6,110 research outputs found

    SUPERVISORY CONTROL AND FAILURE DIAGNOSIS OF DISCRETE EVENT SYSTEMS: A TEMPORAL LOGIC APPROACH

    Get PDF
    Discrete event systems (DESs) are systems which involve quantities that take a discrete set of values, called states, and which evolve according to the occurrence of certain discrete qualitative changes, called events. Examples of DESs include many man-made systems such as computer and communication networks, robotics and manufacturing systems, computer programs, and automated trac systems. Supervisory control and failure diagnosis are two important problems in the study of DESs. This dissertation presents a temporal logic approach to the control and failure diagnosis of DESs. For the control of DESs, full branching time temporal logic-CTL* is used to express control specifications. Control problem of DES in the temporal logic setting is formulated; and the controllability of DES is defined. By encoding the system with a CTL formula, the control problem of CTL* is reduced to the decision problem of CTL*. It is further shown that the control problem of CTL* (resp., CTL{computation tree logic) is complete for deterministic double (resp., single) exponential time. A sound and complete supervisor synthesis algorithm for the control of CTL* is provided. Special cases of the control of computation tree logic (CTL) and linear-time temporal logic (LTL) are also studied; and for which algorithms of better complexity are provided. For the failure diagnosis of DESs, LTL is used to express fault specifications. Failure diagnosis problem of DES in the temporal logic setting is formulated; and the diagnosability of DES is defined. The problem of testing the diagnosability is reduced to that of model checking. An algorithm for the test of diagnosability and the synthesis of a diagnoser is obtained. The algorithm has a polynomial complexity in the number of system states and the number of fault specifications. For the diagnosis of repeated failures in DESs, different notions of repeated failure diagnosability, K-diagnosability, [1,K]-diagnosability, and [1,1]-diagnosability, are introduced. Polynomial algorithms for checking these various notions of repeated failure diagnosability are given, and a procedure of polynomial complexity for the on-line diagnosis of repeated failures is also presented

    RULES BASED MODELING OF DISCRETE EVENT SYSTEMS WITH FAULTS AND THEIR DIAGNOSIS

    Get PDF
    Failure diagnosis in large and complex systems is a critical task. In the realm of discrete event systems, Sampath et al. proposed a language based failure diagnosis approach. They introduced the diagnosability for discrete event systems and gave a method for testing the diagnosability by first constructing a diagnoser for the system. The complexity of this method of testing diagnosability is exponential in the number of states of the system and doubly exponential in the number of failure types. In this thesis, we give an algorithm for testing diagnosability that does not construct a diagnoser for the system, and its complexity is of 4th order in the number of states of the system and linear in the number of the failure types. In this dissertation we also study diagnosis of discrete event systems (DESs) modeled in the rule-based modeling formalism introduced in [12] to model failure-prone systems. The results have been represented in [43]. An attractive feature of rule-based model is it\u27s compactness (size is polynomial in number of signals). A motivation for the work presented is to develop failure diagnosis techniques that are able to exploit this compactness. In this regard, we develop symbolic techniques for testing diagnosability and computing a diagnoser. Diagnosability test is shown to be an instance of 1st order temporal logic model-checking. An on-line algorithm for diagnosersynthesis is obtained by using predicates and predicate transformers. We demonstrate our approach by applying it to modeling and diagnosis of a part of the assembly-line. When the system is found to be not diagnosable, we use sensor refinement and sensor augmentation to make the system diagnosable. In this dissertation, a controller is also extracted from the maximally permissive supervisor for the purpose of implementing the control by selecting, when possible, only one controllable event from among the ones allowed by the supervisor for the assembly line in automaton models

    Diagnosability Verification Using Compositional Branching Bisimulation

    Get PDF
    This paper presents an efficient diagnosability verification technique, based on a general abstraction approach. More specifically, branching bisimulation including state labels with explicit divergence (BBSD) is defined. This bisimulation preserves the temporal logic property that verifies diagnosability. Based on a proposed BBSD algorithm, compositional abstraction for modular diagnosability verification is shown to offer a significant state space reduction in comparison to state-of-the-art techniques. This is illustrated by verifying non-diagnosability analytically for a set of synchronized components, where the abstracted solution is independent of the number of components and the number of observable events

    INCREMENTAL FAULT DIAGNOSABILITY AND SECURITY/PRIVACY VERIFICATION

    Get PDF
    Dynamical systems can be classified into two groups. One group is continuoustime systems that describe the physical system behavior, and therefore are typically modeled by differential equations. The other group is discrete event systems (DES)s that represent the sequential and logical behavior of a system. DESs are therefore modeled by discrete state/event models.DESs are widely used for formal verification and enforcement of desired behaviors in embedded systems. Such systems are naturally prone to faults, and the knowledge about each single fault is crucial from safety and economical point of view. Fault diagnosability verification, which is the ability to deduce about the occurrence of all failures, is one of the problems that is investigated in this thesis. Another verification problem that is addressed in this thesis is security/privacy. The two notions currentstate opacity and current-state anonymity that lie within this category, have attracted great attention in recent years, due to the progress of communication networks and mobile devices.Usually, DESs are modular and consist of interacting subsystems. The interaction is achieved by means of synchronous composition of these components. This synchronization results in large monolithic models of the total DES. Also, the complex computations, related to each specific verification problem, add even more computational complexity, resulting in the well-known state-space explosion problem.To circumvent the state-space explosion problem, one efficient approach is to exploit the modular structure of systems and apply incremental abstraction. In this thesis, a unified abstraction method that preserves temporal logic properties and possible silent loops is presented. The abstraction method is incrementally applied on the local subsystems, and it is proved that this abstraction preserves the main characteristics of the system that needs to be verified.The existence of shared unobservable events means that ordinary incremental abstraction does not work for security/privacy verification of modular DESs. To solve this problem, a combined incremental abstraction and observer generation is proposed and analyzed. Evaluations show the great impact of the proposed incremental abstraction on diagnosability and security/privacy verification, as well as verification of generic safety and liveness properties. Thus, this incremental strategy makes formal verification of large complex systems feasible

    DESIGN OF OPTIMAL PROCEDURAL CONTROLLERS FOR CHEMICAL PROCESSES MODELLED AS STOCHASTIC DISCRETE EVENT SYSTEMS

    No full text
    This thesis presents a formal method for the the design of optimal and provably correct procedural controllers for chemical processes modelled as Stochastic Discrete Event Systems (SDESs). The thesis extends previous work on Procedural Control Theory (PCT) [1], which used formal techniques for the design of automation Discrete Event Systems (DESs). Many dynamic processes for example, batch operations and the start-up and shut down of continuous plants, can be modelled as DESs. Controllers for these systems are typically of the sequential type. Most prior work on characterizing the behaviour of DESs has been restricted to deterministic systems. However, DESs consisting of concurrent interacting processes present a broad spectrum of uncertainty such as uncertainty in the occurrence of events. The formalism of weighted probabilistic Finite State Machine (wp-FSM) is introduced for modelling SDESs and pre-de ned failure models are embedded in wp-FSM to describe and control the abnormal behaviour of systems. The thesis presents e cient algorithms and procedures for synthesising optimal procedural controllers for such SDESs. The synthesised optimal controllers for such stochastic systems will take into consideration probabilities of events occurrence, operation costs and failure costs of events in making optimal choices in the design of control sequences. The controllers will force the system from an initial state to one or more goal states with an optimal expected cost and when feasible drive the system from any state reached after a failure to goal states. On the practical side, recognising the importance of the needs of the target end user, the design of a suitable software implementation is completed. The potential of both the approach and the supporting software are demonstrated by two industry case studies. Furthermore, the simulation environment gPROMS was used to test whether the operating speci cations thus designed were met in a combined discrete/continuous environment

    A Component-oriented Framework for Autonomous Agents

    Get PDF
    The design of a complex system warrants a compositional methodology, i.e., composing simple components to obtain a larger system that exhibits their collective behavior in a meaningful way. We propose an automaton-based paradigm for compositional design of such systems where an action is accompanied by one or more preferences. At run-time, these preferences provide a natural fallback mechanism for the component, while at design-time they can be used to reason about the behavior of the component in an uncertain physical world. Using structures that tell us how to compose preferences and actions, we can compose formal representations of individual components or agents to obtain a representation of the composed system. We extend Linear Temporal Logic with two unary connectives that reflect the compositional structure of the actions, and show how it can be used to diagnose undesired behavior by tracing the falsification of a specification back to one or more culpable components

    Towards Real-Time, On-Board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, and hardware components. This system can detect and diagnose failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the-fly temporal and Bayesian probabilistic fault diagnosis; and (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software. We call this approach rt-R2U2, a name derived from its requirements. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual flight data from the NASA Swift UAS

    Intelligent failure-tolerant control

    Get PDF
    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods

    Control and diagnosis of real-time systems under finite-precision measurement of time

    Get PDF
    A discrete event system (DES) is an event-driven system that evolves according to abrupt occurrences of discrete changes (events). The domain of such systems encompasses aspects of many man-made systems such as manufacturing systems, telephone networks, communication protocols, traffic systems, embedded software, asynchronous hardware, robotics, etc. Supervisory control theory for DESs studies the existence and synthesis of the supervisory controllers, namely, supervisors that restrict the system behaviors by dynamically disabling certain controllable events so that the controlled close-loop system could behave as desired. Extensive work on supervisory control of untimed DESs exists and the extension to the timed setting has been reported in the literature. In this dissertation, we study the supervisory control of dense-time DESs in which the digital-clocks of finite-precision are employed to observe the event occurrence times, thereby relaxing the assumption of the prior works that time can be measured precisely. In our setting, the passing of time is measured using the number of ticks generated by a digital-clock and we allow the plant events and digital-clock ticks to occur concurrently. We formalize the notion of a control policy that issues the control actions based on the observations of events and their occurrence times as measured using a digital-clock, and show that such a control policy can be equivalently represented as a digitalized -automaton, namely, an untimed-automaton that evolves over the events (of the plant) and ticks (of the digital-clock). We introduce the notion of observability with respect to the partial observations of time resulting from the use of a digital-clock, and show that this property together with controllability serves as a necessary and sufficient condition for the existence of a supervisor to enforce a real-time specification on a dense-time discrete event plant. The observability condition presented in the dissertation is very different from the one arising due to a partial observation of events since a partial observation of time is in general nondeterministic (the number of ticks generated in any time interval can vary from execution to execution of a digital-clock). We also present a method to verify the proposed observability and controllability conditions, and an algorithm to compute a supervisor when such conditions are satisfied. Furthermore we examine the lattice structure of a class of timing-mask observable languages, and show that the proposed observability is not preserved under intersection but preserved under union. Fault diagnosis for DESs is to detect the occurrence of a fault so as to enable any corrective actions. It is crucial in automatic control of large complex man-made systems and has attracted considerable attention in the literature of reliability engineering, control and computer science. For the event-driven systems with timing-requirements such as manufacturing systems, communication networks, real-time scheduling and traffic systems, fault diagnosis involves detecting the timing-faults, besides the sequence-faults. This requires monitoring timing and sequence of events, both of which may only be partially observed in practice. In this dissertation, we extend the prior works on fault diagnosis of timed DESs by allowing time to be partially observed using a digital-clock which measures the advancement of time with finite precision by the number of ticks. For the diagnosis purposes, the set of nonfaulty timed-traces is specified as another timed-automaton that is deterministic. We show that the set of timed-traces observed using a digital-clock with finite precision is regular, i.e., can be represented using a finite (untimed) automaton. We also show that the verification of diagnosability (the ability to detect the execution of a faulty timed-trace within a bounded time delay) as well as the off-line synthesis of a diagnoser are decidable by reducing these problems to the untimed setting. The reduction to the untimed setting also suggests an effective method for the off-line computation of a diagnoser as well as its on-line implementation for diagnosis. The aforementioned results are further extended to the nondeterministic setting, i.e., diagnosis of dense-time DESs using digital-clocks under nondeterministic event observation mask. We introduce the notion of lifting (associating each event with each of its nondeterministic observations), and show that diagnosis of dense-time DESs employing digital-clocks to observe event occurrence times under nondeterministic event observation mask can be reduced to that of the deterministic setting, i.e., diagnosis of the lifted dense-time DESs under the deterministic lifted event observation mask, and hence can be further reduced to diagnosis of the untimed setting
    corecore