
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2015

Distributed state verification in the smart grid using physical Distributed state verification in the smart grid using physical

attestation attestation

Thomas Patrick Roth

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Roth, Thomas Patrick, "Distributed state verification in the smart grid using physical attestation" (2015).
Doctoral Dissertations. 2458.
https://scholarsmine.mst.edu/doctoral_dissertations/2458

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2458&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2458?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2458&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DISTRIBUTED STATE VERIFICATION IN THE SMART GRID USING

PHYSICAL ATTESTATION

by

THOMAS PATRICK ROTH

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2015

Approved by

Bruce McMillin, Advisor

Daniel Tauritz

Jonathan Kimball

Simone Silvestri

Wei Jiang

Copyright 2015

THOMAS PATRICK ROTH

All Rights Reserved

iii

ABSTRACT

A cyber process in a distributed system can fabricate its internal state in its com-

munications with its peers. These state fabrications can cause other processes in the

distributed system to make incorrect control decisions. Cyber-physical systems have a

unique advantage in the detection of falsified states because processes typically have ob-

servable effects on a shared physical infrastructure. This physical infrastructure acts as a

high-integrity message channel that broadcasts changes in individual process states. The

objective of this research is to demonstrate that there are cases where physical feedback

from the shared infrastructure can be used to detect state fabrications. To that end,

this work introduces a distributed security mechanism called physical attestation that

detects state fabrications in the future smart grid. Graph theory is used to prove that

physical attestation works in general smart grid topologies, and the theory is supported

with experimental results obtained from a smart grid test bed.

iv

ACKNOWLEDGMENTS

It’s been 8 years since I first enrolled as an undergraduate at the University of

Missouri-Rolla, and I want to thank all of the people who influenced this dissertation. I

decided to enroll at Rolla thanks to Clayton Price, and was motivated to pursue research

by Matt Buechler. Bruce McMillin won me over with his enthusiasm for cyber-physical

security, and has my sincerest thanks for the plethora of opportunities he has given to

me over the years. I had the great pleasure as an undergraduate to work with Thoshitha

Gamage who shaped my future as a researcher and provided the spark that led to this

research topic. And I am very grateful to Saint Louis University High School for building

the foundations for these 8 years.

Special thanks to Jonathan Kimball, Daniel Tauritz, Simone Silvestri, Wei Jiang,

and Sriram Chellappan for their service on my Ph.D. committee. Both Sajal Das and

Maggie Cheng have my gratitude for their courses in graph theory and advanced algo-

rithms which were instrumental in my research. Thanks to Dawn Davis and Rhonda

Grayson for their years of administrative support. Good luck to my colleagues Stephen

Jackson, Li Feng, and Tamal Paul in their future endeavors.

This research was possible due to the financial support of the Missouri S&T

Intelligence Systems Center and the Office of Graduate Studies. It was supported in

part by the Future Renewable Electric Energy Delivery and Management Systems Center

under the grant NSF EEC-0812121.

Much love to my mother Anne and my aunt Mary Ellen Spencer. Best wishes to

my brother Mike and my uncle Bill Niemann. In memory of my father John Roth.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . ix

SECTION

1 INTRODUCTION. 1

1.1 SMART GRID ARCHITECTURE . 2

1.2 ATTACK MODEL . 6

1.3 NONDEDUCIBILITY . 9

1.4 ATTACK ANALYSIS . 10

1.5 ORGANIZATION . 13

2 RELATED WORK . 15

2.1 TAMPER RESISTANCE . 15

2.2 BAD DATA DETECTION . 16

2.3 ANOMALY DETECTION . 18

2.4 SYSTEM LEVEL DIAGNOSIS . 20

2.5 REMOTE ATTESTATION . 21

3 PHYSICAL ATTESTATION . 23

3.1 PHYSICAL INVARIANTS . 23

3.2 INVARIANT VIOLATION PATTERNS 25

3.3 DEDUCIBLE TOPOLOGIES . 29

vi

4 ATTESTATION FRAMEWORKS. 34

4.1 DEDUCIBLE FRAMEWORKS . 35

4.2 MINIMUM FRAMEWORKS . 38

5 PHYSICAL ATTESTATION IN REGULAR NETWORKS . 43

5.1 RING NETWORKS . 43

5.2 MESH NETWORKS . 47

5.3 HYPERCUBES . 52

6 EXPERIMENTAL RESULTS . 59

6.1 DISTRIBUTED GRID INTELLIGENCE 59

6.2 PHYSICAL ATTESTATION ARCHITECTURE 62

6.3 SMART GRID TEST BED . 68

6.4 EXPERIMENTAL SETUP AND RESULTS 70

7 CONCLUSION . 75

7.1 CONTRIBUTIONS . 75

7.1.1 Multiple System Topologies . 75

7.1.2 General Attestation Framework 76

7.1.3 Experimental Implementation . 76

7.1.4 Refereed Publications . 76

7.2 FUTURE WORK . 77

7.2.1 Theoretical Extensions . 77

7.2.2 Attestation Frameworks . 78

7.2.3 Additional Experimentation . 78

7.3 CONCLUDING REMARKS . 79

BIBLIOGRAPHY . 80

VITA . 85

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Future Smart Grid Architecture . 3

1.2 Power Migration Steps . 5

1.3 Fake Demand Attack . 7

1.4 Impact of the Fake Demand Attack . 8

1.5 System Security Lattice . 10

3.1 Physical Attestation Overview . 24

3.2 Conservation of Power . 25

3.3 Nondeducible Topological Features . 30

3.4 Simple 5-Node Topology . 31

3.5 Simple 7-Node Topology . 32

4.1 Example Reduction from Set Cover . 39

5.1 Nondeducible Ring Topologies . 44

5.2 Deducible Ring Topologies . 45

5.3 Arbitrary Size Ring Topologies . 46

5.4 Mesh Line Pattern . 49

5.5 Mesh L Pattern . 49

5.6 15 Vertex Framework for Line Pattern 50

5.7 13 Vertex Framework for L Pattern . 51

5.8 Example Hypercube . 53

6.1 Distributed Grid Intelligence Architecture 60

6.2 Round Robin Schedule . 61

6.3 Physical Attestation in the Distributed Grid Intelligence 63

6.4 Hardware-in-the-Loop Simulation Architecture 68

6.5 Simulated Distribution Grid Topology 70

viii

6.6 Normal Power Migration . 72

6.7 Fake Demand Attack . 73

6.8 Physical Attestation . 73

ix

LIST OF TABLES

Table Page

1.1 State Transition Commands . 11

1.2 Fake Demand Attack during Another Migration 12

3.1 Invariant Violation Patterns for a Single Attacker 27

3.2 5-Node Invariant Violations . 31

3.3 7-Node Invariant Violations . 33

5.1 Minimum attestation framework sizes for ring topologies 47

6.1 Experimental Bus Configuration . 71

1. INTRODUCTION

A cyber-physical system integrates a physical infrastructure with cyber compu-

tation for improved performance and reliability. Most CPSs are distributed systems in

which several cyber processes cooperate to control a set of physical resources. An individ-

ual process cannot directly measure the complete system state, and must communicate

over some network to share information with its peers. It is vital that the processes share

accurate state information with each other to ensure that the distributed system makes

the correct control decisions. Failure in a CPS can result in physical consequences such

as damage to the machines or harm to the humans involved in the system operation.

These consequences can be severe in critical infrastructures such as water distribution,

transportation systems, or the electric power grid.

Consider the case of Stuxnet, which resulted in the wide-spread infection of

Siemens programmable logic controllers [1]. The controllers infected by Stuxnet at-

tempted to damage centrifuges by causing malicious changes to their rotor speeds. At

the same time, Stuxnet sent false state reports which indicated normal rotor speeds back

to human operators. One of Stuxnet’s goals was for the false state information to trick

the operators into making the wrong control decision, namely, keeping the centrifuges

running. Stuxnet was possible because the system was not designed to validate the

physical measurements produced by the infected controller.

Stuxnet is an example of an attack that occurred in an industrial setting where

physical security could have prevented the attack. However, consider a water distribution

system which spans a large geographical area, or a smart house which has a large amount

of human traffic. Most CPSs have physical components located in unprotected, public

environments. CPS security research, in the same vein as wireless sensor networks [2],

should anticipate that parts of the physical infrastructure will be compromised.

2

It is difficult to detect compromised processes in a distributed system. In some

cases, such as Stuxnet, the compromised process continues to exhibit expected commu-

nication patterns. Even if a compromise can be detected, it might not be possible to

determine the exact process that has been compromised. However, a CPS has an advan-

tage over a traditional distributed system in that it contains a physical infrastructure.

When a controller makes a control decision, it leaves a physical footprint. The physical

infrastructure serves as a ground truth, rooted in the laws of physics, that constrains

the extent to which cyber processes can lie without being detected.

The goal of this research is to develop a distributed security mechanism called

physical attestation that utilizes both the cyber and the physical aspects of a CPS. Cyber

processes can utilize the physical infrastructure as a high-integrity message channel

to validate the states of their peers. An example smart grid system will be used to

demonstrate the potential of this combined cyber-physical approach to security.

1.1. SMART GRID ARCHITECTURE

An example CPS in which state validation is essential is the future smart grid.

Smart grid often refers to the Advanced Metering Infrastructure (AMI) in which smart

meters are deployed into the existing electric power grid. These smart meters enable

two-way communication between the power utility and their customers. The utility uses

smart meters to receive power consumption data from the grid to improve predictions

about future load. This data allows the utility to make real time control decisions to

improve the performance of the electric power grid. Customers can also receive real

time power pricing data from the utility to make more informed choices about power

consumption. This research, however, will explore a different model of the smart grid in

which consumers participate in power generation through renewable energy resources.

The future smart grid proposes the use of distributed cyber intelligence to manage

energy resources at the residential level. This differs from the current power infrastruc-

ture in that it allows household consumers to participate in power generation, a role

3

traditionally reserved for the power utility. The future smart grid architecture con-

sists of the houses in a neighborhood, each with its own local energy production and

consumption, connected by a shared distribution line. Although the distribution line

still connects to the power grid, the cyber intelligences at each house run distributed

algorithms such as energy management independent of the power utility.

Figure 1.1 shows the structure of a neighborhood within this smart grid model.

Each house, or bus, along the distribution line has some local source of generation

and load. Renewable energy resources such as solar and wind provide the generation

at each bus, while household appliances contribute to the load. A house with more

generation than necessary to satisfy its local load is called a supply house, while a house

in need of external generation is called a demand house. One goal in this smart grid

model is for supply houses to provide their excess power to demand houses to reduce

dependence on the power utility. To enable this goal, the houses are connected by

some communication network which they use to share state information and perform

distributed computations.

network

distribution line

gen load gen load

inactive

gen load

power flow

supply demand

Figure 1.1: Future Smart Grid Architecture

4

One distributed algorithm for the smart grid is energy management which makes

control decisions based on the real power injection at each bus [3]. Each bus has an asso-

ciated real power injection value that will be used in the distributed energy management

algorithm. This power value can be calculated for each bus i as:

Pi = Generationi − Loadi (1.1)

The values for Generationi and Loadi come from the local generation and load

at each bus. A negative Pi value indicates that bus i is in demand and acts as a load,

while a positive value indicates the bus has supply and acts as a generator. Each demand

house can draw power from the distribution line to satisfy its excess load. This capability

exists in the current power grid where power flows from a centralized power utility to

the individual houses. Supply houses can push some of their excess generation back into

the distribution line. This capability represents a supply house using its local generation

to satisfy the load at a demand house in its neighborhood.

These pushes and pulls of power are governed by transactions called power mi-

grations that are negotiated between the cyber controllers distributed at each house.

Migration contracts are formed to migrate some quanta of power from the supply house

into the demand house. A power migration is a sequence of an injection of power from a

supply house followed by absorption of power from a demand house. The physical rep-

resentation of this transaction is that a supplier turns on its generator, causing power

to enter the shared distribution line, and then a demand house plugs in some load. This

creates a natural flow of power from the supply house to the demand house. Figure 1.2

illustrates the following steps of a power migration:

1. A supply house advertises its excess generation capacity to the neighborhood

2. Demand houses in the neighborhood request power from the supply house

3. The supply house selects a demand house and forms a migration contract

5

4. The supply house increases its location generation

5. The demand house increases its local load

Figure 1.2: Power Migration Steps

A power migration resembles a two-phase commit protocol [4] in that both parties

must either perform their respective power changes or abort together. An added diffi-

culty over traditional two-phase commit protocols is that energy management contains

both cyber and physical actions. While Step 2 and Step 3 of the migration protocol

commit the supply and demand houses to the power migration on the communication

layer, they do not guarantee that the corresponding physical actions from Step 4 and

Step 5 occur. If a fault or malicious behavior decoupled the sending of the cyber message

from the physical action, the power migration would fail.

The formal smart grid model has two state variables to account for this decoupling

between the cyber message and the actual state of the physical system. Each bus has

two state variables to represent its real power injection, Pi and P̂i. Pi is the amount of

6

excess generation at bus i as calculated by Equation 1.1, and corresponds to the state of

the bus in the physical system. P̂i represents the advertised generation of bus i broadcast

to the system during the power migration protocol, and corresponds to the state of the

bus in the cyber system. The distinction between these state variables is that Pi is a

physical value for the actual generation at a bus, whereas P̂i is a cyber value sent to

other buses over the network. In the case of Stuxnet, Pi would be the actual rotor speed

of the centrifuges while P̂i would be the value for rotor speed that the infected controller

reported to the human operator. That the value reported by the cyber controller can

be different from the state of the physical system is what enables attacks like Stuxnet.

The buses in the smart grid model are also connected by a shared distribution

line which each bus can measure using its local voltage and phase angle. All real power

changes that occur, whether from the utility or due to a power migration, will affect

each bus’ voltage and phase angle. These local measurements allow a bus to gauge

whether or not there is activity in the physical system. Each bus i has two additional

state variables for voltage Vi and phase angle δi to represent these measurements.

1.2. ATTACK MODEL

The smart meters distributed in the AMI are attractive targets for attackers [5].

Smart grid literature has focused on one specific attack scenario against smart meters

called the false data injection attack [6]. This is a Stuxnet-like attack in which the state

of buses in the power grid is falsified such that it cannot be detected by centralized bad

data detection algorithms [7]. It has been shown that false data injection attacks have

quantifiable adverse effects on the system, such as increased transmission cost of power

and higher outage ratios for households [8]. Although the smart grid model presented

in this research differs from the AMI, it is simple to imagine an extension of the false

data injection attack in the context of power migrations.

Figure 1.3 illustrates a false state attack against power migrations called the fake

demand attack. An attacker compromises a cyber controller associated with one of the

7

buses in the smart grid neighborhood. Like Stuxnet, the compromised controller sends

falsified messages over the network which do not correspond to its actual physical state.

In the smart grid model, this attack is equivalent to broadcasting a value of P̂i where

P̂i 6= Pi. This allows the attacker, who has no actual load, to pose as a demand node

and convince a supplier to give it power that it cannot utilize. It is easy to imagine

other similar attack scenarios, such as a case where a supplier lies about generation that

it does not have. This work will consider the entire class of false state attacks where P̂i

is falsified, but will use the fake demand attack as a concrete instance for discussion.

gen load

demand supply

gen loadgen load

attacker

bad migration

lost to grid

Figure 1.3: Fake Demand Attack

The goal of the fake demand attack depends on whether the system is an isolated

micro grid or connected to the wider power grid. If the neighborhood has been isolated

from the grid, then the fake demand attack will lead to an imbalance in generation

and load that will cause undesired frequency changes [9]. If the neighborhood is grid

connected, then the power utility will make up for the difference in generation and

load and the frequency will remain stable. However, the attack will prevent the power

capacity of the supply houses it tricks from reaching demand houses with an actual need.

This will reduce the performance of the power migration algorithm, and can be thought

of as a simple denial of service attack against demand nodes in the smart grid.

8

Suppose a supply house tries to detect this attack by using its local measurements

of the shared distribution line to verify the physical behavior of its migration partner.

The problem with Vi and δi as a means for a cyber process to monitor the behavior

of its peers is that the voltage and phase change regardless of where a power change

has happened. Consider Figure 1.4 in which the compromised controller A causes a bad

power migrationBA when it has no local load. There is a change in phase angle δB in this

case, because although controller A has not changed its amount of load, another demand

bus has made a physical change for a separate migrationDC . From the perspective of

the supply house B, it observes activity on the distribution line through a change in its

phase angle δB and cannot assume that it is the victim of an attack. Although each

house has a local measurement it can use to gauge activity on the distribution line, that

measurement is not precise enough to identify the sources of power injections. As long

as a fake demand attack times itself to occur with other power migrations, an easy feat

when the neighborhood contains hundreds of houses, it will not be detected by its peers.

Δphase

migrationBA
migrationDC

gen load

A

gen load

B

gen load

C D

gen load

D

Figure 1.4: Impact of the Fake Demand Attack

This causes a problem for traditional cyber security mechanisms in distributed

systems. Both authentication and cryptography do nothing to prevent an insider at-

tack from a compromised controller. Security mechanisms such as anomaly detection

and reputation systems depend on the detection of dishonest behavior. Yet from the

9

perspective of the cyber system, no attack has occurred, because the cyber behavior of

the compromised controller is consistent with a normal process. The actual attack has

occurred through the decoupling of the cyber and the physical actions so that the cyber

state no longer corresponds to the physical behavior of a process. What is needed is a

means to glue the cyber and physical back together and verify that the reported cyber

state of a process corresponds to its actual physical state.

1.3. NONDEDUCIBILITY

In the previous section, the fake demand attack was said to have been unde-

tectable using the local measurements of a single bus in the system. Nondeducibility is

an information flow property introduced by Sutherland to analyze system security that

can be used to prove this claim [10]. Let a world w be a state of the system. Then define

an information function f1(w) to be all of the high-level events that led to the state w,

and a second function f2(w) to be all of the low-level events. A low-level observation z

is nondeducible if:

(∀w ∈ W)(∃w′ ∈ W : f1(w) = f1(w
′) ∧ f2(w′) = z ∧ w 6= w′) (1.2)

Equation 1.2 is satisfied if all possible high-level command sequences f1(w) can

produce the low-level observation z in some world w′. If a single high-level command

sequence cannot produce the observation z, then given z it can be deduced that at least

one command was not issued, and the Sutherland definition is violated. The traditional

use of nondeducibility proves system security by showing that all high-level traces of

the system are nondeducible, and so no low-level observation can be used to identify

what high-level event occurred. However, the definition is not restricted to the notion

of a high and low security domain, and can be extended to encompass any number of

different views of the system [11]. Consider two partitions of the system, one partition

from the viewport of an attacker (f1) and a second partition from the viewport of an

10

arbitrary house in the smart grid (f2). If the attacker is nondeducible with respect to

this arbitrary house, it means that the house cannot determine based on its information

function whether the attack has occurred. Although nondeducibility is often a desirable

property that protects high-level information, in this case a nondeducible system would

hide information about an attacker from its peers. Therefore, it is imperative that the

system be deducible in order to detect the origin of compromised controllers.

1.4. ATTACK ANALYSIS

A lattice of security levels can be defined for the smart grid that segregates the

houses into different security domains. For each bus i in the power grid, a security

level Li exists which represents that bus’ perspective of the physical system. An ad-

ditional system level exists to represent the state knowledge shared by all processes

in the distributed system, which in this case would be the state messages broadcast

over the network. These security levels follow a partial order such that (∀i : 1 ≤ i ≤

n)(system ≤ Li). This allows a bus i to view both its private level Li as well as the

shared system level, but restricts it from viewing its peers’ internal states. Figure 1.5

depicts the security lattice for a system of n nodes.

L1 L2 Ln

system

Figure 1.5: System Security Lattice

State variables are assigned to security levels such that, for each bus i in the

system, Pi ∈ Li and P̂i ∈ system. Such an assignment has the natural meaning that

the amount of generation at a given node is private data known only to that node, and

the rest of the system must rely on its view of the advertised value P̂i. This represents

11

the reality of a smart grid where a house is not allowed direct access to their neighbors’

meters. δi ∈ Li follows the same line of reasoning in that voltage phase angle is unique

to each bus, and cannot be read by other buses in the system unless broadcast over the

network.

With this, the complete system state Q composed of n buses is defined as the set

Q = {P̂1, . . . , P̂n, P1, . . . , Pn, δ1, . . . , δn}. A state transition Q→ Q′ occurs when a node

performs a command drawn from a pool of legal system commands. Each command

modifies the original state Q to produce a new state Q′ where state variables in Q′ are

represented by prime notation. A list of system commands for power migrations and

their impact on the system state are presented in Table 1.1.

Table 1.1: State Transition Commands
command description

migrate(i, j)
supplier i forms a migration contract with demand node j
P̂ ′i ← P̂i + 1 and P̂ ′j ← P̂j − 1

increase(i)
node i increases its local generation by one unit
P ′i = Pi + 1 and ∀x, δ′x = δx + ∆ where ∆ is some change

decrease(i)
node i increases its local load by one unit
P ′i = Pi − 1 and ∀x, δ′x = δx + ∆ where ∆ is some change

Theorem 1. The fake demand attack is nondeducible to the system if the attacker acts

concurrently with another power migration.

Proof. Table 1.2 shows the command sequence and state transitions for the fake demand

attack shown in Figure 1.4. Define the high-level domain as high = LA ∪ LC ∪ LD and

the low-level domain as low = LB ∪ system. This definition of the low-level domain

is consistent with the view of supply house B which is the victim of the attack. If

information flows from high to low, then supplier B would be able to deduce the high-

level commands and thus determine that it has been attacked.

Given the formulation of high and low, the low-level view consists of states with

the form {P̂A, P̂B, P̂C , P̂D, PB, δB}. For the command sequence shown in Table 1.2,

viewlow = {0, 0, 0, 0, 0, 0} → {−1, 1, 0, 0, 0, 0} → {−1, 1,−1, 1, 0, 0}

→ {−1, 1,−1, 1, 0,∆1} → {−1, 1,−1, 1, 1,∆2} → {−1, 1,−1, 1, 1,∆3}
(1.3)

12

Table 1.2: Fake Demand Attack during Another Migration
cmd P̂A PA δA P̂B PB δB P̂C PC δC P̂D PD δD
init 0 0 0 0 0 0 0 0 0 0 0 0

migrate(B,A) -1 0 0 1 0 0 0 0 0 0 0 0
migrate(D,C) -1 0 0 1 0 0 -1 0 0 1 0 0

decrease(C) -1 0 ∆1 1 0 ∆1 -1 -1 ∆1 1 0 ∆1

increase(B) -1 0 ∆2 1 1 ∆2 -1 -1 ∆2 1 0 ∆2

increase(D) -1 0 ∆3 1 1 ∆3 -1 -1 ∆3 1 1 ∆3

Consider the first state transition {0, 0, 0, 0, 0, 0} → {−1, 1, 0, 0, 0, 0} and observe that

none of the commands from Table 1.1 can cause this transition except for migrate(B,A).

It is therefore possible to deduce that this state transition must have been caused by a

power migration formed between a supply house B and a demand house A. However, this

deduction yields no high-level system information, as the migrate command only affects

low-level state variables P̂i. The same is true of the next migrate(D,C) command

which also operates on only low-level state variables. These two transitions do not help

prove the theorem, but provide good examples of what deducible transitions would look

like.

The first transition which affects high-level state information is the decrease(C)

command which causes {−1, 1,−1, 1, 0, 0} → {−1, 1,−1, 1, 0,∆1}. If this state transi-

tion was dedudcible, then it would be possible to determine which command from the

table caused it in the same manner as the migrate(B,A) command above. It is imme-

diately obvious that a migrate command did not cause the transition, because none of

the P̂i values have changed. The transition could also not be due to the increase(B)

command, because the fifth state variable for PB does not change. However, with the

definition of high = LA ∪ LC ∪ LD, these are not high-level commands, as they do not

affect variables in the high-level security domain.

There are six possible high-level commands for this transition, the increase(i)

and decrease(i) commands for all i in the set {A,C,D}. From the command table,

all of these commands cause some high-level change to a Pi variable. Yet all of these

13

commands result in the same low-level change of δ′B = δB + ∆. Thus, given an ini-

tial state of {−1, 1,−1, 1, 0, 0}, all six commands would lead to the same final state

of {−1, 1,−1, 1, 0,∆1}. This transition is nondeducible since it is possible for all the

high-level commands to be issued and still result in the same low-level trace.

Of the remaining two state transitions, increase(D) is nondeducible for the same

reason as above. While increase(B) is deducible since it causes a low-level state change

to PB, this is not high-level state information. Across all the state transitions, only two

transitions affect high-level information, and both of those transitions are nondeducible.

This makes the entire sequence nondeducible, and from the view of supply house B, it

is impossible to determine which subset of houses have made real power changes during

the events from Table 1.2.

Theorem 1 demonstrates that, if an attacker acts during a power migration be-

tween another pair of houses, the attacker can pose as a demand node without the

system being able to determine its identity. Note that the tight timing suggested by

this interleaving is not as severe as it seems, as although the attacker must align itself

with another power migration, it is difficult to place a causal order between events in a

distributed system. Therefore, even if the attacker responds far after the second power

migration, it is still possible, given communication delays, for the event sequence to

resemble Table 1.2. With this, the fake demand attack has been proven to resemble

Stuxnet in that it can hide itself from the view of the system.

1.5. ORGANIZATION

The rest of this document is organized as follows:

1. Section 2 discusses related work in the field of cyber and physical security.

2. Section 3 presents the theory behind a new distributed security mechanism for

smart grids called physical attestation.

14

3. Section 4 describes how physical attestation works in general topologies.

4. Section 5 considers physical attestation in ring, mesh, and hypercube topologies.

5. Section 6 presents preliminary results from an implementation of physical attesta-

tion in a smart grid test bed.

6. Section 7 concludes the work with a discussion of contributions and future research

directions.

15

2. RELATED WORK

2.1. TAMPER RESISTANCE

The goal of tamper resistant hardware is to make it difficult to break into the

system. For example, the hardware can be enclosed in a sealed box that requires special

tools to break open. While tamper resistant hardware cannot prevent a compromise from

a persistent attacker, the goal is to raise the cost of the attack. With an increased cost

to attack, a reasonable attacker will no longer find it profitable to attack the system [12].

In addition to tamper resistant hardware, there is also tamper responding and

tamper evident hardware. Tamper responding means that an attack will trigger some

kind of response from the system. For example, a tamper responding car might trigger

an alarm when a burglar attempts to break into it. The goal in this case is not to prevent

the attack, but to make the attack noticable so an external operator can take corrective

measures. Tamper evident means that the attack will leave evidence that can later be

recovered to detect the compromise. For example, a tamper evident envelope might have

a seal that must be broken before its contents can be read. A tamper evident system

makes it easier to apply the other approaches described in this section, as it is easy to

determine if a system has been compromised.

There are processors that provide both tamper evident and tamper resistant

environments [13]. However, most applications choose to use low-cost processors such

as smart cards for improved cost scalability. Research into the effectiveness of tamper

resistance in low-cost processors such as smart cards has shown the existence of many

viable, low-cost attacks [14]. In addition, because most of these processors involve some

form of external communication, software or protocol errors can cause faults that bypass

physical security [15].

Because of the cost and limitations of tamper resistant hardware, an equivalent

notion of tamper resistant software has appeared in research. A self-checking or integrity-

16

checking piece of software is able to detect modifications to the program code at runtime.

This is done through the computation of a checksum of the program execution at run-

time, which is compared against original code. If a code modification is detected, the

software calls a tamper response mechanism or repair code that restores the modified re-

gions to their original state. Approaches exist that use both insertion of periodic testers

into the code [16], as well as insertion of guards on program statements [17].

2.2. BAD DATA DETECTION

Bad data detection is a traditional scheme to protect the state estimation algo-

rithms of the Supervisory Control and Data Acquisition (SCADA) systems that control

the electric power grid. Its goal is to determine when a subset of meter readings provided

to a centralized state estimation algorithm has been corrupted due to meter faults. The

meter readings identified as bad data can be discarded to prevent them from interfering

with the control of the power grid.

z = Hx+ e (2.1)

Equation 2.1 shows the basis for state estimation in a power system using a

direct current (DC) model for power flow [18]. z = {z1, z2, . . . , zm} is the set of meter

readings collected by the SCADA system, and e = {e1, e2, . . . , em} is the measurement

error allowed for each meter. x = {x1, x2, . . . , xn} is the real system state, and H is a

vector of functions hi(x) = zi that maps the system state to the meter readings z. This

equation can be solved for x to get the state estimation x̂ based on the known physical

topology H and the set of meter readings z.

r = z −Hx̂ (2.2)

Equation 2.2 shows an example residual function that can be used for bad data

detection [19]. r = {r1, r2, . . . , rm} is a residual that measures the amount of error

17

contained in the estimated state x̂. Each element of the residual will be small unless

the measurements z contain some amount of bad data. The bad data can be identified

by checking against each element if ri > ei for some small error tolerance ei. However,

this protection scheme was devised to protect against meter faults, not malicious attacks

against the state estimation algorithm.

z = Hx+ e+ a = H(x+ c) + e (2.3)

Equation 2.3 shows a false data injection attack against the bad data detection

algorithm [20]. The a term is an attack vector selected by the attacker which is added to

the meter measurements z to inject false data into the system. An intelligent attacker

that knows the system topology H will select an attack vector a = Hc to produce the

equation z = H(x+ c) + e. This causes the state estimator to calculate that the system

is in some state x̂ = x + c other than the actual system state x. Observe that the

reason this attack is successful is because the attack x + c is equivalent to some other

system state x′ = x + c and is therefore nondeducible. Another variant of the false

data injection attack is a topological attack which instead modifies H through injection

of false topological data [21]. This attack would provide false values of switches and

breakers to the state estimation algorithm to produce a state estimate x̂ for the wrong

physical topology.

Whether false data injection is a threat depends on how difficult it is for an

attacker to generate an attack vector a that is consistent with the physical topology.

A polynomial time algorithm has been developed that generates the smallest set of

meters that must be compromised to launch an unobservable false data injection attack

against a given topology [22]. Unobservable in this context means that the attack

vector a is consistent with the physical topology a = Hc and will pass through bad

data detection algorithms without detection. Another polynomial time algorithm can

be used to enumerate all of the low cost unobservable attacks that require 5 or fewer

compromised meters in general graphs [23].

18

The trend in literature to prevent unobservable attacks is to utilize a piece of

physical hardware called a phasor measurement unit (PMU). PMUs utilize global posi-

tioning system (GPS) synchronized clocks to produce high fidelity meter readings of the

power system. It has been shown that deployment of PMUs improves bad data detection

against faults due to redundant measurements [24]. It has also been suggested that they

can be useful in protection against malicious attacks by providing trusted measurements

to the state estimation algorithm [25]. The main assumption behind this approach is

that a PMU is tamper resistant, and thus cannot be compromised by an attacker in the

same manner as a smart meter. Research in this direction has explored which buses are

most vulnerable through formulation of security indices that quantify which buses are

most useful in producing unobservable attacks [26]. Redundant measurements can then

be produced for these buses through deployment of PMUs to prevent false data injection

attacks [27].

Besides tamper resistant approaches, several other methods have been proposed

which modify the state estimation algorithms to guard against false data injection. One

distributed approach attempts to estimate the false data injection alongside the system

state and eliminate the attack vector from the state estimation [28]. Another approach

proposes changing the residual from Equation 2.2 to include local measurements of

voltage and phase angle at each bus [29]. Observation of which bus voltages lead to

high error terms during the state estimation process will isolate the location at which

compromises occured during the attack.

2.3. ANOMALY DETECTION

Anomaly detection evaluates the behavior of the nodes in a distributed system

for malicious behavioral profiles. If a node deviates from the expected behavior with

some statistical significance, or violates an established behavioral rule, then it must be

faulty. These two forms of anomaly detection are called profile-based and rule-based

detection.

19

In anomaly detection methods, a subject performs an action on a object which

produces an audit record. The actions of all distributed nodes in the system are con-

tained in the same audit record. A real-time system monitors the audit record looking for

subjects that exhibit anomalous behavior. Anomalous behavior is defined as a sequence

of suspicious actions that have been correlated with an attack. When an anomalous

subject is found, the real-time system takes some form of corrective action [30].

A profile-based anomaly detection method first monitors the behavior of all sub-

jects over a trial period. This set of behaviors is used to compute a normal profile for

groups of users that is the expected behavior for a normal process. After the trial period,

behavior that deviates with statistical significance from the normal behavior is flagged

as suspicious. In order to account for changes in the system, the normal profiles must

be periodically updated using data from the audit record [31]. A profile-based method

of anomaly detection can be replaced with a neural network. Instead of a trial period,

the neural network has a training period to adapt to the behavior of the system. Then

during runtime, the neural network can map a subject’s behavior to one of the trained

profiles [32].

As an alternative to profile-based anomaly detection, a rule-based detection

method looks for suspicious actions. An intrusion can be modeled as a sequence of

signature actions that bring an attack from some initial state to a compromised state.

Such an attack can be represented as a series of state transitions, with the transitions

being the signature actions. It is possible to develop a set of rules based on the state

transitions of known attacks that are able to detect specific attack patterns. Given these

attack patterns, the audit record can be parsed for subjects that violate the rules. This

approach is better at guarding against known attacks than the statistical approach, but

cannot detect new attack scenarios [33].

20

2.4. SYSTEM LEVEL DIAGNOSIS

System level diagnosis is a method to discover faults in a distributed system by

means of peer evaluation. The system is divided into a set of testable units, which are

the smallest set of components that can exhibit a fault. Each testable unit is assigned

a subset of other units in the system which it is responsible for testing. A test is a

challenge-response protocol where a tester issues a challenge to a peer unit and compares

the response to some expected value. The set of failed tests in the system is used to

determine which units have faults.

The PMC model first introduced the notion of system level diagnosis in litera-

ture [34]. A system is modeled as a directed graph where the testable units are vertices

and the arcs are test results. Each arc has a label of either 0 for a failed test or 1 for

a passed test. The collection of test results is known as a syndrome. There are two

possibilities for diagnosis under the assumption that there is some maximum number

t of faults in the system. Either all t faults can be identified at once using a single

syndrome, or at least one fault can be identified among the t faulted units. These cases

are known as one-step diagnosable and sequentially diagnosable systems respectively. A

main assumption of the PMC model is that each fault is permanent. This means that a

faulted unit will always fail a test issued by a non-faulted unit.

An intermittent fault, or intermittent behavior, permits a fault to either pass

or fail when tested by a non-faulted unit. In a system with intermittent faults, the

evaluation of testable units may be incorrect due to insufficient testing. A fault in

the system can go undetected if the faulted unit exhibits normal behavior during the

testing procedure, but faulty behavior otherwise. To detect faults in a system that allows

intermittent behavior, it is necessary to use repetitive, periodic testing. Even when the

tests are repeated, it is still possible that a faulted unit will result in no failed tests. [35]

A model that considers both permanent and intermittent faults is known as a t/ti-

diagnosable system where t is the maximum number of faults and ti is the maximum

number of intermittent faults. This model is sufficient to represent both the original

21

PMC model when ti = 0, and the model that considers only intermittent behavior when

ti = t [36].

2.5. REMOTE ATTESTATION

Remote attestation is a mechanism popular in wireless sensor networks which

detects compromised sensors using random memory walks. The key assumption behind

remote attestation is that faulty behavior leaves some kind of evidence in memory. In

essence, remote attestation is one method to implement the tests described in system

level diagnosis.

Software-based Attestation (SWATT) attests to the memory contents of an em-

bedded device using an external verifier [37]. It is a challenge-response protocol in which

the verifier issues a challenge to a device that instructs it to perform a memory walk.

Meanwhile, the verifier performs the same memory walk as a local computation to pro-

duce the expected result of the test. When the tested device produces its outcome for

the memory walk, it is compared against the expected result to check for faulty behavior.

An assumption is made that an attacker cannot modify the physical hardware of the

devices, such as memory size or CPU speed. This assumption prevents the attacker from

copying the memory contents to external memory for use in the attestation protocol.

Because SWATT is a challenge-response protocol, it is vulnerable to man-in-the-

middle attacks. An attacker can intercept the challenge and response to manipulate the

outcome of the test results. A better solution is for each device to produce periodic

reports that are sent to a verifier without the need for an initial challenge. The synchro-

nized system time can be used as the seed for random number generation in place of a

challenge. This protocol, called One-Way Memory Attestation (OMAP), makes remote

attestation a more reliable security mechanism. [38]

The SWATT approach also has poor scalability, since a verifier must perform

local computation to verify each device. Another revised protocol called Smart Meter

Attestation (SMATT) reduces the computational strain by eliminating the need for

22

the verifier to compute an expect result. Instead, the verifier issues a large number of

identical, simultaneous challenges to a group of homogenous devices in the system. [39]

Because the devices are homogenous, each device should produce the same result in

response to the challenge. Therefore, the challenges from each device are compared

against each other and responses that differ from the majority are considered malicious.

This approach eliminates the need for a verifier to perform a memory walk for each

device that must be tested in the system.

A final issue with the SWATT approach is that there may not be a trusted verifier

available for each device in the system. In this case, remote attestation can be performed

using a cluster of devices as a distributed verifier. Each node in the cluster performs

one of the attestation protocols described above independently. A majority vote is then

taken between the cluster nodes to determine whether the device passes or fails the test.

While other approaches exist to perform distributed attestation, this is the simplest

implementation in literature [40].

23

3. PHYSICAL ATTESTATION

This work proposes a distributed security mechanism for the smart grid called

physical attestation. In physical attestation, a verifier validates the measurements pro-

duced by a cyber process against the physics of the physical system. Physical attestation

is based on the observation that changes in cyber process state cause physical side effects

due to the tight coupling between the cyber and physical layers. Prior literature has

shown that there are cases where it is possible to deduce the current state of the cyber

system by monitoring these physical side effects [41]. The physical infrastructure can be

considered a high-integrity message channel that contains a portion of the cyber process

state. A verifier can check if a cyber state is consistent with the physical infrastructure

to determine whether or not the state has been falsified.

An overview of physical attestation is shown in Figure 3.1. During attestation, a

verifier validates the cyber behavior of some target process using a subset of the physical

system state. Physical measurements are collected from several processes that neighbor

the target in the physical topology to have sufficient observability of the physical system.

These measurements are then fed into a physical attestation algorithm which compares

the measurements against the topology of the smart grid. Whether or not a target passes

attestation depends on whether the measurements used in the verification algorithm are

consistent with the physical topology. This section will provide insight on how the

physical attestation algorithm is able to detect malicious cyber behavior.

3.1. PHYSICAL INVARIANTS

An invariant is a logical assertion that must remain true during system execution.

For a physical system such as the electric power grid, invariants are physical laws that

must hold due to the physics of the system. Physical attestation uses a set of physical

invariants as the ground truth against which all cyber states are validated. The mea-

24

verifiertarget

peer

peer

physical

attestation

local physical measurements

target is honest

OR

target is dishonest

Figure 3.1: Physical Attestation Overview

surements received from the target and its peers are used to instantiate the physical

invariants and determine whether the invariants evaluate to true. The theory behind

this invariant approach is that a physical law cannot be violated by the physical system.

If a physical invariant evaluates to false, then it must be because it was instantiated

with bad measurements from a malicious cyber controller.

Within the smart grid, conservation of power can be used as one such physical

invariant. In Figure 3.2, for instance, the invariant Ib must hold at bus b that:

{Ib : |Pab + P̂b − Pbc| ≤ ε} (3.1)

Pij in Equation 3.1 refers to the real power flow between buses i and j on the

distribution line while P̂i refers to the real power injection value reported by the cyber

controller at bus i. Recall that this real power injection value differs from the value

in Equation 1.1 because P̂i is a cyber state that can be falsified by a compromised

controller. The ε is a small error term to account for measurement error in the physical

measurements.

Because the cyber controllers are located at each bus and not each distribution

line in the smart grid model, Pij cannot be measured by a single cyber controller. Instead,

25

cba
PbcPab

Generator Load

Figure 3.2: Conservation of Power

the line power flows must be calculated using measurements produced by the pair of

buses on each side of the distribution line. The real line power flow can be calculated

as:

Pij =
V̂i

R2
ij +X2

ij

[Rij{V̂i − V̂jcos(δ̂i − δ̂j)}+XijV̂jsin(δ̂i − δ̂j)] (3.2)

An assumption is made that each bus has a means to measure its local voltage

V̂i and phase angle δ̂i such that Equation 3.2 can be instantiated to calculate the dis-

tribution line powers for the invariant. A hat notation is used for both of these values

because, like the real power injection P̂i, a compromised cyber controller can falsify its

reported voltage and phase angle. It is also assumed that each cyber controller knows

the topology of the physical system, which includes the distribution line resistance Rij

and reactance Xij. Then each bus i will provide its real power injection P̂i for use in

power migrations, and its voltage V̂i and phase angle δ̂i to instantiate Equation 3.2.

3.2. INVARIANT VIOLATION PATTERNS

When a cyber controller feeds falsified values into the system, it will violate a

subset of physical invariants. The existence of a violated invariant is enough to deduce

the existence of a compromised controller, as a physical invariant can only be violated if

26

instantiated with false cyber states. However, one violated invariant may not be enough

to deduce which controller has been compromised, due to the existence of multiple

nondeducible cases. This section introduces the notion of invariant violation patterns,

and enumerates the conditions that lead to nondeducible violation patterns that hide

the identify of the compromised controller.

The electric power grid will be modeled as an undirected graph to simplify rea-

soning about physical attestation. Let G = (V,E) be an undirected, simple graph where

the vertices V are buses and the edges E are distribution lines in the physical system.

In order to generate a simple graph, parallel distribution lines in the physical system

are combined and represented as a single edge in the undirected graph. Each vertex, or

bus, has an associated cyber controller that measures its real power injection, voltage,

and phase angle. Each vertex also has an associated conservation of power invariant as

defined in Equation 3.1. For convenience, Definition 1 defines a function µ() that maps

a set of vertices into the set of invariants located at those vertices. From this definition,

µ({1, 3, 4}) = {I1, I3, I4} refers to the set of invariants located at vertices with the labels

1, 3, and 4.

Definition 1. Ix ∈ µ(S) if and only if x ⊆ S.

Within the system model, each controller can falsify three potential values: P̂i,

V̂i, and δ̂i. However, the voltage and phase angle have the same effect on the invariant as

both are used to compute the line power flows in Equation 3.2. It is therefore sufficient

to consider all possible permutations of both P̂i and V̂i to represent a compromised

controller’s full ability to attack the system. If an attacker a falsifies state information,

then Table 3.1 shows the effect of the attack on the physical invariants. Each attack

scenario leads to a specific invariant violation pattern that includes a subset of the

compromised controller a and its neighbor set N(a). The neighbor set in this context

refers to the buses adjacent to a over the distribution line in the electric power grid.

27

Table 3.1: Invariant Violation Patterns for a Single Attacker
Falsified State(s) Violated Invariant(s)

P̂a µ({a})
V̂a µ({a} ∪N(a))

P̂aV̂a µ(N(a))

When an attacker a falsifies its P̂a value, it only affects the invariant µ({a}) = Ia

because its real power injection is not required to compute the conservation of power at

any other vertex in the graph. However, a falsified V̂a value is required to compute the

line power flows from Equation 3.2 at each neighbor in N(a). These incorrect line flows

will then be used in invariants at all of the attacker’s neighbors leading to the invariant

violations µ(N(a)). An important note is that an attacker cannot violate a proper subset

of N(a) unless it provides several different values for V̂a. Since physical attestation has

the attacker report V̂a once to a single verifier process, it will always violate the full set

µ(N(a)) of invariants. If a controller falsifies both P̂a and V̂a, then it can compensate for

the incorrect line flows at its own invariant to prevent itself from being violated. This

set of observations leads to the violation patterns shown in Table 3.1.

From the set of invariant violation patterns, all nondeducible attacks in the sys-

tem can be derived. The following discussion will enumerate all possible nondeducible

cases for the three attack scenarios in Table 3.1. Throughout the discussion, the same

notation as in Table 3.1 will be used to refer to the attack scenarios. Therefore, P̂a refers

to an attack in which vertex a falsifies its advertised real power injection value, while V̂a

refers to a falsifying its bus voltage or phase angle.

Lemma 1. The false state attack P̂a is nondeducible if and only if there exists some

vertex x where N(x) = {a}.

Proof. The attack P̂a has the violation pattern µ({a}) according to Table 3.1. If P̂a is

nondeducible, then by definition there must exist some other event in the system that

causes the same violation pattern of µ({a}) = Ia. Because physical invariants are not

violated during normal system operation, this nondeducible event must be an attack

28

scenario caused by some vertex x. For any vertex x in the system, both P̂x and V̂x

would include a violation at Ix. And because Ix /∈ µ({a}), neither these attack can be

nondeducible with P̂a. Therefore, P̂a must be nondeducible with the only remaining

attack scenario of P̂xV̂x. It follows that the P̂xV̂x violation pattern µ(N(x)) must be

equivalent to µ({a}), which yields the desired result of N(x) = {a}.

The sufficient proof is obvious from this result. If N(x) = {a}, then P̂xV̂x yields

the violation pattern µ({a}) which is nondeducible with P̂a.

Lemma 2. The false state attack P̂aV̂a is nondeducible if and only if there exists some

vertex x where either N(a) = {x} or N(a) = N(x).

Proof. The attack P̂aV̂a has a violation pattern of µ(N(a)). In the same manner as

the proof for Lemma 1, if P̂aV̂a is nondeducible, then there must be another attack

by some vertex x that produces the same violation pattern. The attack P̂x would be

nondeducible by Lemma 1 if N(a) = {x}. It is also trivial to see that P̂xV̂x will be

nondeducible when N(a) = N(x). The last remaining attack scenario is V̂x. Assume

that V̂x is nondeducible with P̂aV̂a in some topology. Then it must hold that these attacks

have the same violation patterns, or that µ({x} ∪N(x)) = µ(N(a)). For this to hold, it

must follow that x ∈ N(a). And because the graph is undirected, x ∈ N(a)→ a ∈ N(x).

Given that a ∈ N(x) and N(x) ⊆ N(a), it must follow that a ∈ N(a). However, this

is impossible because the graph is simple. From this contradiction, V̂x cannot be a

nondeducible scenario. Thus, if P̂aV̂a is nondeducible, it must be nondeducible with one

of the first two scenarios, which requires either N(a) = {x} or N(a) = N(x).

The sufficient proof is once again obvious. If N(a) = x, then P̂x is the nonde-

ducible scenario. If N(a) = N(x), then P̂xV̂x is the nondeducible scenario.

Lemma 3. The false state attack V̂a is nondeducible if and only if there exists some

vertex x where {x} ∪N(x) = {a} ∪N(a).

Proof. The attack V̂a has the violation pattern µ({a} ∪N(a)). The proofs for Lemma 1

and Lemma 2 have already shown that V̂a is deducible with both P̂x and P̂xV̂x. Therefore,

29

if V̂a is nondeducible, then it must be nondeducible with the attack V̂x. For this to be

true, it must follow that the invariant violation patterns are equivalent and µ({x} ∪

N(x)) = µ({a}∪N(a)). This leads to the desired result of {x}∪N(x) = {a}∪N(a).

Lemma 1, Lemma 2, and Lemma 3 list the conditions under which all three at-

tacks from Table 3.1 are nondeducible. There are no other possible attack scenarios in

the system model that involve falsified states as this table contains all possible permu-

tations of the three system states. Therefore, if it can be guaranteed that none of the

conditions for these three lemma hold, all false state attacks against the system would be

deducible. This means that there would be a one-to-one mapping between the invariant

violation patterns and the specific attack scenario that caused them. Physical attesta-

tion utilizes this result to determine whether a target has been malicious by looking for

its unique invariant violation pattern.

3.3. DEDUCIBLE TOPOLOGIES

The three lemma from the previous section provide a means to determine if a

given topology is nondeducible with respect to false state attacks involving a single

compromised controller. If any of the equalities in the lemma are true, then there is at

least one nondeducible false state attack possible in the system topology. However, if

none of the equalities hold, then all of the attack scenarios from Table 3.1 are deducible

and can be detected from their unique invariant violation patterns. This observation

leads to the following theorem.

Theorem 2. A graph G = (V,E) is deducible with respect to a one-node false state

attack if and only if the conditions hold that:

1. µ(V) are invariants

2. ∀x, y ∈ V,N(x) 6= {y}

3. ∀x, y ∈ V,N(y)− {x} 6= N(x)− {y}

30

Proof. Theorem 2 is a direct consequence of Lemma 1, Lemma 2, and Lemma 3. The

first condition states the assumption of the system model that there is a conservation

of power invariant at each bus in the physical system. The final condition N(y) −

{x} 6= N(x) − {y} is the combination of both N(y) 6= N(x) and {x} ∪ N(x) 6= {y} ∪

N(y) into a single statement under the assumption that the graph is simple. Thus, the

conditions in the theorem are the conditions in all three lemmas negated to prevent

their respective nondeducible attacks. As these three lemma describe all possible one-

node false state attacks, these conditions guarantee the absence of nondeducible attacks

within the graph.

Figure 3.3 shows the two topological features that violate Theorem 2. In the first

case, x has a degree of 1 with N(x) = y and the second condition of the theorem is

violated. This case is nondeducible because there are not enough observation points on

x to determine when it has been compromised. A compromised x can implicate y as an

attacker, and no one can arbitrate the case because y is the only vertex adjacent to x.

The second case, which violates the third theorem condition, shows two vertices x and y

with the same neighbor set and an optional edge between x and y themselves. Whether

x or y is compromised, the same set of neighbors have invariant violations and be unable

to distinguish the source of the compromise. At least one vertex must be connected to

either x or y, but not both, to serve as a tie breaker and determine the source of the

compromise.

x y x y

Figure 3.3: Nondeducible Topological Features

31

If Theorem 2 holds and there are sufficient observation points to detect all of

the invariant violations, a compromised controller can be identified by its invariant

violation pattern. Consider the physical network shown in Figure 3.4. Through repeated

application of the results from Table 3.1 to each of the labeled buses, the set of invariant

violations for all possible attacks are presented in Table 3.2. The invariants located

below N1 and N5 are not evaluated because neither N0 nor N6 exist to provide the

voltage and phase angles required to evaluate these invariants. Note that this violates

the first condition of Theorem 3.4 in that some of the invariants cannot be evaluated.

N1 N2 N3 N4 N5

a b cx x

Figure 3.4: Simple 5-Node Topology

Table 3.2: 5-Node Invariant Violations
Malicious Node Falsified Value(s) Violated Invariant(s)

1
P̂1 ∅
V̂1 Ia

P̂1V̂1 Ia

2
P̂2 Ia
V̂2 IaIb

P̂2V̂2 Ib

3
P̂3 Ib
V̂3 IaIbIc

P̂3V̂3 IaIc

4
P̂4 Ic
V̂4 IbIc

P̂4V̂4 Ib

5
P̂5 ∅
V̂5 Ic

P̂5V̂5 Ic

32

The invariant violation patterns from Table 3.2 are not unique. Ia can be violated

by both N1 and N2, Ic can be violated by both N4 and N5, and Ib can be violated by

N2, N3, and N4. Observe, however, that the violation pattern for V̂1 does not match the

expected results for the behavior of a single compromised controller. This is because two

of the invariants that should have been violated fall outside of the observable region of

the network. The existence of these border invariants that cannot be evaluated allows for

the existence of nondeducible violation patterns. If all of the invariants are calculated,

using measurements from all buses in the system, Theorem 2 would be satisfied and

there would be no nondeducible cases. However, for a distributed security mechanism

such as physical attestation, it is infeasible for one controller to communicate with all

of its potentially thousands of peers in the system. Instead, the observability region will

be extended by increasing the number of nodes until there are enough observations to

generate unique violation patterns for a subset of the controllers.

Figure 3.5 increases the physical network to 7-nodes to extend the observability

region of invariant violations. Table 3.3 lists the invariant violation patterns for this

physical network. The same problem as the 5-node network exists for the border buses

with regards to non-unique violation patterns. For instance, It−2 can still be violated

by both nodes t − 3 and t − 2. However, node t has a unique violation pattern. No

other node violates the combination of invariants It, It−1ItIt+1, or It−1It+1. This means

the 7-node physical network can attest to behavior of node t in the presence of one

compromised controller. If the violation patterns match node t, then it is certain that

node t is the attacker. Otherwise, it is certain that node t is honest.

t-3 t-2 t-1 t t+1 t+2 t+3

It-2 It-1 It It+1 It+2

Figure 3.5: Simple 7-Node Topology

33

Table 3.3: 7-Node Invariant Violations
Malicious Node Falsified Value(s) Violated Invariant(s)

t-3

ˆPt−3 ∅
ˆVt−3 It−2

ˆPt−3 ˆVt−3 It−2

t-2

ˆPt−2 It−2
ˆVt−2 It−2It−1

ˆPt−2 ˆVt−2 It−1

t-1

ˆPt−1 It−1
ˆVt−1 It−2It−1It

ˆPt−1 ˆVt−1 It−2It

t
P̂t It
V̂t It−1ItIt+1

P̂tV̂t It−1It+1

t+1

ˆPt+1 It+1

ˆVt+1 ItIt+1It+2

ˆPt+1
ˆVt+1 ItIt+2

t+2

ˆPt+2 It+2

ˆVt+2 It+1It+2

ˆPt+2
ˆVt+2 It+1

t+3

ˆPt+3 ∅
ˆVt+3 It+2

ˆPt+3
ˆVt+3 It+2

Table 3.3 cannot be used to detect if nodes other than t are dishonest. Given the

invariant violation pattern It−2, it is not clear whether node t−3 or t−2 contributed the

falsified states that led to the invariant violations. It is therefore necessary to instantiate

a different subset of physical invariants dependent on the target of attestation. For

example, if the attestation protocol needed to validate the behavior of node t+ 1, then

it would shift Table 3.3 one bus to the right and consider observations produced by node

t + 4. One of the main functions of physical attestation is determining which subset

of invariants is sufficient to perform attestation without any nondeducible cases. This

sufficient invariant set is called an attestation framework, and will be discussed in the

next section.

34

4. ATTESTATION FRAMEWORKS

If a topology satisfies the requirements in Theorem 2, it is guaranteed that there

is no single node nondeducible attack in the system. Therefore, the invariant violation

pattern maps to a unique attacker when a false state attack occurs. However, this

requires measurements from every vertex to be used during the verification process, and

does not scale to large systems. Instead, a subset of vertices will be used to perform the

verification process, and this subset will be called an attestation framework.

When a subset S ⊆ V of vertices are selected for the attestation framework, it

will only be possible to evaluate a subset of the invariants. Definition 2 defines another

function µS(V) that selects the subset of invariants from µ(V) that can be instantiated

using measurements from S. From Equation 3.1, an invariant located at a specific vertex

cannot be evaluated without measurements from it and all of its neighbors. This leads

to the requirements from the definition that both x ∈ S and N(x) ⊂ S must hold for

the invariant Ix to be evaluated.

Definition 2. Ix ∈ µS(V) if and only if x ∈ V , x ∈ S, and N(x) ⊂ S.

Definition 3. A subset of vertices S forms an attestation framework for some vertex t

if and only if t cannot perform a nondeducible attack using the invariants from the set

µS(V).

Definition 3 implies that the nodes in S will perform a distributed computation to

compute a set of invariants using their local measurements. These invariants will then be

used to determine if the target t of attestation has performed a false state attack against

the system. Because the attestation framework is built around a specific target, each

node in the distributed system would have its own associated attestation framework.

35

4.1. DEDUCIBLE FRAMEWORKS

With the definition of the set of invariants µS(V) and the specific node t, the

conditions from Theorem 2 can be changed to consider nondeducibility within a specific

attestation framework. First, it is no longer necessary to consider all pair wise combi-

nations of vertices in the system given a specific target t. Now it is sufficient to consider

only the cases where either x = t or y = t from the conditions of Theorem 2. Second, the

invariants outside of µS(V) cannot be evaluated within a given attestation framework,

so all the conditions must be restricted to this specific set. These restrictions lead to

the following theorem.

Theorem 3. A subset of vertices S in a graph G = (V,E) forms an attestation frame-

work for some vertex t if and only if the conditions hold that:

1. It ∈ µS(V)

2. |µS(N(t))| ≥ 2

3. ∀x ∈ N(t) : |µS(N(x))| ≥ 2

4. ∀x ∈ V : µS(N(x)− {t}) 6= µS(N(t)− {x})

Necessary. Suppose the subset of vertices S forms an attestation framework for t. This

proof will show that the removal of any one condition from Theorem 3 enables t to

perform a nondeducible attack. The existence of this nondeducible attack would violate

Definition 3 and contradict that S is a valid attestation framework.

If the first condition does not hold, then It /∈ µS(V) and the invariant violation

pattern for the attack Pt yields a violation pattern of ∅. However, ∅ is consistent with

the normal operating behavior of the system in the absence of a false state attack, and

thus this attack is nondeducible.

If the second condition does not hold, then |µS(N(t))| must equal either 0 or 1.

Suppose |µS(N(t))| = 0, then when t performs a PtVt attack it results in a violation

36

pattern of ∅ which is again nondeducible. Suppose µS(N(t)) = Ix, then when t performs

the same PtVt attack it yields a violation pattern of Ix which is nondeducible with Px.

If the third condition does not hold, then |µS(N(x))| must equal either 0 or 1 for

all x ∈ N(t). However, x ∈ N(t) combined with It ∈ µS(V) lead to µS(N(x)) = It as

the only case that can violate this condition. And for this case both Pt and PxVx yield

the same violation pattern of It and are thus nondeducible.

If the fourth condition does not hold, then it is trivial to see that either PxVx and

PtVt or Vx and Vt are nondeducible. Which of these leads to the nondeducible case will

depend on whether or not x and t are adjacent.

Sufficient. Suppose the four conditions from Theorem 3 are satisfied for some subset of

vertices S. This proof will show that these conditions lead to t being unable to perform

a nondeducible attack using invariants from µS(V). Then Definition 3 leads to the result

that S must be an attestation framework for t.

Let t perform the Pt attack with a violation pattern of It where It ∈ µS(V) by

condition 1 of the theorem. If this attack were nondeducible, then there must exist

an x ∈ N(t) with a violation pattern of µs(N(x)) = It. However, this would require

|µs(N(x))| = 1 which violates condition 3, and no such x can exist.

Let t perform the Vt attack with a violation pattern of µ({t} ∪ N(t)). This

violation pattern within the subset of vertices S is equivalent to It ∪ µS(N(t)). If this

attack were nondeducible, then the violation must be due to an x ∈ N(t) that can violate

the It invariant. From condition 4, there must be some vertex y where Iy ∈ µS(V) and

either y ∈ N(t) or y ∈ N(x), but not both. Iy serves as an indicator that is violated

only when its adjacent vertex performs an attack, and its existence makes the attack

deducible.

Let t perform the PtVt attack with a violation pattern of µ(N(t)). Suppose this

attack is nondeducible with some x ∈ N(t). Condition 2 requires that the PtVt attack

violate at least two invariants. As a result, x cannot perform the Px attack which would

violate the single invariant Ix. However, all remaining attacks by x would violate It ∈

37

µS(N(x)), and It /∈ µ(N(t)) gives a contradiction. Suppose this attack is nondeducible

with some x ∈ V − N(t). Then because x and t are not adjacent, N(t) = N(t) − {x}

and N(x) = N(x) − {t}. Condition 4 gives µS(N(x) − {t}) 6= µS(N(t) − {x}), which

after substitution becomes µS(N(x)) 6= µS(N(t)). Therefore, x cannot perform either

Vx or PxVx as nondeducible attacks, nor the Px attack as shown in the previous case. As

these are all possible attack scenarios, x is deducible with t giving a contradiction.

Theorem 4. If Theorem 2 holds for a graph G = (V,E), then the set of all vertices

within 4-hops of some vertex t ∈ V forms a valid attestation framework for t.

Proof. Let S = {t} ∪ h1 ∪ h2 ∪ h3 ∪ h4 be the set of vertices within 4-hops of t where hi

contains all the ith-hop vertices. It is sufficient to show that the set S satisfies Theorem 3

to prove that S forms a valid attestation framework. From Definition 2, it follows that

µ({t}∪h1∪h2∪h3) ⊆ µS(V) are all framework invariants. Therefore, the first condition

of Theorem 3 that It ∈ µS(V) is satisfied.

The condition ∀x, y ∈ V,N(x) 6= {y} from Theorem 2 implies that |N(t)| ≥ 2.

The set N(t) is also the set of 1-hop vertices from t giving the equality N(t) = h1.

And all members of h1 have associated invariants in µS(V) as derived above, which is

equivalent to the statement |µS(h1)| = |h1|. After substitution of these three results,

the second condition of Theorem 3 is satisfied that |µS(N(t))| ≥ 2.

The condition ∀x, y ∈ V,N(x) 6= {y} also implies that ∀x ∈ N(t), |N(x)| ≥ 2. If

x ∈ N(t) = h1, then all members of N(x) must come from either {t} or the set h2. From

the derivation of µS(V), the set N(x) ⊆ {t}∪h2 are all invariants within the framework

and |N(x)| = |µS(N(x))|. Substitution back into the first inequality then yields the

third condition of Theorem 3 that ∀x ∈ N(t) : |µS(N(x))| ≥ 2.

For the final condition, suppose some vertex x exists such that the condition isn’t

satisfied and µS(N(x)− {t}) = µS(N(t)− {x}). |µS(N(t))| ≥ 2 has been shown during

the course of this proof, which implies both |µS(N(t)−{x})| ≥ 1 and µS(N(t)−{x}) 6= ∅.

This result, combined with the original assumption, requires that x and t must have at

least one common neighbor. And for x and t to have a common neighbor, it must hold

38

that either x ∈ h1 or x ∈ h2. However, this means that all members in N(x) belong to

{t}∪h1∪h2∪h3 and must be invariants within the framework. Therefore, the framework

invariants associated with N(t) are the same as the invariants outside of the framework

and µ(N(x) − {t}) = µ(N(t) − {x}). Definition 1 combined with this equality leads

to N(x) − {t} = N(t) − {x} and violates Theorem 2. From this violation, no such

vertex x can exist that violates the final condition, and all conditions of Theorem 3 are

satisfied.

Given a random graph that satisfies the topological requirements of Theorem 2, a

framework can always be constructed to perform attestation. However, this framework

requires a large number of vertices that may not be necessary to perform the actual

verification, and will not scale to topologies with high connectivity. A more scalable

approach is to minimize the size of the attestation framework to reduce the number of

processes that would need to be included in the distributed computation.

4.2. MINIMUM FRAMEWORKS

The minimum attestation framework problem consists of a graph G = (V,E)

with a distinguished vertex t ∈ V , and a positive integer f ≤ |V |. The problem asks:

does there exist an attestation framework for t in G with size at most f? An attes-

tation framework consists of a subset of vertices V ′ ⊆ V that satisfies the topological

requirements stated in Theorem 3. This section will prove that the minimum attestation

framework problem is NP-Complete using a reduction from set cover.

An instance of the set cover problem consists of a collection C of subsets of a finite

set S, and a positive integer k ≤ |C|. The problem asks: does there exist a subfamily

C ′ ⊆ C where |C ′| ≤ k and each element of S belongs to at least one member of C ′?

The set cover problem has a polynomial time solution only for the special case when

each set in C has at most two elements.

A polynomial time reduction will transform a set cover instance into a graph G

for the minimum attestation framework problem. First, a vertex is created for each set

39

Ci ∈ C and each element s ∈ S. An edge exists between the pair of vertices (Ci, s) if

s ∈ Ci in the set cover instance. Then a cycle of 5 new vertices is created that contains

the distinguished vertex t. Additional edges are created between t and each element

s ∈ S. Given this graph, the value for f is then defined as f = k+ |S|+ 5 where k is the

positive integer from the set cover instance. Because each step of this reduction takes

either O(1), O(|S|), or O(|C||S|) time, it is a polynomial time reduction.

As an example, consider the set cover instance with S = {a, b, c} and C =

{{a, b}, {a, b, c}, {b, c}}. This instance results in the graph shown in Figure 4.1 after

the polynomial time reduction. If C does not contain the null set, then this graph will

always be connected.

a

b

c

C1

C2

C3

t

xw

y z

Figure 4.1: Example Reduction from Set Cover

Theorem 5. There exists an attestation framework for t in G = (V,E) with size ≤ f

if and only if there exists a set cover C ′ ⊆ C over S with |C ′| ≤ k.

Necessary Proof. Suppose there is an attestation framework for t in G = (V,E) with

size ≤ f . Two lemmas will be used to prove the necessary condition of Theorem 5.

Lemma 4. The vertices from C with associated invariants in µS(V) form a set cover

of S.

The third condition from Theorem 3 requires that each vertex in N(t) be adjacent

to two vertices with associated invariants in µS(V). From the construction of G, it holds

that S ⊂ N(t) for all instances of the set cover problem and thus all vertices in S must

40

satisfy this requirement. One of the two vertices will be the target of attestation t since

all members of S are adjacent to t and It ∈ µS(V) is guaranteed by the first condition

of Theorem 3. From the construction of graph G, the set {w, x, y, z} ∪ S forms an

independent set where {w, x, y, z} are the vertices in the 5-cycle with t. The second of

the two vertices cannot belong to {w, x, y, z} or S due to the existence of this independent

set. Therefore, the second vertex must come from the set V − S − {w, x, y, z, t} = C.

Because this requirement must be met by all s ∈ S, it follows that each s must be

adjacent to some Ci ∈ C where ICi ∈ µS(V).

Lemma 5. The number of vertices that correspond to members of C in the framework

is at most k.

Theorem 3 requires that an attestation framework contain the set N(t) in order

to evaluate the invariant It. Because S ⊂ N(t), it follows that these |S| nodes must be

part of the framework. Now consider the cycle {w, x, z, y, t} in Figure 4.1. This cycle

will exist in G regardless of the set cover instance that was used in the reduction. For the

same reason as above, {x, z} ⊂ N(t) and both vertices must belong to the framework.

These two vertices must also be adjacent to a second invariant other than It for the

framework to be valid. This second invariant must be Iw for x and Iy for z, as both

vertices have degree two with their other neighbor being the unusable vertex t. The last

vertex in the cycle, t, must be part of the framework since it is the target of attestation.

Thus, all vertices in the 5-cycle must belong to the attestation framework.

When these two results are combined, the framework must consist of |S| vertices

from S and 5 vertices from the cycle. Because the framework has size at most f =

k + |S| + 5, there are at most k additional vertices left in the framework. In addition,

no vertices from C have been added to the framework as C is disjoint from both the set

S and {w, x, y, z, t}. This completes the proof of Lemma 5.

The necessary condition is a direct consequence of Lemma 4 and Lemma 5: there

are at most k members of C in the attestation framework, and these members form a

set cover of S.

41

Sufficient Proof. Suppose there is a set cover C ′ ⊆ C over S with |C ′| ≤ k. From the

graph G, take the subset of vertices that consists of the solution C ′ to set cover, the

vertices in S, and the vertices in the 5-cycle that contains t. This subset has size at

most f = k + |S| + 5 which is the desired size of the attestation framework. All that

remains is to prove that this subset of vertices forms an attestation framework.

According to Theorem 3, an attestation framework must include an invariant at

t. This requires that both t and N(t) be in the framework. For all instances of the set

cover problem, N(t) consists of S and two members of the 5-cycle which are included in

the subset described above. Because t also belongs to the 5-cycle, it is also included in

the subset, and this condition of the theorem is satisfied.

The next condition is that there are two invariants from the set of nodes N(t).

These two invariants are the vertices {x, z} that are adjacent to t in the 5-cycle. Because

the neighbors of these two vertices are members of the cycle, and all members of the cycle

are included in the subset described above, the invariants µS({x, z}) can be instantiated.

This satisfies the second condition of the theorem.

An attestation framework must also include two invariants adjacent to each neigh-

bor of the target t. As It can be used as one of these invariants, this requirement is

satisfied by finding a set of vertices with invariants excluding t that form a set cover

of N(t). The vertices that must be covered are the elements of S and the two vertices

{x, z} from the 5-cycle. The solution to the set cover problem C ′ forms a set cover of S.

Each of the vertices in the set cover solution C ′ can also be evaluated as an invariant

because their neighbors must come from the set S which belongs to the subset described

above. The set {w, z} covers the remaining vertices {x, z} and are also both invariants

since their only neighbors are members of the 5-cycle, all of which belong to the subset

described above. This satisfies the third requirement of the theorem.

The last requirement is that no other vertices in the graph are adjacent to the

same set of invariants as t. This requirement is trivial through the observation that both

Ix and Iz are invariants and {x, z} ⊂ N(t). Through observation of Figure 4.1, no other

42

vertices are adjacent to both x and z, and thus these two vertices will always fulfill the

final requirement of Theorem 3.

As each requirement of Theorem 3 has been satisfied with the subset of size ≤ f

described above, this subset is an attestation framework and the sufficient condition has

been proved.

With Theorem 5 proven, and a polynomial time reduction from all instances of set

cover, it has been shown that the minimum attestation framework problem is NP-Hard.

And because each of the conditions from Theorem 3 can be verified in polynomial time,

the minimum attestation problem is also NP-Complete. From this result, it follows that

either an approximation algorithm or special cases must be used in order to generate

minimum attestation frameworks.

43

5. PHYSICAL ATTESTATION IN REGULAR NETWORKS

This section examines several regular networks and shows that, although finding a

minimum framework is NP-Hard in the general case, it is quite feasible to find minimum

size frameworks for specific network topologies that exhibit regular connectivity.

5.1. RING NETWORKS

This section will derive the minimum size attestation framework for all ring net-

works. A ring network is a connected topology in which all vertices have a degree of 2.

For a large ring with number of vertices n ≥ 7 it will be shown that the minimum size

attestation framework always has a size of f = 7. However, this section will also prove

the individual cases for rings with size n < 7.

Lemma 6. All ring networks with size n ≤ 4 are nondeducible with respect to the false

state attack and thus cannot be used together with physical attestation.

Proof. It will be shown that all ring networks that satisfy n ≤ 4 violate the third

condition of Theorem 2, which states that ∀x, y ∈ V,N(y) − {x} 6= N(x) − {y}. This

will be done through showing the existence of a pair of vertices in the graph for which

N(y) − {x} = N(x) − {y}. The existence of this counter example is enough to show

that Theorem 1 does not apply and the topology is nondeducible with respect to the

false state attack.

Consider vertices x and y in the ring network with n = 2 in Figure 5.1. For these

vertices, N(x) = {y} and N(y) = {x}. When substituted into the conditional above,

these two sets lead to {x} − {x} = {y} − {y} = ∅. This completes the counter example

which violates the second condition of Theorem 1, and completes the proof for n = 2.

Consider the vertices x and y for the network with n = 3 in Figure 5.1. N(x) =

{y, z} and N(y) = {x, z} which substitute into the conditional as {x, z}−{x} = {y, z}−

44

w

y z

x

n = 4n = 2 n = 3

x y

z

x y

Figure 5.1: Nondeducible Ring Topologies

{y} = {z}. Once again, the successful production of a counter example to Theorem 1

completes the proof.

Consider the vertices x and y for the network with n = 4. N(x) = N(y) = {w, z}.

After substitution, it still holds that both N(y)− {x} = N(x)− {y} = {w, z}, and this

counter example completes the proof for n = 4.

Lemma 7. All ring networks with size 5 ≤ n ≤ 7 have minimum attestation frameworks

of size n.

Proof. For this proof, an attestation framework will be built around a single target

vertex until it satisfies all of the requirements from Theorem 2. It will be shown that

this framework requires all n vertices or Theorem 2 will not be satisfied. Due to the

unique properties of ring networks, all rings of the same size are homomorphic to each

other. Therefore, the minimum framework for one target vertex in the ring can be

transformed into the minimum framework for any other vertex by relabeling the nodes

in the attestation framework.

For the ring network with n = 5 in Figure 5.2, let a be the target of attestation.

From Theorem 2, it follows that an invariant must be evaluated at the target a. This

requires measurements from the vertices in the set {a, b, c} to instantiate the required

line power flows Pab and Pac. In addition, there must also be invariants at two neighbors

of a to satisfy the second condition of Theorem 2. As b and c are the only possible

45

neighbors of a, both must be invariants, which require measurements from the vertices

{a, b, d} and {a, c, e} respectively. Already, the attestation framework must include all

5 vertices to satisfy Theorem 2 and the minimum framework size for n = 5 is n.

n = 5 n = 6 n = 7

a b

c d

e

a b

c d

e f

a b

c d

e f

g

Figure 5.2: Deducible Ring Topologies

Now extend the ring network to n = 6 with the addition of the vertex f in

Figure 5.2. With a as the target, it still follows that {a, b, c, d, e} must be included in the

framework for the same reasoning as above. However, the third condition of Theorem 2

states that the neighbors of the target, b and c, must be adjacent to two invariants. For b,

this requires an additional invariant at d which will need measurements from the vertices

{b, d, f} to instantiate its required power flows. This brings f into the framework and

increases its total size to 6, and proves the minimum framework size is once again n.

Once again extend the network to n = 7 with vertex g in Figure 5.2. It still

follows from above that {a, b, c, d, e, f} belong to the framework. However, c is also a

neighbor of a that must be adjacent to a second invariant. The only option for this

second invariant is e, which would require measurements from the vertices in the set

{c, e, g}. As g is not yet in the framework, this increases the total framework size to 7

and shows once again the minimum framework size is n.

This has proved that, in order to satisfy Theorem 2, the attestation frameworks

for all ring networks with sizes in the range 5 ≤ n ≤ 7 must be of size n. However, it has

46

not shown that attestation is possible in these networks as it was never demonstrated

that Theorem 1 holds for these topologies. The method to prove Theorem 1 would be to

do an exhaustive proof that there is no pair wise combination of vertices for which the

condition ∀x, y ∈ V,N(y)− {x} 6= N(x)− {y} is violated like for the cases with n ≤ 4.

This result is obvious because for any selection of two vertices x and y, there always

exists a vertex z that is adjacent to either x or y but not both. Due to the mundane

nature of this proof, the truth of Theorem 1 is claimed for these three cases without

proof.

Theorem 6. All ring networks with size n ≥ 8 have minimum attestation frameworks

of size 7.

Proof. Figure 5.3 shows a ring network of size n > 7. In the same vein as the previous

proof, it will be shown that the minimum size attestation framework for the target a in

this network requires a specific number of vertices or Theorem 2 will not be satisfied.

a

b

c

d

e

f

g

. . .

Figure 5.3: Arbitrary Size Ring Topologies

There must be an invariant at a to satisfy the first requirement of Theorem 2.

There must also be invariants at both b and c to satisfy the second requirement that

at least two neighbors of the target a are invariants. For the third requirement of

47

Theorem 2, both d and e must also be invariants. The selection of invariants so far follows

the same reasoning as the previous proof, and is both sufficient and necessary (due to

the limited degree of vertices in ring networks) to fulfill the first three requirements of

Theorem 2. The final requirement states that no vertex in the graph can be adjacent

to the same set of invariants as the target a. This set is the invariants at both b and c.

This final requirement is satisfied since no vertex besides a is adjacent to both b and c.

This is obvious through examination of Figure 5.3. Thus, all of the requirements have

been satisfied with the set of invariants µS({a, b, c, d, e}).

The minimum size framework must be able to calculate these five invariants using

Equation 3.1. To do this, it is necessary to calculate the power flows Pdf and Peg. These

power flows require measurements from vertices f and g respectively. The remaining

power flows can be computed from the existing set {a, b, c, d, e}. With this, the vertices

that must be included in the minimum size attestation framework are {a, b, c, d, e, f, g}

with a total size of 7.

This completes the analysis of physical attestation in ring networks of arbitrary

size. Table 5.1 summarizes the results of all of the proofs presented in this section with

respect to the minimum attestation framework sizes. The following section will use

similar analysis applied to different network topologies.

Table 5.1: Minimum attestation framework sizes for ring topologies
Ring Size (n) 2 3 4 5 6 7 8+

Framework Size (f) ND1 ND ND 5 6 7 7

5.2. MESH NETWORKS

This section will consider the minimum size attestation framework for a mesh

network where each vertex has degree 4. An assumption is made for the sake of gen-

eralization that the n-by-m mesh network satisfies n ≥ 6 and m ≥ 6. Attestation is

1No framework can be formulated as the ring is nondeducible.

48

possible in smaller networks, but these are special cases which must be considered on

an individual basis. In addition, the proof will limit itself to n-by-n mesh networks to

utilize graph homomorphism. It will then be argued that additional rows or columns

added to this mesh do not affect the size of the minimum framework.

The formulation of the minimum framework will follow in the same manner as

the ring network. An arbitrary vertex will be selected to be the target of attestation

and vertices will be added one at a time to satisfy all of the requirements of Theorem 3.

However, because mesh networks have a higher degree of connectivity, there are often

several ways to select vertices to fulfill these requirements. In these cases, multiple

frameworks will be constructed that consider each possible permutation of vertices. Due

to the regular structure of mesh networks, the actual number of permutations is quite

low. All the frameworks will then be compared to determine which has minimum size.

According to Theorem 3, an attestation framework requires at least two invariants

in µ(N(t)). Due to homomorphism within a square mesh, there are exactly two unique

ways to select these vertices. Either the two vertices appear on opposite sides of the

target as shown in Figure 5.4, or the two vertices form an L with the target located

at the joint as shown in Figure 5.5. These two variants will be referred to as the line

pattern and L pattern respectively. Because these two variants are the only ways to

satisfy the degree requirement needed for an attestation framework, the smaller of the

two variants will be the minimum size attestation framework for mesh networks.

Lemma 8. The line pattern results in an attestation framework with total size of 15.

Proof. Figure 5.6 illustrates each step of the following proof. The line pattern must begin

with the invariants in µS({t, 1, 2}). It is required for the first condition in Theorem 3,

while I1 and I2 are due to the definition of the line pattern. Another permutation of the

line pattern would be µ({t, a, b}), but this is a homomorphic case that will result in the

same framework size and can be ignored. The set µS({t, 1, 2}) also satisfies condition 4

from the theorem as, by inspection of Figure 5.6, there is no vertex in the graph save t

that is adjacent to both vertices 1 and 2. The third requirement is the last requirement

49

t

Figure 5.4: Mesh Line Pattern

t

Figure 5.5: Mesh L Pattern

that must be satisfied in order to generate a valid attestation framework. A claim

is now made that vertices 3 and 4 belong to a minimum size attestation framework.

Under the assumption that this claim holds, then the total framework as shown in

Figure 5.6 contains µS({t, 1, 2, 3, 4}) and consists of 15 vertices. Recall that several

unlabeled vertices must be brought into the framework to satisfy the definition of µS().

If this is not the minimum framework for the line pattern, then it must be possible

to replace µS({3, 4}) with some other combination of invariants that results in fewer

vertices being added to the framework. Notice that it is impossible for condition 3

from Theorem 3 to be met with the addition of a single invariant, as vertices 1 and 2

have no neighbor in common other than the target t and must both be adjacent to a

second vertex with an associated invariant in µS(V). Therefore, at least two invariants

must be selected for a valid framework. In addition, to be better than the 15 framework

described above, at least one of those invariants must add only a single new vertex to the

attestation framework. However, there exists no vertex in the graph adjacent to either

1 or 2 that would only increase the framework size by 1. Therefore, the 15 framework

described above is the minimum framework that contains the line pattern.

50

a3

t1 2

b 4

Figure 5.6: 15 Vertex Framework for Line Pattern

Theorem 7. The minimum size attestation framework for an n-by-n mesh with n ≥ 6

has size 15.

Proof. Other than the line pattern covered in Lemma 8, the only other variant for

selection of the initial invariants is the L pattern. Figure 5.7 illustrates each step of the

following proof. µS({t}) must be included to satisfy the first requirement of Theorem 3.

Then the L pattern must be included to satisfy the second requirement, which brings in

invariants µS({1, 2}). In order to satisfy the fourth requirement, another invariant must

be added at a vertex that is adjacent to t or a. However, if either Ib or Ic is selected, then

the framework would contain the line pattern that was discussed in Lemma 8. Instead,

we must chose a new invariant at a vertex adjacent to a. Due to graph homomorphism,

the only choice for this invariant is I3. At this point, the current size of the framework

51

with µS({t, 1, 2, 3}) in Figure 5.7 is 13. However, not all of the requirements of Theorem 3

have been satisfied.

3

1 a

tb 2

c

Figure 5.7: 13 Vertex Framework for L Pattern

The last remaining requirement that must be fulfilled is the degree requirement

of the vertices adjacent to the target. Consider all the possibilities of invariants adjacent

the vertex labeled c in the current framework. All of these possibilities would increase the

framework size by at least 2, which would make the minimum framework size no smaller

than 15. However, Lemma 8 already describes a framework of size 15. Therefore, using

the L pattern, it is impossible to do better than the line pattern, and the line pattern

will always result in a minimum attestation framework.

Corollary 1. The minimum size attestation framework for an n-by-m mesh with n,m ≥

6 has size 15.

52

Corollary 1 follows Theorem 7 through the observation that the minimum frame-

work shown in Figure 5.6 did not roll over the edge of the mesh network. Therefore, the

addition of rows or columns would not change the proof for Lemma 8 and it would still

be possible to generate a framework of size 15 in a rectangular mesh network.

5.3. HYPERCUBES

This section will formulate the minimize size attestation framework for an n-

dimensional hypercube. Because of the regular connectivity of a hypercube, construction

of this minimum framework can be done in polynomial time. The proof will use the

binary formulation of hypercubes where each vertex has an n-bit binary label and two

vertices are adjacent if their associated labels have a hamming distance of 1. A special

set notation will be used to simplify the discussion in which vertices will be placed into

sets based on the number of bits set in their label. These sets will be referred to as hi for

0 ≤ i ≤ n where i is the number of 1-bits in the label. Figure 5.8 shows an example of a

4-dimensional hypercube and the partition of its vertices into these sets. The minimum

attestation framework will be constructed using the single vertex in the set h0 as the

target of attestation. This result can then be generalized using an XOR operation to

construct the minimum framework for an arbitrary target node.

Lemma 9. Some minimum attestation framework for a hypercube uses three invariants

from µ(h1) to satisfy the second and fourth requirements from Theorem 3.

Proof. All attestation frameworks must contain two invariants from µ(N(t)) to satisfy

the second requirement from Theorem 3. In a hypercube, because the target belongs to

h0 and edges only exist between vertices with a hamming distance of 1, these invariants

must be located at vertices in h1. Given two arbitrary vertices in h1, there is exactly one

vertex in h2 adjacent to both. Unless additional invariants are added to the framework,

this h2 vertex violates the fourth requirement from Theorem 3. All frameworks must

therefore include an additional invariant from µ(h1 ∪ h3) to prevent this violation.

53

h2h1h0 h3 h4

0000

0001

0010

0100

1000

0011

0101

1001

0110

1010

1100

0111

1011

1101

1110

1111

Figure 5.8: Example Hypercube

Assume that a minimum framework uses a vertex v ∈ h3 to prevent the violation.

This vertex will be adjacent to (n − 3) vertices from h4 since it contains (n − 3) 0-bits

in its label that could be changed into a 1. Until this point, no vertices from h4 have

been added to the framework, and we will now claim that the minimum framework

will contain no vertices from h4 except those (n− 3) needed to calculate the Iv invariant

being discussed now. Choosing v will therefore always increase the size of the framework

≥ (n− 3), with the potential for a larger value since additional vertices from h2 may be

needed to calculate Iv.

The proof for the claim that no vertices in h4 are required outside of this step

is derived from Theorem 3. Within the context of a hypercube, the first requirement

54

selects invariants from µ(h0), while the second requirement selects invariants from µ(h1)

and the third requirement from µ(h2). This is consistent with the earlier discussion

of a two-hop distance being the worst case size for an attestation framework. These

invariants would bring vertices from h0 to h3 into the attestation framework. No other

invariants are required to satisfy Theorem 3 outside of the fourth requirement being

considered now, and so the claim that no vertices from h4 will be required outside of

this step holds.

Assume that instead of the h3 vertex, a minimum framework uses a vertex u ∈ h1

to prevent the violation of Theorem 3. The h1 vertex is adjacent to the one vertex in

h0 and (n− 1) vertices in h2. However, h0 must be in the framework in order to satisfy

the first requirement of Theorem 3. In addition, two arbitrary nodes have already been

selected from h1 in order to satisfy the second requirement. Each of these two vertices

shares one neighbor in common with u which has already been added to the framework.

This means that u would add ≤ (n− 3) new vertices to the framework.

Because the selection of another vertex from h1 is always at least as good as

selection of a vertex from h3, there must exist a minimum attestation framework that

selects the h1 vertex.

From the discussion thus far, we have concluded that some minimum framework

contains invariants at h0 and three vertices from h1. This framework satisfies the first,

second, and fourth requirements of Theorem 3 as discussed in the proof for Lemma 9.

The last requirement that must be satisfied is to ensure that each vertex in h1 is adjacent

to at least two vertices with associated invariants in µS(V). As |µ(h0)| = 1, one of these

vertices must necessarily come from the set h2.

There are two strategies for selection of nodes in h2 to be invariants: the invariants

can be selected either to minimize the number of h2 vertices added into the framework,

or to minimize the number of h3 vertices. The first approach attempts to minimize

the total number of invariants by ensuring that each vertex that is used as an invariant

covers as many unique members of h1 as possible. In the binary notation for hypercubes,

55

the optimal strategy for this approach would be to choose vertices whose labels share no

1-bits in common. For instance, in a 4-dimensional hypercube, selection of (0011) and

(1100) since the intersection of these labels is (0000). The second approach attempts to

maximize the number of shared neighbors between the vertices selected as invariants in

h3. The optimal strategy for this approach is to select vertices in h2 that share bits in

common. In the 4-dimensional hypercube, selection of (0011), (0101), and (1001) would

be an example of this approach since the intersection of these labels is (0001). As it can

be seen, these two approaches are incompatible with each other because one attempts

to minimize the overlap of 1-bits while the other attempts to maximize the overlap.

To determine the optimal selection of nodes from h2, the vertices from h2 are

assigned to sets when they are added to the framework. Each set contains the set of h2

nodes that share mutual neighbors in h1. Therefore, within a set, the intersection of the

labels of the set members will be a bit string that contains a single 1-bit. And across

sets, the intersection of any arbitrary label from each set will result in the bit string that

contains all 0-bits. In the two examples given above, the sets are S1 = {0011};S2 =

{1100} and S ′1 = {0011, 0101, 1001}. The first approach of minimizing the overlap of

1-bits would attempt to maximize the number of these sets, while the second approach

would attempt to minimize the number of sets.

Each set as defined above covers m+1 vertices of h1 where m is the set size. The

first member in the set covers 2 vertices in h1, and each subsequent member contributes

only 1 to the total coverage. We assume that if a vertex had covered 0 additional

elements, it would have been dropped rather than added to the set. Also note that the

coverage of each set is independent of each other. If two sets have overlap in h1 such

that their total coverage is not the sum of their individual coverage, then the two sets

could have been combined into one larger set that still satisfies the definition of sets

given above.

Each set has a cost equal to the number of new vertices it brings into the frame-

work. The framework already contains all of the vertices in h1 in order to calculate

56

It, and so these neighbors add nothing to the cost. However, the framework contains

no vertices in h3. We now make the claim that if two vertices from h2 are placed into

different sets, then they share no neighbors in h3 in common. For two h2 nodes to have

a h3 neighbor in common, they must share at least one bit. However, if they share one

bit, then they must have been placed into the same set by the set definitions. This

contradiction proves the claim.

The cost of each set can now be determined in the number of unique nodes from

h3 brought into the framework. The first vertex added to the set is adjacent to (n− 2)

vertices from h3 and adds (n − 2) to the total cost. In order to minimize the total

cost, each subsequent vertex should share 1-bit in common with each member of the

set. Then the cost to bring in the (k)th vertex would be (n − 1 − k) as it would share

one neighbor with each of the (k − 1) set members before it. It is possible that a set

does not satisfy this property, and each subsequent vertex shares a 1-bit with only some

subset of the set members. In this case, the entire set can be replaced with a different

set that has the same coverage and the cost described above. However, the total cost

also must consider the additional vertices brought in from h2. We now assume that no

vertices from h2 belong to the framework. This is a false assumption, as several vertices

from h2 are already in the framework to evaluate a subset of µ(h1). However, this

assumption simplifies the next part of the discussion and can be removed later. Under

this assumption, each vertex would add (n − k) cost due to the additional cost of 1 to

add itself, and the total cost of the set then generalizes to Σm
1 (n− i).

Lemma 10. Given k arbitrary sets with sizes {m1,m2, . . . ,mk} where Σk
1(mi + 1) = n,

it is always possible to generate a single set of size (n−1) that has the same set coverage

at lower total cost.

Proof. According to the cost formula, a set of size m has a cost of Σm
1 (n − i). This

summation simplifies to m(2n−m−1)
2

. The cost formula for the two sets are Σk
i=1Σ

mi
j=1(n−j)

and Σn−1
i=1 (n − i) respectively. Lemma 10 is equivalent to the mathematical inequality

Σk
i=1Σ

mi
j=1(n−j) ≥ Σn−1

i=1 (n−i). Assume instead that Σk
i=1Σ

mi
j=1(n−j) < Σn−1

i=1 (n−i). After

57

several simplifications, this inequality reduces to the form 2m1m2 + . . . + 2mk−1mk <

k2−k. There are a total of
(
k
2

)
= k(k−1)

2
terms on the left side of this inequality. Because

mi is the size of a non-empty set, it holds that ∀i,mi ≥ 1. From this, it always follows

that 2mimj ≥ 2. Because there are k(k−1)
2

of these terms, the entire left side of the

inequality must be ≥ 2k(k−1)
2

= k(k − 1) = k2 − k. This gives the contradiction that

completes the proof.

Corollary 2. The optimal strategy for selection of invariants in h2 is to minimize the

number of sets and maximize the overlap of 1-bits between the selected invariants.

Proof. Lemma 10 leads to this result. Because a combined set has a cost no more than

multiple disjoint sets, it follows that there exists a minimum attestation framework in

which all the invariants from h2 belong to a single set according to the set definitions.

Corollary 2 is not the intuitive result as the optimal solution is not to minimize

the number of invariants. This result is part of the reason why the minimum attestation

framework is an NP-Complete problem. Instead, the optimal solution is to select a single

vertex v ∈ h1 and use the invariants µ(N(v) ∩ h2). This gives the final piece required

for the minimum attestation framework for hypercubes.

Theorem 8. The minimum size attestation framework for an n-dimensional hypercube

contains (n2 + 5n− 8)/2 vertices.

Proof. The attestation framework includes invariants at h0, three nodes of h1 according

to Lemma 9, and (k − 1) nodes of h2 according to Corollary 2. The nodes in h2 require

a total cost of Σ
(n−1)
1 (n − i) = 0.5n(n − 1) in terms of h2 and h3 nodes. There are

an additional (n + 1) nodes that must be included from h0 and h1 to evaluate the

invariant located at the target. One of the h1 invariants can be evaluated at no extra

cost by choosing it to be the one bit all the h2 invariants share in common. The second

h1 invariant can only overlap with one of the h2 invariants and thus requires (n − 2)

additional nodes. Likewise, the third h2 invariant will overlap with one h2 invariant and

58

one neighbor of the second invariant for (n − 3) nodes. The total cost thus becomes

0.5n(n − 1) + (n + 1) + (n − 2) + (n − 3) which simplifies to the value given in the

theorem.

59

6. EXPERIMENTAL RESULTS

The Future Renewable Electric Energy Delivery and Management (FREEDM)

Systems Center is a National Science Foundation funded Engineering Research Center

working on the development of an internet for energy [42]. FREEDM has developed

simulations of smart distribution networks and a distributed intelligence capable of per-

forming power migrations within the simulation environment. Physical attestation was

integrated with the FREEDM system to produce experimental results that support the

theoretical results from prior sections. This section provides a brief overview of the

implementation details and the experimental results obtained from the smart grid test

bed.

6.1. DISTRIBUTED GRID INTELLIGENCE

The Critical Infrastructure Protection Laboratory at Missouri University of Sci-

ence and Technology has developed the Distributed Grid Intelligence (DGI) to control

smart electronics in FREEDM [43]. The DGI provides several services that can be uti-

lized by developers to write distributed algorithms for use in the smart grid. Figure 6.1

shows the main services offered by the DGI.

A Solid State Transformer (SST) is a special piece of hardware developed by the

FREEDM Systems Center that enables power resources at a bus to be controlled by the

DGI. Within the context of the smart grid model, the SST can be thought of as one of the

houses or buses in the distribution grid. Each SST is controlled by a separate instance

of the DGI, and the DGI instances communicate with each other using UDP over some

network. A service called group management maintains the communication channels

between multiple instances of the DGI. The DGI has additional services for collecting

the physical state of its attached power electronics, and storing a virtual representation

of the physical smart grid topology.

60

Figure 6.1: Distributed Grid Intelligence Architecture

The most important DGI service for physical attestation is the load balance

algorithm that performs power migrations between DGI instances. Each DGI monitors

the state of its SST using a device interface which connects to either real or simulated

power electronics. It then determines whether it is in the demand or supply state based

on its amount of local generation and load. A DGI in the supply state will attempt

61

to form a power migration contract with another DGI in the demand state. These

migrations follow the protocol described in the smart grid model introduced in Section 1.

Another DGI service important for physical attestation is device management

which handles the physical measurements received from the power electronics. The

DGI supports real time measurements from all of the devices attached to its associated

SST. As part of the implementation of physical attestation, this service was extended

to store historic measurement data during runtime. The historic data is stored with

a time stamp that uses the current simulation time of the power simulation. Because

all of the DGI instances communicate with the same power simulation, the simulation

time acts as a synchronized clock value for the DGI. In a real physical deployment, the

simulation time would have to be replaced with an alternate synchronized clock value.

Synchronized time is important to ensure that the historic data stored across multiple

DGI instances corresponds to a consistent state of the physical system.

The DGI is a real time system, and the various services such as load balance

are assigned time slots in a round robin schedule. An example schedule for the DGI

is shown in Figure 6.2. One consequence of this schedule is that the different services

cannot operate outside of their assigned time slots. All messages that are sent to a

particular service outside of its time slot will be delayed until the next time that service

is allocated to run. As a result, load balance cannot react immediately to messages from

physical attestation when the behavior of a specific target is verified. This delay will

appear in the experimental results.

State

Collection

Group

Management Load

Balance

250ms 390ms 1190ms0
time

Load

Balance
Load

Balance
Load

Balance
Load

Balance

250ms 800ms140ms

One Round of Computation

Figure 6.2: Round Robin Schedule

62

6.2. PHYSICAL ATTESTATION ARCHITECTURE

Physical attestation as a security mechanism determines whether a process in

a distribution grid has provided false measurements to some verifier. In the context

of power migrations, physical attestation can be used to determine whether a target

process has committed to a power migration by making a change to generation or load.

If physical attestation fails, it indicates that the power migration has failed and the

party in a migration contract with the target should undo their physical action. This

leads to a natural situation where both parties in a migration contract will perform

physical attestation against each other to verify the physical activity of the other process.

Although there are other applications of physical attestation, the following discussion

will focus how a supply process in a power migration would use attestation to protect

against itself a potential fake demand attack.

Figure 6.3 shows an overview of how physical attestation has been integrated

with the DGI. First, a DGI instance must decide to perform attestation on one of its

peers. To prevent the fake demand attack, the supply house will serve as the verifier

and perform attestation on each demand house it selects for power migrations. Then

the supply house must build a valid attestation framework and collect P̂i, V̂i, and δ̂i

values from all the framework members. These values will be used to compute a subset

of the conservation of power invariants to determine the invariant violation pattern.

From the violation pattern, the supply house will determine if the demand house it

formed a migration contract with is malicious. If the demand house fails attestation,

then the supply house must undo its change in generation to back out of the failed power

migration.

Physical attestation determines if a process has lied about its physical state at a

specific point in time. However, power migrations involve a change in power over time,

and thus physical attestation must be performed both before and after the migration

was scheduled. A supply house must abort a power migration if its demand partner

fails attestation at either of these points, or the real power difference between these two

63

collect framework state

generate attestation framework

subset of DGI

select target and verifier DGI

verifiertarget

calculate physical invariants

Conservation of Power:

Pgen + Pin – Pload – Pout ≤ ε

Physical State: P, V, δ

Pgen

Pin Pout

Pload

determine if target is malicious

Figure 6.3: Physical Attestation in the Distributed Grid Intelligence

64

points does not correspond to the negotiated migration amount. Algorithm 1 shows

how a supply process will call attestation to determine if it should abort a migration

due to the existence of a fake demand attack. This algorithm takes as an input the

identifier of a target process t, the time at which the migration with the target should

have occurred, and the real power change ∆P negotiated for the migration. A constant

ε error term is allowed to account for measurement error, and the expected time τ to

finish a migration is used to determine when the change should manifest in the physical

system. If the algorithm returns false, then either physical attestation reported that the

target process has lied or the target did not migrate ∆P units of power at the specified

time. A supply process can use the return value of this function to determine whether

it needs to undo its change to generation to abort the power migration.

Algorithm 1: Verification of a Power Migration

Data: A target process t expected to participate in a power migration
Data: The time when the migration contract was created
Data: The real power change ∆P expected from the target
Result: A flag to indicate whether the target performed the migration

1 {pass0, P0} ← PhysicalAttestation(t, time)
2 while CurrentT ime < time+ τ do
3 wait

4 {passτ , Pτ} ← PhysicalAttestation(t, time+ τ)
5 return pass0 ∧ passτ ∧ |Pτ − P0 −∆P | < ε

Algorithm 2 defines the function that performs physical attestation. Line 1 uses

a modified breadth-first search algorithm that does not explore past a specified depth,

and this generates the 4-hop attestation framework described in Theorem 4. Line 2

checks the framework against the conditions of Theorem 3 to ensure that the framework

contains no nondeducible cases for the target t. Line 3 then queries all processes in the

framework for their P̂i, V̂i, and δ̂i values at the given attestation time. These values

are fed into an invariant calculation performed on Line 4, and the attestation result is

reported back on Line 5.

Algorithm 3 shows the implementation of the check violation pattern function.

First the algorithm classifies the framework invariants µS(V) into two sets based on

65

Algorithm 2: Physical Attestation

Data: The target process t for attestation
Data: The time when attestation should be performed
Result: A flag to indicate whether the target passed attestation
Result: The real power P̂t reported by the target during attestation

1 S ← BreadthF irstSearch(t, 4)
2 pass← V alidateFramework(S, t)
3 data← CollectMeasurements(S, time)
4 pass← pass ∧ ¬CheckV iolationPattern(S, t, data)
5 return {pass, data.t.P}

whether or not the invariants are located at vertices adjacent to the target t. The first

set Iadjacent = µS(N(t)) contains the invariants adjacent to the target, and the second

set Iother = µS(S − N(t) − {t}) contains the remaining framework invariants with the

exception of It. Then the algorithm counts the number of violated invariants in both

sets, and determines whether It itself has been violated. This information is used to

determine if the violation pattern corresponds to a malicious target t.

In Algorithm 3, the CalculateInvariant(i, data) function is implemented as the

conservation of power invariant |ΣN(i)
j Pij − P̂i| < ε. The Pij calculation is performed

according to the real power flow for a distribution line described in Equation 3.2. How-

ever, the power simulation contains three-phase distribution lines, and so Equation 3.2

was computed once for each phase and the results were summed together to get the

three-phase power flow.

Theorem 9. Algorithm 3 returns true if and only if the target t of physical attestation

provides false data to the attestation algorithm.

Sufficient Proof. The key to this theorem is the observation that Iadjacent = µS(N(t)) and

Iother = µS(S −N(t)− {t}). Suppose the target t provides false data to the attestation

algorithm. According to Table 3.1, this causes an invariant violation pattern of either

µS({t}), µS(N(t)), or µS(N(t) ∪ {t}). For all three violation patterns, the invariants

located at vertices in S −N(t)− {t} are true. Therefore, all of the invariants in the set

Iother are satisfied and otherV iolated = 0.

66

Algorithm 3: Invariant Violation Pattern Calculation

Data: The attestation framework S
Data: The target process t for attestation
Data: A set of data containing P , V , and δ values
Result: A boolean to indicate if the violation pattern matches the target

1 Iadjacent ← ∅, Iother ← ∅
2 foreach v ∈ S − {t} do
3 if {v} ∪N(v) ⊆ S then
4 if v ∈ N(t) then
5 Iadjacent ← Iadjacent ∪ {v}
6 else
7 Iother ← Iother ∪ {v}

8 adjacentV iolated← 0
9 foreach i ∈ Iadjacent do

10 if CalculateInvariant(i, data) = false then
11 adjacentV iolated← adjacentV iolated+ 1

12 otherV iolated← 0
13 foreach i ∈ Iother do
14 if CalculateInvariant(i, data) = false then
15 otherV iolated← otherV iolated+ 1

16 targetV iolated← ¬CalculateInvariant(t, data)
17 if targetV iolated ∧ adjacentV iolated+ otherV iolated = 0 then
18 return true

19 else if adjacentV iolated = |Iadjacent| ∧ otherV iolated = 0 then
20 return true

21 else
22 return false

If the violation pattern is µS({t}) = It, then the algorithm will compute that

targetV iolated = true. In addition, the invariants in the set Iadjacent must be satisfied

which leads to adjacentV iolated = 0. It follows from substitution that adjacentV iolated+

otherV iolated = 0. This causes Line 17 to evaluate to true, and the algorithm returns

true.

If the violation pattern is µS(N(t)) or µS(N(t) ∪ {t}), then all the invariants in

the set Iadjacent will be violated and the algorithm will compute adjacentV iolated =

|Iadjacent|. Regardless of the value for targetV iolated, Line 19 adjacentV iolated =

67

|Iadjacent| ∧ otherV iolated = 0 will evaluate to true. This causes the algorithm to return

true, and proves that all false data provided by the target leads to a return value of

true.

Necessary Proof. If Algorithm 3 returns true, then either Line 17 or Line 19 must evalu-

ate to true. Suppose targetV iolated∧adjacentV iolated+ otherV iolated = 0 is the true

clause, then by the formation of both adjacentV iolated and otherV iolated it follows

that all of the invariants in Iadjacent and Iother are satisfied. This leads to there being

no invariant violations in the set µS(N(t)) ∪ µS(S − N(t) − {t}) = µS(S − {t}). The

remaining invariant It must be false due to the value of the targetV iolated variable. The

invariant violation pattern would then be µS({t}), which is consistent with the target

having provided the false data.

Suppose the second clause adjacentV iolated = |Iadjacent| ∧ otherV iolated = 0

is true instead. Then all the invariants in µS(N(t)) must be violated, and none of the

invariants in µS(S−N(t)−{t}) can be violated. The remaining invariant It can be either

true or false without affecting the truth value of the clause. This leads to the invariant

violation pattern of either µS(N(t)) or µS(N(t)∪{t}), both of which are consistent with

the target providing the false data.

The implementation of attestation described so far detects dishonest behavior

from the target due to Theorem 9. However, the existence of a small ε term to account

for measurement error allows processes to be dishonest within some small tolerance. As

such, a process could still shave small amounts of power off of its migrations without

being detected by Algorithm 1. In addition, the τ term for the time it takes the system to

complete a power migration introduces a small delay to the load balance algorithm. All

power migrations must be separated by at least τ units of time, as otherwise attestation

will result in false positives when multiple migrations happen within one time period.

68

6.3. SMART GRID TEST BED

The Center for Advanced Power Systems (CAPS) at Florida State University

manages a Hardware-in-the-Loop (HIL) simulation test bed for the smart grid [44]. A

HIL simulation allows for integration of multiple DGI instances with a real time power

simulation to control the simulated power electronics. Figure 6.4 shows a high level

overview of the test bed architecture.

Figure 6.4: Hardware-in-the-Loop Simulation Architecture

The test bed contains six Mamba boards and one field-programmable gate array

(FPGA) connected via Ethernet to a local area network. DGI instances are deployed

across the six Mamba boards, with up to four simultaneous DGI instances per board.

69

The DGI communicate with each other using UDP through the wired internal network,

and with the power simulation using a TCP connection to the FPGA. The FPGA

maintains a separate TCP socket for each DGI instance, and acts as a multiplexer

that pushes the DGI’s commands to the power simulation. Metered values from the

simulation also go through the FPGA where they are sent to the DGI instance that

requires that specific state information.

A power simulation is compiled and run on a real time digital simulator (RTDS).

The values sent to and received from the FPGA must be specified before at compile time.

An additional Windows desktop computer not shown in the architecture is connected to

the RTDS to monitor its runtime. Through this Windows machine, parameters of the

simulation can be monitored and changed while the simulation is running.

During a typical simulation, the RTDS will start in a steady state where the

DGI is idle. A command will be issued through the Windows machine to perturb the

power system and cause a reaction in the DGI. The simulation will be left alone until

the power system enters its next steady state, and the resulting graph will be used for

the experimental results. In the case of the load balance algorithm, the command that

will be issued to the simulation is a change in the generation and load at specific buses.

The physical topology used on the test bed is shown in Figure 6.5. The seven

numbered buses model SSTs rated at 285 kVA that can be configured to act as either

generators or loads. An eighth bus labeled BusS has no local generation and load and

acts as the connection point for one of the two diesel generators in the system. Both

diesel generators G1 and G2 are rated at 1.4 MVA, 380 VL−N , with G1 operating in

isochronous mode and G2 operating in droop mode. G2 runs at 400 kW nominal with

a 5% droop. The generators are connected to the system by a transformers rated at 1.5

MVA, 0.83 kV:12.47 kV. All the distribution lines connecting the buses are identical,

with positive sequence resistances of 0.7704Ω and positive sequence inductances of 1.967

mH.

70

SST7

SST6

SST5

SST1

SST2

SST3

Bus S

SST4

G1

G2

Figure 6.5: Simulated Distribution Grid Topology

6.4. EXPERIMENTAL SETUP AND RESULTS

One limitation of the DGI load balance algorithm is that it does not work well

when attached to both fixed and controllable sources of generation. For instance, SST4

contains both its local renewable generation as well as the droop generator G2 which

produces a constant 400 kW. If the DGI instance at this SST participated in the load

balance algorithm, it would attempt to migrate power from the droop generator despite

its need to remain constant. SST4 therefore must be split into two buses controlled

by different DGI instances to separate the droop generator from the renewable genera-

tion. Both DGI will read identical state values from the power simulation, but consider

themselves to be on separate buses connected by a 0 impedance distribution line.

An additional hardware limitation is that the FPGA can only transfer 64 data

points out of the simulation. However, the simulation requires 9 DGI instances and

each instance requires 8 data points. It would be impossible to run the simulation with

71

instances of DGI associated with all of the buses using the current test bed hardware.

Therefore, only 7 DGI instances were run on 7 sequential buses in the power system.

This allows for the center DGI instance to be a valid attestation target as shown in the

7-node framework from Section 3.

Table 6.1 shows the configuration of the buses for all of the experimental results

discussed in this section. Buses 6 and 7, which do not have associated DGI instances

due to the hardware limitation discussed above, were set to produce a fixed 250 kW of

load. This ensures that there is always sufficient load in the system to allow the droop

generation to run at its rated value of 400 kW. Bus 3 acts as the demand house for

power migrations and will increase its load from 0 to 285 kW during the simulation

runtime. Bus 2 acts as both the supply house and the verifier that will perform physical

attestation.

Table 6.1: Experimental Bus Configuration
Bus ID DGI Instance Generation Load
S mamba1:51870 100 kW 0
1 mamba2:51870 0 0
2 mamba3:51870 0→ 285 kW 0
3 mamba4:51870 0 0→ 285 kW
4a mamba5:51870 0 0
4b mamba6:51870 400 kW 0
5 mamba1:51871 0 0
6 none 0 250 kW
7 none 0 250 kW

Figure 6.6 shows the normal behavior of the load balance algorithm in the absence

of a fake demand attack. Buses 2 and 3 both start with initial real power injections of

0 before performing a series of power migrations with each other. A power migration

leads to coordinated power steps with identical magnitudes in opposite directions.

Bus 3 was then set to perform the fake demand attack and physical attestation

was disabled. Figure 6.7 shows the impact of an undetected fake demand attack. Buses

2 and 3 form migration contracts as before, and Bus 2 ramps up its generation to fulfill

its portion of the power migration. However, Bus 3 fails to perform its increase in load

72

Figure 6.6: Normal Power Migration

and keeps its real power injection at a constant value of 0. This leads to excess gener-

ation being pushed into the distribution grid that must be handled by the isochronous

generator G1.

Figure 6.8 shows the same case of the fake demand attack but performed when

physical attestation is enabled. The round robin schedule of DGI causes short bursts of

power migrations which step the power value up to the final amount of 285 kW. The other

DGI algorithms are given time to run only after the time scheduled for load balance.

Physical attestation executes during this load balance idle period and determines that a

number of invalid power migrations have occurred. The attestation failure messages will

not be received by load balance until it is scheduled to run again in its next iteration.

This causes load balance to undo all the power migrations from the previous iteration,

and Bus 2 resets its real power injection to 0. The jump from 285 kW to 0 demonstrates

that physical attestation has worked, as the load balance algorithm has reset its power

injection in response to notifications from attestation of bad power transactions.

73

Figure 6.7: Fake Demand Attack

Figure 6.8: Physical Attestation

74

After Bus 2 resets its real power injection as a result of attestation failure, it still

has an excess of 285 kW of transferable power. It therefore tries again to migrate its

power to another entity in the system. However, the only load in the system with an

attached DGI is the malicious Bus 3. As a result, Bus 2 always tries to migrate power

with the malicious bus which causes the repeated behavior of power steps and resets

in Figure 6.8. Load balance would have to be augmented with an additional security

scheme such as a reputation system based on number of failed transactions in order to

prevent this looping behavior.

75

7. CONCLUSION

This dissertation introduced a new distributed security mechanism called physical

attestation for the smart grid. The theoretical foundation for physical attestation was

proved for general graphs using graph theory and nondeducibility. A smart grid test bed

was then utilized to produce experimental results that demonstrate the theory holds in

practice. This section discusses the main contributions of this dissertation, and proposes

several future research directions.

7.1. CONTRIBUTIONS

When physical attestation was proposed as a research topic, three goals were set

for this dissertation. This section enumerates those goals, and describes the contributions

this dissertation has made towards each of them. The following discussion describes how

the three research goals listed below have been achieved.

1. Extend physical attestation to multiple cyber-physical system topologies

2. Develop an attestation framework applicable to multiple attack scenarios

3. Implement the theoretical results on a simulated cyber-physical system

7.1.1. Multiple System Topologies. The first research goal was to determine

whether physical attestation could be applicable to multiple physical topologies. The-

orem 2 enumerates the topological features that are both necessary and sufficient to

apply physical attestation in general graphs. In order for this result to be useful in a

distributed system with thousands of processes, Theorem 3 introduces the notion of an

attestation framework that uses a subset of the system state. Finding the minimum

size attestation framework for a general graph was proven to be NP-Hard in Theorem 5.

Section 5 then went on to find polynomial-time solutions for ring, mesh, and hypercube

topologies of arbitrary sizes.

76

7.1.2. General Attestation Framework. The second research goal was to

formulate a general attestation implementation that works for multiple attack scenarios.

Theorem 4 describes a polynomial time algorithm to generate attestation frameworks

for general graphs that uses all vertices within four-hops of the attestation target. Algo-

rithm 1 uses this framework to implement physical attestation in an energy management

algorithm for the smart grid. The attack scenario considered in the experimental results

was a fake demand attack in which a controller falsifies its broadcast load to trick sup-

pliers into committing to bad power migrations. However, Lemma 1, Lemma 2, and

Lemma 3 which form the backbone of this entire dissertation considered all possible

false state attacks against the energy management algorithm. Therefore, Algorithm 1

can be used to protect the energy management algorithm against all possible false state

attacks that involve a single compromised controller.

7.1.3. Experimental Implementation. The third research goal was to inte-

grate physical attestation with an energy management algorithm and experiment on

a simulated cyber-physical system. A smart grid test bed at the FREEDM Systems

Center was utilized to perform the experiments. Figure 6.3 provides an overview of the

physical attestation implementation. Figure 6.8 presents the main experimental result

that demonstrates the feasibility of physical attestation. All of the code for the physical

attestation implementation can be found on the DGI development github [45].

7.1.4. Refereed Publications. This dissertation reflects the following peer-

reviewed publications:

1. 7th International Conference on Critical Information Infrastructures Security [46]

2. 8th International Conference on Critical Information Infrastructures Security [47]

3. IEEE Transactions on Dependable and Secure Computing [48]

[46] used nondeducibility to examine a series of false state attacks performed

against energy management in the smart grid. Physical attestation as a security mech-

anism to detect and prevent these attacks was then introduced in [47]. The theoretical

77

proofs and experimental results that support physical attestation were then provided

in [48].

7.2. FUTURE WORK

Physical attestation, even restricted to the single application of preventing false

state attacks against energy management in the smart grid, is a large research area

with many potential future research directions. Several of the deficient areas of this

dissertation, as well as other exciting research directions, are enumerated in the following

discussion.

7.2.1. Theoretical Extensions. The idea of physical attestation is to use

physical feedback in a distributed cyber-physical system to detect malicious cyber behav-

ior. This dissertation restricted itself to a single application that utilized the conservation

of power in the smart grid to detect false state attacks against energy management. It is

easy to imagine other applications of physical application that handle different forms of

cyber misbehavior in different types of cyber-physical systems. With respect to different

system types, the most immediate extension would be water distribution systems as the

dynamics of water flow are similar to electric power flow. However, it should be possible

to extend the main body of this dissertation to apply to most flow-based cyber-physical

systems which move a commodity through some physical medium.

A more interesting research direction would be to consider how using different

forms of physical feedback affects the deducibility of attacks. This dissertation chose

the conservation of power as a physical invariant, and that choice determined the in-

variant violation patterns of the false state attack. However, other work in literature

has considered a similar approach using Kirchhoff’s voltage law to promising effect [49].

A different choice of physical invariant would change all of the invariant violation pat-

terns and could lead to less nondeducible attack scenarios. One extension of this work

would be to consider alternative invariants and the impact of invariant choice on attack

deducibility.

78

7.2.2. Attestation Frameworks. The attestation framework presented in this

dissertation can tolerate falsified states from a single compromised controller. Although

the theory allows for multiple processes to be compromised so long as they participate

in different attestation frameworks, physical attestation cannot tolerate collaborative

attacks in the same framework. An easy extension of attestation frameworks would

be to develop a framework that can tolerate multiple compromised controllers and still

verify the attestation target.

The main limitation of attestation frameworks is that the problem of finding a

minimum size framework in a general graph is NP-Hard. A significant future extension

could develop approximation algorithms that generate good enough attestation frame-

works for general graphs. Complexity analysis of these approximation algorithms in

terms of both time complexity and framework size would be a worthwhile extension of

this research.

7.2.3. Additional Experimentation. One unfortunate limitation during this

dissertation was that the smart grid test bed was unable to support large power sim-

ulations. Experiments using a standard IEEE power system would greatly strengthen

the physical attestation experimental results. Finding optimal frameworks in standard

IEEE topologies could also generate a lot of insight into how attestation frameworks are

formed.

One feature of the test bed that this dissertation was unable to explore was re-

configuration of both the physical topology and the communication network. Physical

attestation requires measurements from a historic state of the system, and an interesting

scenario would be attestation in the presence of either physical or network reconfigura-

tions. There would also be significant merit in a more thorough integration of physical

attestation with the DGI that enables attestation to be used by services other than load

balance. The current implementation could be extended to be integrated with other

distributed smart grid algorithms that utilize real power injection.

79

7.3. CONCLUDING REMARKS

The primary motivation of this research was the development of a distributed

cyber security mechanism that utilizes physical feedback. Cyber-physical systems have

the potential to cause drastic changes to existing cyber security mechanisms due to the

existence of a physical layer. A research area that must be explored is how this physical

layer both helps and hinders cyber security. This dissertation presented the idea of

physical attestation in which cyber misbehavior is verified against the physical system.

The main contribution of this work is that it serves as a case study that illustrates how

physical feedback might be used to augment a distributed security mechanism.

80

BIBLIOGRAPHY

[1] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. Stuxnet dossier. White
paper, Symantec Corp., Security Response, 2011.

[2] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor
networks. Communications of the ACM, 47(6):53–57, 2004.

[3] Ravi Akella, Fanjun Meng, Derek Ditch, Bruce McMillin, and Mariesa Crow. Dis-
tributed power balancing for the FREEDM system. In Smart Grid Communi-
cations (SmartGridComm), 2010 First IEEE International Conference on, pages
7–12. IEEE, 2010.

[4] Thomas J. Watson IBM Research Center. Research Division, BG Lindsay,
PG Selinger, C Galtieri, JN Gray, RA Lorie, TG Price, F Putzolu, and BW Wade.
Notes on distributed databases. 1979.

[5] Stephen McLaughlin, Dmitry Podkuiko, and Patrick McDaniel. Energy theft in the
advanced metering infrastructure. In Critical Information Infrastructures Security,
pages 176–187. Springer, 2010.

[6] Yao Liu, Peng Ning, and Michael K Reiter. False data injection attacks against
state estimation in electric power grids. ACM Transactions on Information and
System Security (TISSEC), 14(1):13, 2011.

[7] Saman Zonouz, Katherine M Rogers, Robin Berthier, Rakesh B Bobba, William H
Sanders, and Thomas J Overbye. SCPSE: Security-oriented cyber-physical state
estimation for power grid critical infrastructures. Smart Grid, IEEE Transactions
on, 3(4):1790–1799, 2012.

[8] Jie Lin, Wei Yu, Xinyu Yang, Guobin Xu, and Wei Zhao. On false data injection
attacks against distributed energy routing in smart grid. In Cyber-Physical Sys-
tems (ICCPS), 2012 IEEE/ACM Third International Conference on, pages 183–
192. IEEE, 2012.

[9] Tamal Paul, Jonathan W Kimball, Maciej Zawodniok, Thomas P Roth, Bruce
McMillin, and Sriram Chellappan. Unified invariants for cyber-physical switched
system stability. Smart Grid, IEEE Transactions on, 5(1):112–120, 2014.

[10] David Sutherland. A model of information. In Proc. 9th National Computer Security
Conference, pages 175–183. DTIC Document, 1986.

[11] Gerry Howser and Bruce McMillin. A multiple security domain model of a drive-
by-wire system. In Computer Software and Applications Conference (COMPSAC),
2013 IEEE 37th Annual, pages 369–374. IEEE, 2013.

81

[12] Steve H. Weingart. Physical security devices for computer subsystems: A survey of
attacks and defenses. In Cryptographic Hardware and Embedded Systems ECHES
2000, volume 1965 of Lecture Notes in Computer Science, pages 302–317. Springer
Berlin Heidelberg, 2000.

[13] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. AEGIS: architecture for tamper-evident and tamper-resistant processing.
In Proceedings of the 17th annual international conference on Supercomputing, ICS
’03, pages 160–171, New York, NY, USA, 2003. ACM.

[14] Ross J. Anderson and Markus G. Kuhn. Low cost attacks on tamper resistant
devices. In Proceedings of the 5th International Workshop on Security Protocols,
pages 125–136, London, UK, UK, 1998. Springer-Verlag.

[15] Ross Anderson and Roger Needham. Programming satan’s computer. In Jan
Leeuwen, editor, Computer Science Today, volume 1000 of Lecture Notes in Com-
puter Science, pages 426–440. Springer Berlin Heidelberg, 1995.

[16] Bill Horne, Lesley Matheson, Casey Sheehan, and Robert E. Tarjan. Dynamic
self-checking techniques for improved tamper resistance. In Tomas Sander, editor,
Security and Privacy in Digital Rights Management, volume 2320 of Lecture Notes
in Computer Science, pages 141–159. Springer Berlin Heidelberg, 2002.

[17] Hoi Chang and MikhailJ. Atallah. Protecting software code by guards. In Tomas
Sander, editor, Security and Privacy in Digital Rights Management, volume 2320
of Lecture Notes in Computer Science, pages 160–175. Springer Berlin Heidelberg,
2002.

[18] Fred C Schweppe and Douglas B Rom. Power system static-state estimation, part
ii: Approximate model. power apparatus and systems, ieee transactions on, (1):125–
130, 1970.

[19] E Handschin, FC Schweppe, Ji Kohlas, and AAFA Fiechter. Bad data analysis for
power system state estimation. Power Apparatus and Systems, IEEE Transactions
on, 94(2):329–337, 1975.

[20] Yao Liu, Peng Ning, and Michael K. Reiter. False data injection attacks against
state estimation in electric power grids. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09, pages 21–32, New York, NY,
USA, 2009. ACM.

[21] Jinsub Kim and Lang Tong. On topology attack of a smart grid: Undetectable
attacks and countermeasures. Selected Areas in Communications, IEEE Journal
on, 31(7):1294–1305, 2013.

[22] Oliver Kosut, Liyan Jia, Robert J Thomas, and Lang Tong. Malicious data attacks
on the smart grid. Smart Grid, IEEE Transactions on, 2(4):645–658, 2011.

[23] Annarita Giani, Eilyan Bitar, Manuel Garcia, Miles McQueen, Pramod Khar-
gonekar, Kameshwar Poolla, et al. Smart grid data integrity attacks. Smart Grid,
IEEE Transactions on, 4(3):1244–1253, 2013.

82

[24] Jian Chen and Ali Abur. Placement of pmus to enable bad data detection in state
estimation. Power Systems, IEEE Transactions on, 21(4):1608–1615, 2006.

[25] György Dán and Henrik Sandberg. Stealth attacks and protection schemes for state
estimators in power systems. In Smart Grid Communications (SmartGridComm),
2010 First IEEE International Conference on, pages 214–219. IEEE, 2010.

[26] Henrik Sandberg, André Teixeira, and Karl H Johansson. On security indices for
state estimators in power networks. In First Workshop on Secure Control Systems
(SCS), Stockholm, 2010, 2010.

[27] Rakesh B Bobba, Katherine M Rogers, Qiyan Wang, Himanshu Khurana, Klara
Nahrstedt, and Thomas J Overbye. Detecting false data injection attacks on dc
state estimation. In Preprints of the First Workshop on Secure Control Systems,
CPSWEEK, volume 2010, 2010.

[28] Ali Tajer, Soummyar Kar, H Vincent Poor, and Shuguang Cui. Distributed joint
cyber attack detection and state recovery in smart grids. In Smart Grid Com-
munications (SmartGridComm), 2011 IEEE International Conference on, pages
202–207. IEEE, 2011.

[29] Kin Cheong Sou, Henrik Sandberg, and Karl H Johansson. Data attack isolation in
power networks using secure voltage magnitude measurements. Smart Grid, IEEE
Transactions on, 5(1):14–28, 2014.

[30] D.E. Denning. An intrusion-detection model. Software Engineering, IEEE Trans-
actions on, SE-13(2):222–232, 1987.

[31] H.S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In Re-
search in Security and Privacy, 1991. Proceedings., 1991 IEEE Computer Society
Symposium on, pages 316–326, 1991.

[32] Jake Ryan, Meng jang Lin, and Risto Miikkulainen. Intrusion detection with neu-
ral networks. In ADVANCES IN NEURAL INFORMATION PROCESSING SYS-
TEMS, pages 943–949. MIT Press, 1998.

[33] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition analysis: a rule-
based intrusion detection approach. Software Engineering, IEEE Transactions on,
21(3):181–199, 1995.

[34] Franco P. Preparata, G. Metze, and Robert T. Chien. On the connection assignment
problem of diagnosable systems. Electronic Computers, IEEE Transactions on, EC-
16(6):848–854, 1967.

[35] S. Mallela and G.M. Masson. Diagnosable systems for intermittent faults. Com-
puters, IEEE Transactions on, C-27(6):560–566, 1978.

[36] S. Mallela and G.M. Masson. Diagnosis without repair for hybrid fault situations.
Computers, IEEE Transactions on, C-29(6):461–470, 1980.

83

[37] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based at-
testation for embedded devices. In Security and Privacy, 2004. Proceedings. 2004
IEEE Symposium on, pages 272–282, 2004.

[38] Kyungsub Song, Dongwon Seo, Haemin Park, Heejo Lee, and A. Perrig. Omap:
One-way memory attestation protocol for smart meters. In Parallel and Distributed
Processing with Applications Workshops (ISPAW), 2011 Ninth IEEE International
Symposium on, pages 111–118, 2011.

[39] Haemin Park, Dongwon Seo, Heejo Lee, and Adrian Perrig. Smatt: Smart meter
attestation using multiple target selection and copy-proof memory. In Sang-Soo Yeo,
Yi Pan, Yang Sun Lee, and Hang Bae Chang, editors, Computer Science and its
Applications, volume 203 of Lecture Notes in Electrical Engineering, pages 875–887.
Springer Netherlands, 2012.

[40] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. Distributed software-
based attestation for node compromise detection in sensor networks. In Reliable
Distributed Systems, 2007. SRDS 2007. 26th IEEE International Symposium on,
pages 219–230, 2007.

[41] Thoshitha T Gamage, Thomas P Roth, and Bruce M McMillin. Confidentiality
preserving security properties for cyber-physical systems. In Computer Software
and Applications Conference (COMPSAC), 2011 IEEE 35th Annual, pages 28–37.
IEEE, 2011.

[42] Alex Q Huang, Mariesa L Crow, Gerald Thomas Heydt, Jim P Zheng, and Steiner J
Dale. The future renewable electric energy delivery and management (freedm)
system: the energy internet. Proceedings of the IEEE, 99(1):133–148, 2011.

[43] Fanjun Meng, Ravi Akella, Mariesa L Crow, and Bruce McMillin. Distributed
grid intelligence for future microgrid with renewable sources and storage. In North
American Power Symposium (NAPS), 2010, pages 1–6. IEEE, 2010.

[44] The center for advanced power systems (CAPS). Florida State University, Web. 29
September 2015 (http://www.caps.fsu.edu).

[45] Distributed grid intelligence. Branch Attestation. Missouri University of Science and
Technology, Web. October 2 2015 (https://github.com/FREEDM-DGI/FREEDM).

[46] Thomas Roth and Bruce McMillin. Breaking nondeducible attacks on the smart
grid. In Seventh CRITIS Conference on Critical Information Infrastructures Secu-
rity, Lillehammer, Norway, 2012. Springer.

[47] Thomas Roth and Bruce McMillin. Physical attestation of cyber processes in the
smart grid. In Eighth CRITIS Conference on Critical Information Infrastructures
Security, Amsterdam, Netherlands, 2013. Springer.

[48] Thomas Roth and Bruce McMillin. Physical attestation in the smart grid for dis-
tributed state verification. Dependable and Secure Computing, IEEE Transactions
on. Under Review.

84

[49] Iman Shames, André MH Teixeira, Henrik Sandberg, and Karl H Johansson. Fault
detection and mitigation in kirchhoff networks. Signal Processing Letters, IEEE,
19(11):749–752, 2012.

85

VITA

Thomas Patrick Roth was born in St. Louis, Missouri. He received his Bachelor’s

degree in both Computer Science and Computer Engineering from Missouri University

of Science and Technology in May, 2011. He then joined the Computer Science Ph.D.

program at the same university in the fall of 2011 with Dr. Bruce McMillin as his

research advisor. He received his Ph.D. in December 2015 and graduated summa cum

laude. After graduation, he went on to work at the National Institute of Standards and

Technology as part of its Cyber-Physical Systems and Smart Grid program. His research

interests are in information flow security and the detection of compromised processes in

distributed cyber-physical systems.

	Distributed state verification in the smart grid using physical attestation
	Recommended Citation

	tmp.1454018045.pdf.xAtbi

