (m/4)(r + 20 + (1/v2))? and the

of the theorem, as required. m emma follows. =

One consequence of Theoré€nd 11 is an answer to the ninth )

question asked by Golomb and Taylor [24haneycomb array Theorem 15./faDD(m, r) exists, then

is a DDC in the hexagonal grid whose dots, when represented m< VEp g 3m® 28 O(rl/g)

in the square grid, form amn x m Costas array whose =2 2873 '

dots lie inm consecutive ‘North-East’ diagonals. Honeycomb  Proof: The proof is essentially the same as the proof

arrays are the natural hexagonal analogue of Costas alaysof Theoren{ 1], using Lemnfall3 to bound the numbef

honeycomb arrays exist for infinitely many? The conjecture points in a sphere of radiu§ and using Lemm&_14 instead

in [24] is that the answer is YES. However, the answer is iof LemmaI0. The bound of the theorem is obtained if we set
fact NO, as the following corollary to Theoreml11 shows. ¢ = |1/(22/371/6)y2/3], -

Corollary 12. Honeycomb arrays exist for only a finite numbef emma 16. Let ¢ be a positive integer, and I& be a (Eu-
of values ofmn. clidean) circle of radiug in the plane. Then the number of

Proof: The dots in a honeycomb array are containg?ts Of the hexagonal grid containednis (2m/V/3)0% +

in an anticode of diameter at most — 1 (using hexagonal (0).

distance). Hence a honeycomb array BR (m,m — 1). But Proof: The proof of the lemma is essentially the same as
TheoreniIll shows that < §m+0(m2/3)- Since§ <1, the proof of Lemm&13. The hexagons whose centres form the
no honeycomb array exists whem is sufficiently large. W hexagonal grid have ared3/2, and the maximum distance

In fact, numerical Computations indicate that no honeycon@ﬁa the centre of a hexagon to any point in the hexagon is
arrays exist form > 1289: for m in this range, there is a1/,/3. Define X to be the set of points of the hexagonal grid
suitable choice of such that a honeycomb array violates thgontained inS, and letX’ be the union of all hexagons in our
inequality [2). grid whose centres lie ifk. Clearly X has aregv/3/2)| X|.

The argument of Lemma L3 shows that

. . . . m(0 = (1/v/3))* < (V3/2)|X| < 7(€ + (1/V3))?,
We now turn our attention to Euclidean distance. Our first

lemma is closely related to Gauss’s circle problem: and so the lemma follows. ]

B. Euclidean distance

Lemma 13. Let ¢ be a positive integer, and I& be a (Eu- Lemmal7. Let r be a non-negative integer. Let be an

clidean) circle of radiug in the plane. Then the number ofanticode in the square grid of Euclidean diametetet (¢ be

points of the square grid containedSnis (> + O(¢). a positive integer such théat< r, and letw be the number of
circles of radiug whose centres lie in the hexagonal grid and

Proof: Let ¢ pe the cgntre 05 Let_X be the set of po!nts that intersectd non-trivially. Themw < (r/(2v/3))(r +2¢)? +
of the square grid contained . Define X' to be the union r).

of all unit squares whose centres lieih Clearly X' has area

|X|. The maximum distance from the centre of a unit square Proof: The proof of this lemma is essentially the same as
to any point in the unit square is at mosty/2, and soX the proof of Lemm&14. The argument there with appropriate
is contained in the circle of radius+ (1/+/2) with centrec. modifications shows thadt/3/2)w < (7/4)(r+20+(1/+/3))?



(where the factor ofy/3/2 comes from the fact that the A. Constructions from Costas Arrays

hexagons associated with our grid have avé&/2). u A Costas arrayof ordern is ann x n permutation array
which is also a DDC. Essentially two constructions for Cesta
Theorem 18./fa DD* (m, r) exists, then arrays are known, and both give rise to doubly periodic DDCs.

The Periodic Welch Construction:
Let o be a primitive root modulo a primgand letA be the

) square grid. For any integeisand j, there is a dot inA(, j)
Proof: The proof is the same as the proof of Theofeth 1%, and only if o/ = j mod p.

using Lemmab 16 arld 117 in place of Lemrhab 13[afd 14, andrpe following theorem is easy to prove. A proof which also

3°/671/3 2/3 1/3
m<ﬂ€/4r+ 5173 r2/ —l—O(r/).

defining ¢ = [3!/12275/67=1/6,2/3 ], ®  mentions some other properties of the construction is given
in [23].
C. More general shapes Theorem 19. Let A be the array of dots from the Periodic

elch Construction. Thed is a doubly periodip x (p — 1)

All the theorems above consider a maximal anticode i ; . .
DC with period(p — 1, p) and densityi /p.

some metric, and cover this region with small circles of uadi

(. We comment (for use later) that the same techniques WQHgeed, it is not difficult to show that eaghx (p — 1) sub-
for any ‘sensible’ shape that is not necessarily an antico@@ray is a DDC withp — 1 dots: a dot in each column and
(We just need that the number of small circles that intersegkactly one empty row. Thgy — 1) x (p — 1) sub-array with

our shape is approximately equal to the number of grid pointsver left corner atA(1,1) is a Costas array.
contained in the shape.) So we can prove similar theorems

for DDCs that are restricted to lie inside regular polygdos, The Periodic Golomb Construction:
example. The maximal number of dots in such a DDC is atLet a and 3 be two primitive elements in GE), whereq
most /s + o(y/5) when the shape containspoints of the is a prime power. For any integeisand j, there is a dot in

grid. A(i, j) if and only if o* + 37 = 1.
The following theorem is proved similarly to the proof
in [23], [40].

V. PERIODIC TWO-DIMENSIONAL CONFIGURATIONS
Theorem 20. Let A be the array of dots from the Periodic
The previously known constructions for DDCs restrict dot&olomb Construction. The# is a doubly periodi¢q—1)x (q—

to lie in a line or a rectangular region (often a square regdbn 1) DDC with period(q—1,q— 1) and densityq—2)/(q—1)2.
the plane. The application described in [22] instead demand

that the dots lie in some anticode. The most straightforwaligdeed, eactig — 1) x (¢ — 1) sub-array ofA is a DDC with
approach to constructing DDCs for our application is to fin@l — 2 dots; exactly one row and one column are empty. The
a large square or rectangular subregion of our anticode, dfid- 2) x (¢ — 2) sub-array with lower left corner ad(1,1)

use one of these known constructions to place dots in tfi§s@ Costas array.

subregion. This approach provides a lower boundrfothat | we take a = 3 in the Golomb construction, then the
is linear in r, but in fact we are able to do much bettefonstruction is known as the Lempel Construction. There are
than this by modifying known constructions (in the cas¥arious variants for these two constructions resulting ist&s

of Robinson’s folding technique below) and by making us@frays with orders slightly smaller (by 1, 2, 3, or 4) or large
of certain periodicity properties of infinite arrays rethteo DY one than the orders of these two constructions (see [24],
rectangular constructions. We will explain how this can Hé1l). These are of less interest in our discussion, as tiey d
done in the next section. In this section we will survey sonftot extend to doubly periodic arrays in an obvious way.

of the known constructions for rectangular DDCs, extend

these constructions to infinite periodic arrays, and privee tB. Constructions from Golomb rectangles

properties we need for Sectign]VI. A Golomb rectanglés ann x k& DDC with m dots; Costas
Let A be a (generally infinite) array of dots in the squararrays are a special case. Apart from constructions of spe-

grid, and letn and x be positive integers. We say that is cial cases, there is essentially one other general cotistnuc

doubly periodiowith period(n, =) if A(i,j) = A(i+n,j) and known, thefolded rulersconstruction due to Robinson [9].

A(i,j) = A(i,j + ) for all integersi andj. We define the Folded Ruler Construction:

densityof A to bed/(nx), whered is the number of dots in  Let S = {a1,a2, -+ ,a,m} € {0,1,...,n} be a Golomb

any x x n sub-array ofA. Note that the periodn, ) will not  ruler of lengthn. Let ¢ andk be integers such thétk < n+1.

be unique, but that the density of does not depend on theDefine A to be thel x k array whereA(i, j), 0 <i < k — 1,

period we choose. We say that a doubly periodic avdapf 0 < j < ¢—1, has a dot if and only if - ¢ + j = a; for some

dots isa doubly periodicn x k& DDC if every n x k sub-array ¢,

of A is a DDC. See [14], [38], [39] for some information

on doubly periodic arrays in this context. We aim to preseiiheorem 21.The arrayA of the Folded Ruler Construction is

several constructions of doubly periodic DDCs of high dsnsi an? x k Golomb rectangle.



We now show how to adapt the Folded Ruler Construction such thatged(¢, k) = 1. For any two integers and ; we
to obtain a doubly periodié¢ x k DDC. We require a stronger place a dot inA(i, j), if and only ifa; = (i- £+ j - k) mod n
object than a Golomb ruler as the basis for our foldinfpr somet.
construction, defined as follows.

Theorem 25. Let A be the array constructed by the Chinese

Definition 2. Let A be an abelian group, and ldd = Remainder Theorem construction. Thérns a doubly periodic
{a1,a2,...,am} C A be a sequence of., distinct elements ¢ x k DDC of period(k, ¢) and densityn/n. Moreover, every
of A. We say thaD is a Bo-sequence oved if all the sums ¢ x k sub-array ofA contains exactlyn dots.

a;, +a;, withl <i; < iy < m are distinct. .
b SRR Proof: Let f(z,y) = - { +y - k. For any two integers:

For a survey on3,-sequences and their generalizations trend 5 we havef (i, j) = f(i+ak,j+08¢) = i-£+j-k mod n.
reader is referred to [42]. The following lemma is well knowrso the definition of4 implies thatA is doubly periodic with

and can be readily verified. period (k, ¢).

Since/ and k are relatively primes, it follows (from the
Lemma22. A subsetD = {ai,as,...,a,} C Ais aBy- Chinese Remainder Theorem) that each integerthe range
sequence ovet if and only if all the differences;, — a;, with 0 < s < £-k—1, has a unique representationsas d-{+e-k,
1 < iy # iy < m are distinct inA. where0 < d < k—1,0<e<{—1. Hence every x k sub-

_ _ _ array of A hasm dots corresponding to the elements of the
So, in particular, a Golomb ruler is exactlyf-sequence B,-sequenceD. In particular, this implies thatl has density

over Z. Note that aBs-sequence€{aq, as, .. .,a;,} overZ, m/n.

produces a Golomb ruleiby, by, .. ., b, } whenever thé; are  Assume for a contradiction that there exists/an k sub-
integers such that; = b; mod n. Also note that ifD is a B>~ array S of A that is not a DDC. Suppose that the lower left-
sequence ovef, anda € Zy, then so is the shift + D = hand corner ofS is at A(i,j). The distribution of dots in

{a+d: d € D}. The following theorem, due to Bose [43].5 is the same as the distribution in the sub-array with lower

shows that large3,-sequences oveL, exist for many values |eft-hand corner the origin once we replaée by the shift

of n. (il + j¢) + D. So, without loss of generality, we may assume
that the lower left-hand corner & lies at the origin. As the

Theorem 23.Let q be a prime power. Then there exist®8a-  distinct difference property fails to be satisfied, there faur

sequence, as, ..., a,, overZ, wheren = ¢*—1 andm = q. positions with dots ind of the form:
The Doubly Periodic Folding Construction: Ali1, j1) A(i1 +d, j1 +e)
Let n be a positive integer anB = {ay, as,...,a,} be a Aliz,j2)  Ali2 +d,j2 +e)

By-sequence it%,,. Let ¢ andk be integers such thétk < n.
Let A be the square grid. For any integérand j, there is a
dot in A(¢, 7) if and only if a; = ¢ - £ + j mod n for somet.

whereiy, iy + d,is,io +d € {0,1,...,k — 1} and jy1,j1 +
e,j2,j2 + e € {0,1,...,¢ — 1}. By the definition of A we
have

Theorem 24.Let A be the array of the Doubly Periodic Folding (’_1 +d)l+ (3,1 +e)k - (2.12 + 3_1]‘“) =d-lte-k

Construction. The! is a doubly periodié x k DDC of period (i +d)t + (jo + e)k — (2l + jok) =d - L+ ek

(gea(ey»m) and densityn /n. Since by Lemm&22 each nonzero residumodulon has at
most one representation as a difference from two elements of

Proof: Let f(z,y) = = - { +y. The period ofA follows D, it follows that the pairs

from the observation that for each two integersand 5 we

havef(i, j) = f(i+a g+ 6n) = i-£+j mod n. The {A(ir, 1), Ay +d, j1 + )}

density of A is m/n follows since there are exactly, dots {A(iz, j2), Ali2 + d, j2 + €)}

in anyn consecutive positions in any column. are identical, and the theorem follows. n
Let S be an/ x k sub-array, whose lower left-hand corner

is at.A(7, ). An alternative construction of the dots his as V]. LOWER BOUNDS

follows. Take the shif(i- ¢+ j)+ D of D, which is also aB,- .

sequence irZ,. Let D’ be the corresponding Golomb ruler® Manhattan distance

in {0,1,...,n — 1}, soa € D if and only if = b mod n, In this section we will prove that there existsD (m, )
whereb € (i- £+ j) + D. Then form dots inS by using the with 7 — o(r) dots: this attains asymptotically the upper
Folded Ruler Construction. Hence, by Theorenmh 21, the ddieuntfof Theoreni]9. We will see that this construction is

in § form a DDC and so the theorem follows. B actually using folding in a slightly different way. We fugh
The following slightly different construction also prodis show that we can construct a doubly periodic array in which
doubly periodic Golomb rectangles. each Lee sphere of diameteis a DDC with \/% +o(r) dots.
The Chinese Remainder Theorem Construction: The LeeDD Construction:
Let n be a positive integer and 1dD = {a1,a2,...,am} Let » be an integer, and defin& = |Z]. Let D =

be aB,-sequence itZ,. Letn = ¢ - k be any factorization of {a;,as,...,a,} be a ruler of lengthn. Define f(i, j)
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iR+j(R+1)+ R%*+ R. Let A be the Lee sphere of radius _

centred at(0,0), so.A has the entryA(s, j) if |i| + |j| < R. 24
We place a dot inA(i, j) if and only if f(i, ) € D. 1720 23
101316 192
Theorem 26.The Lee spherel of the LeeDD Construction is [3] 6] 912151821
aDD(m,r), wherem = |D N {0,1,...,2R? + 2R}|. 2/5/8/1114
1147
Proof: We first note that ifz| +|j| < R then the smallest 0]

value that the functiory takes is 0 and the largest value is

2R? 4+ 2R. Next, we claim that if(i,, j;) and (i, j») are two Fig. 7. Folding along diagonals
distinct points such thali;| + |51| < |iz2| + |j2| < R then _
fi1,51) # f(ia, j2). Assume the contrary, that(ii,j1) =
f(iz, j2). SO R+ 71 (R+1)+ R*+ R = iaR+ jo(R+1) +
R%+ R and thereforgis —iy )R = (j1 —jo)(R+1). If iy = ia,
thenj; = j» which contradicts our assumption tHat, j;) and
(i2, j2) are distinct. So we may assume that# i,. Similarly,
we may assume that # j». The equality(ia — i1)R =
(j1 — j2)(R+1) now implies thatR + 1 divides|is — 41| and
R divides|js — j1|. This implies thatis —i1|+|j2 —j1| > 2R, -
but

Fig. 8. A (3,5)-diagonally extended Lee sphere
lig —i1] + |72 — ji| < [ix] + [j1] + |i2] + 72| < 2R,

and so we have a contradiction. Thy&j1,j1) # f(i2,7j2). The Doubly Periodic LeeDD Construction:

This implies that each one of the integers betw@&and Letr be an integerR = | 5], and letD = {a1, a2, ..., a,}
2R% + 2R is the image of exactly one paii, j). In partic- be aB,-sequence ove¥,, wheren > 2R? + 2R + 1. Let
ular, the numbern of dots in the configuration is exactly f(i,j) = iR+ j(R+1) mod n. Let A be the square grid. For

|D Nn{0,1,...,2R% + 2R}\. each two integers andj, there is a dot inA(s, j) if and only
Since A is a Lee sphere of radiug, it follows that the if f(¢,j) € D.

Manhattan distance between any two points is at rR&sK r. Similarly to Theoreni 26 we can prove the following result.

Now, assume for a contradiction thdtis not aDD(m, ), SO

there exist four positions with dots i4 as follows: Theorem 28.The arrayA constructed in the LeeDD Construc-
Aoy Al t o doublypero i prod ) sncensny . he
Aliz, jo2) Aliz +d, j2 +e) inedin any P '

By definition we have that Proof: The first statement of the theorem is obvious. The

o , , o _ . second statement follows as in the proof of Theorein 26, once
Firs 1), f(in 4 do i+ e), f(iz, o), f(iz +dyja+€) €D e observe thaf is an injection when restricted to any Lee

But thenf(z'l + d, jl + 6) — f(il,jl) = f(Zl + d, jl + 6) — Sphere of rad.lusR. . u
(i1, 41) = dR + e(R + 1), contradicting the fact thab is a N Subsectiong VI-D an@ VIE we will make use of an
ruler. extension of this construction. For positive integérsandt,
Thus, the Lee spherel of the LeeDD Construction is a @ (&, ?)-diagonally extended Lee spheeea set of positions
DD(m, 7). m in the square grid defined as follows. L@#, jo) € Z?, and
defineC' = {(iop + k,jo+ k) : 0 < k < ¢t —1}. Then an
Corollary 27 There exists DD (m, ) in whichm = - — (R, t)—diagonal_ly extgnded Lee sphere is the un_ion of the Lee
o(r). V2 spheres of radiu® with centres lying inC'. (See Fig[B for an

example.) An(R, t)-diagonally extended Lee sphere contains
Proof: DefineR = |r/2] and letn = 2R2+2R+1. There exactly2R*+t(2R+1) positions; the Lee sphere of radifs
exists a ruler of length at most containingm dots, where is the special case when= 1. We observe that by choosing
m > /n+o(yn): see [4], [5], [7]. LetD C {0,1,...,n—1} n>2R*+t(2R+ 1), we can generalize the doubly periodic
be such a ruler. The corollary now follows, by Theorem 26.eeDD construction by continuing folding along the diagsna
m of the rectangle. This yields the following corollary, whic
It is worth mentioning that the LeeDD Construction igvill prove useful in the construction of configurations foiet
actually a folding of the ruler by the diagonals of the Le&exagonal grid.
sphere. Figur€]7 illustrates why this is the case, by lafglli
the positions in a Lee sphere of radiBsby the values of Corollary29. Let a be positive, and let. be an integer such
f(i,j) at these positions. So if we use-sequence over thatn > (2 + 2a)R? + aR. Consider the arraj\ constructed
Z,, instead of a ruler in the LeeDD Construction we obtain asing the doubly periodic LeeDD Construction. Thénis a
doubly periodic array with nice properties: doubly periodic array with density/n. The dots contained in
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any (R, |aR|)-diagonally extended Lee sphere form a DDC.
There exists a family oB, sequences so that has density at —
leastl/\/(2 + 2a)R? + o( R?).

|3

Proof: To establish the final statement of the corollary, R
we choose a family ofB; sequences as follows. Let be
the smallest prime such that — 1 > (2 + 2a)R? + aR,
and definen = p? — 1. By Ingham’s classical result [44] on
the gaps between primes, we have that (2 + 2a)R? +
O(R"/®) = (2+2a)R*+o(R?). By Theoreni 2B, there exists
a Bs sequence over,, with ;. = p. Hence the density ofl \ /
is

\/
p/n=p/p*—1) > 1/y/(2 + 2a)R? + o R?),

as required. m Fig. 9. Square intersecting a circle

B. A General Technique C. Euclidean distance in the square model

Let S be a shape (a set of positions) in the square grid. We This sqbsec_:tion iIIu_strates_our general tec.hnique in the
are interested in finding large DDCs containedsirwhere (for Sduare grid using Euclidean distance. So we wish to coristruc
example)S is an anticode. This subsection presents a genefapP (7, 7) with m as large as possible.

technique for showing the existence of such DDCs, using the-€t &£ = [7/2], and letS be the set of points in the square
doubly periodic constructions from Sectibn V. grid that are contained in the Euclidean circle of raditis

We write (i, j) + S for the shifted copy((i +i',j + /) : about the origin. We construct a DDC containedSnwith

g C dots: any such configuration is clearyp®(m,r) for
i',7") € S8} of S. Let A be a doubly periodic array. We many ; o )
éay t%at.A ii adoubly periodicS-DDC if the dots contained some value ofn. The most straightforward approach is to find
in every shift (i, j) + S of S form a DDC. So the doubly a large square contained & (which will have sides of length
periodic arrays (’:onstructed in Sectioh V are all doublyquid approximatelyy/2R), and then add dots within this square

S-DDCs whereS is a square or a rectangle; the arrays iHSIng a Costas array. This will produceX (m, r) where

Theorem 2B and Corollafy_ 29 are doubly periodieDDCs m=+V2R —o(R) = %r —o(r) =~ 0.707r.
with S a Lee sphere and diagonally extended Lee sphere ?

respectively. The following lemma follows in a straightiard 10 Motivate our better construction, we proceed as foll dis.
way from our definitions: find a square of side wheren > /2R that partially overlaps

our circle: see Figurg]l9. The constructions of Sedfidn V show
o , that there exist doubly periodic x n DDCs that have density
Lemma 30.Let A be a doubly periodi§-DDC, and IelS” © - 4pproximatelyl /n. So Theorenid1 shows that for any shape
S. ThenA is a doubly periodic’-DDC. S’ within the square, there exist DDCs & that have at least
S'|/n dots. LetS’ be the intersection of our square with

we will use dO.Uny periodic DDCS.tO prove the eX|§tenc efiningd as in the diagram, some basic geometry shows that
of the configurations we are most interested in, using tl?ﬁ

i e area ofS’ is
following theorem. .
(w/2) — 260 + sin 20

2cos? 0
Sincen = 2Rcos®, Theorem 31l shows that the density of
dots within &’ can be about /n = 1/(2Rcosf) whenn is
large. So we can hope for at legsR dots, wherey is the
maximum value of

8’| = |S| = 2R?((m/2) — 26 + sin 26).

Theorem 31.LetS be a shape, and Igt be a doubly periodic

S-DDC of densitys. Then there exists a set of at le&stS|]
dots contained i that form a DDC.

Proof: Let the period ofA be (1, k). Write m, ; for the

number of dots of4 contained in the shifti, j) + S of S. ((w/2) — 26 + sin 20)/ cos #
Now A is periodic, so the definition of the density dfshows . )
that on the intervald < 6 < w/4. In fact u ~ 1.61589, achieved
n K when ¢ ~ 0.41586 (and so whem = rcosf = cr, where
Z me = (nk)d|S]. ¢~ 0.914769).

i=1 j=1
) . . Theorem 32. Let 1 be defined as above. There exists a

Hence the average size of the integer; is 0|S|, so there DD(m, r) in whichm = (1/2)r — o(r) ~ 0.80795r-

exists an integem; ;. such thatm, ;; > [§|S|]. Them; ; ’

dots in(i’, ') +& form a DDC, by our assumption od, and Note that Theoremi 15 gives an upper bound sanof the

so the appropriate shift of these dots provides a DDGSin form m < (y/7/2)r + o(r) ~ 0.88623r-.

with at least[4|S|] dots, as required. |
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Fig. 11. A(t, |at])-diagonally extended Lee sphere is transformed into a
rotated square (Wheat = (v/3 — 1)t + 1)

Fig. 10. A diagonal rectangle intersecting the image of aagjeral sphere

3
It can be seen that = (2)> \1/%_{/77 ~ 1.58887, achieved
+

whena = # SinceS’ is contained in a hexagonal sphere
of radius R, all pairs of dots in our DDC are at hexagonal
distance at most. Thus we have the following theorem:

Proof: Define ¢ ~ 0.91477 as above. Lety be the
smallest prime power such that > c¢r. We have that
cr < q < cr + (cr)®8, by a classical result of Ingham [44]
on the gaps between primes; so in particujar~ cr. By
Theoren2D, there exists a doubly perio@ic— 1) x (¢ — 1)
DDC A of density (¢ — 2)/(¢ — 1)%. Let &’ be the inter-
section betweerS and a Euclidean circle of radiug/2]
about the origin. Thend is a doubly periodicS’-DDC. By
Theoren{3ML, there exists a DDC &f with at leastm dots, E. Euclidean distance in the hexagonal model

5 .
Wt?ere|5;|(q—/2)/(q—1) .Bu2t the geometng argl;]merr:t above In this subsection we will obtain a construction for a
shows thalS"|(¢ —2)/(¢—1)° ~ (#/2)r, and so the t eor.em DD*(m,r) contained within a circle of radiu® = |r/2],

follows. again based on the doubly periodic LeeDD construction. We
first observe that a diagonally extended Lee sphere in the
) square grid is transformed k! into a (rotated) rectangle
D. Hexagonal distance in the hexagonal grid. In particular, @, | (v/3 — 1)t + 1))-

By representing the hexagonal anticodes in the square gfipgonally extended Lee sphere is tran;formqubﬂf Into
we may use TheorefiB1 to show the existencelofd (m,r) & set of hex_agons whose centres all lie within a (rotated)
whererm is large. The method of producing lower bounds igduares of side 3t (see Fig[H). Corollarz29 shows that
essentially the same as above, but the geometrical probilre i & doubly periodis-DDC with densityl/,/n, where
we are solving is different, with the images undeof the " = 2\/3t2 +0(t2)-_ _ _
maximal anticodes4; replacing the circle, and the DDC Consider (see Fig. 12) a circle of radifisand a squaré
contained a diagonally extended Lee sphere of Corollaty $Sides wheres = 2R cosf. Since a hexagon has ared/2,
replacing the Costas array contained in a square. Here g Squares contains(s//3)R? cos” f+ O(R) hexagons. Let
consider the case of configurations contained in the hexaigori’ P€ the intersection of with the circle of radiusk. The
sphereA[(,_1),2); the cases of the other anticodes may pealculations in Subsectidn VI}C show that
handled in a similar fashion. The problem we are solving ;o (m/2 =20+ sin 20)
is pictured in Fig[ID. The figure shows the image unger 151 = 2cos?6 5]+ OCR)-

of the hexa_gonal sphere OT .rad"R. - /2] n bold; the The previous paragraph shows that there is an periStic
square of sid2R + 1 containing this image is also shown.DCC of densitys — 1//m, wheren — (2/v/3)s2 + o(s?). So

;I;]ZeSgen)q(:gé):natlrgp?hegi:og]a'ns gol;]es_e dsefhserter)\ Ogdagurj Theoreni3lL now implies that there exists a distinct diffegen
. ' gianw ' IS & ’ La. D Igonfiguration inS’ containing at leastn dots, where
diagonally extended Lee sphere whose mid-point is at the

Theorem 33. Let 1+ be defined as above. There exists a
DD’ (m,r) in whichm = (1/2)r — o(r) ~ 0.79444r.

centre of the hexagonal sphere: see Eig. 10. ebe the /2 (/2 — 20 + sin 26)
intersection ofS with the image of the hexagonal sphere. We m = v3 R —o(R).
have thatS’'| = R?(2 + 2a — a?) + o(R?). By Corollary[29, cos

there is a doubly periodi§-DDC of density at least//n  Asin Subsectioh VI-C, we may take~ 0.41586 to maximise

wheren = 2R?(1+a) + o(R?). Thus Theorerfi 31 shows thatthis expression. Hence we have proved the following theorem

there is a DDC contained i§’ containinguR — o(R) dots,

wherey is the maximum of Theorem 34.Let 1 ~ 1.61589 be the constant defined above
Theoreni 3P. There exists¥* (m, ) in which the number of

42
2+2a—a dots is at Ieas{/ %MR —o(R) ~ 0.86819r.

V2yT+a -



[20]
[11]

[12]

(23]

[14]

Fig. 12. Rotated square intersecting a circle [15]

TABLE | [16]
UPPER AND LOWER BOUNDS ON THE NUMBER OF DOTS IN A DISTINCT
DIFFERENCE CONFIGURATION

[17]

lower bound upper bound [18]
DD(m,r)  (1/vV2)r—o(r) (1/vV2)r+0O(r?/3
DD(m,r)  0.80795r —o(r) 0.88623r + O(r2/3
DD (m,r) 0.79444r —o(r)  0.86603r + O(r2/3
DD*(m,r) 0.86819r —o(r) 0.95231r + O(r2/3

[19]

— — — —

[20]

[21]

[22]
VIl. CONCLUSION

We introduced the concept of a distinct difference configpg
uration and gave specific examples for both the square and
hexagonal grids for small parameters. We went on to provi&g‘]
general constructions for such configurations, as well geup
and lower bounds on the maximum number of dots su¢ts]
configurations may contain. In the case of distinct diffeeen
configurations using Manhattan distance these bounds kel
tight asymptotically, as we have provided a construction fo
configurations which meets the leading term in our upp&]
bound. For the remaining classes of configurations, there is
a gap between the upper and lower bounds we have proviggg
(see Tabléll). We believe the upper bounds to be realistit, an
it is an interesting challenge to provide constructions theet [29]
these bounds.
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