3 research outputs found

    Efficient diagnosis of multiprocessor systems under probabilistic models

    Get PDF
    The problem of fault diagnosis in multiprocessor systems is considered under a probabilistic fault model. The focus is on minimizing the number of tests that must be conducted in order to correctly diagnose the state of every processor in the system with high probability. A diagnosis algorithm that can correctly diagnose the state of every processor with probability approaching one in a class of systems performing slightly greater than a linear number of tests is presented. A nearly matching lower bound on the number of tests required to achieve correct diagnosis in arbitrary systems is also proven. Lower and upper bounds on the number of tests required for regular systems are also presented. A class of regular systems which includes hypercubes is shown to be correctly diagnosable with high probability. In all cases, the number of tests required under this probabilistic model is shown to be significantly less than under a bounded-size fault set model. Because the number of tests that must be conducted is a measure of the diagnosis overhead, these results represent a dramatic improvement in the performance of system-level diagnosis techniques

    Distributed state verification in the smart grid using physical attestation

    Get PDF
    A cyber process in a distributed system can fabricate its internal state in its communications with its peers. These state fabrications can cause other processes in the distributed system to make incorrect control decisions. Cyber-physical systems have a unique advantage in the detection of falsified states because processes typically have observable effects on a shared physical infrastructure. This physical infrastructure acts as a high-integrity message channel that broadcasts changes in individual process states. The objective of this research is to demonstrate that there are cases where physical feedback from the shared infrastructure can be used to detect state fabrications. To that end, this work introduces a distributed security mechanism called physical attestation that detects state fabrications in the future smart grid. Graph theory is used to prove that physical attestation works in general smart grid topologies, and the theory is supported with experimental results obtained from a smart grid test bed --Abstract, page iii

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc
    corecore