153 research outputs found

    Device-to-Device Communication in 5G Cellular Networks

    Get PDF
    Owing to the unprecedented and continuous growth in the number of connected users and networked devices, the next-generation 5G cellular networks are envisaged to support enormous number of simultaneously connected users and devices with access to numerous services and applications by providing networks with highly improved data rate, higher capacity, lower end-to-end latency, improved spectral efficiency, at lower power consumption. D2D communication underlaying cellular networks has been proposed as one of the key components of the 5G technology as a means of providing efficient spectrum reuse for improved spectral efficiency and take advantage of proximity between devices for reduced latency, improved user throughput, and reduced power consumption. Although D2D communication underlaying cellular networks promises lots of potentials, unlike the conventional cellular network architecture, there are new design issues and technical challenges that must be addressed for proper implementation of the technology. These include new device discovery procedures, physical layer architecture and radio resource management schemes. This thesis explores the potentials of D2D communication as an underlay to 5G cellular networks and focuses on efficient interference management solutions through mode selection, resource allocation and power control schemes. In this work, a joint admission control, resource allocation, and power control scheme was implemented for D2D communication underlaying 5G cellular networks. The performance of the system was evaluated, and comparisons were made with similar schemes.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A Centralised Wi-Fi Management Framework for D2D Communications in Dense Wi-Fi Networks

    Get PDF
    In Wi-Fi networks, Device-to-Device (D2D) communications aim to improve the efficiency of the network by supporting direct communication between users in close proximity. However, in a congested Wi-Fi network, establishing D2D connections through a locally managed self-organising approach will intensify the congestion and reduce the scalability of the solution. Therefore, a centralised management approach must be involved in orchestrating those actions to guarantee the sufficiency of D2D communications. In this paper, we propose a novel management framework for D2D communications in dense Wi-Fi networks. The proposed framework employs a Software-Defined Networking (SDN) based centralised controller in synergy with a novel Access Point (AP) channel assignment process. This framework is designed to proactively establish and manage D2D connections in Wi-Fi networks considering the available radio resources and the effect of the subsequent interference. Thus, improving the overall performance of the network and providing users with higher data rate. Through simulation, we validate the effectiveness of the proposed framework and demonstrate how D2D deployment considerably improves the Wi-Fi network efficiency especially when the data rate requirements are high. Furthermore, we show that our proposed framework achieves better performance than the widely deployed Least Congested Channel selection strategy (LCC)

    Compact, omni-directional, circularly-polarized mm-Wave antenna for device-to-device (D2D) communications in future 5G cellular systems

    Full text link
    © 2017 IEEE. A simple, compact, omni-directional, circularly-polarized (CP) millimeter-wave antenna for Device-to-Device (D2D) communications in the next generation (5G) cellular systems is reported. It is a CP omni-directional antenna operating at 28 GHz for mobile terminals. The antenna combines a vertical electric monopole element with four magnetic elements to coherently excite parallel electric and magnetic dipoles. This combination generates the omni-directional CP radiation. The overlapping -10-dB impedance and 3-dB axial ratio (AR) bandwidth is from 27 to 28.5 GHz, which covers the 28 GHz frequency band proposed for 5G mobile cellular networks (i.e., from 27.5 to 28.35 GHz). The antenna has an omni-directional radiation pattern at 28 GHz whose peak realized RHCP gain is 2.08 dBic and whose 3-dB AR beamwidth is wide, from elevation angles 3° to 136°. Mass production of the antenna is possible by PCB manufacturing technologies. The overall size is 3.44 mm × 3.44 mm × 1 mm (ka = 1.1017). Consequently, it could be embedded in many current popular, smart wireless devices such as cell phones, laptops, digital watches, and smart glasses as well as their future versions for operation in 5G cellular networks

    Device-to-Device Communications in the Millimeter Wave Band: A Novel Distributed Mechanism

    Full text link
    In spite of its potential advantages, the large-scale implementation of the device-to-device (D2D) communications has yet to be realized, mainly due to severe interference and lack of enough bandwidth in the microwave (μ\muW) band. Recently, exploiting the millimeter wave (mmW) band for D2D communications has attracted considerable attention as a potential solution to these challenges. However, its severe sensitivity to blockage along with its directional nature make the utilization of the mmW band a challenging task as it requires line-of-sight (LOS) link detection and careful beam alignment between the D2D transceivers. In this paper, we propose a novel distributed mechanism which enables the D2D devices to discover unblocked LOS links for the mmW band communication. Moreover, as such LOS links are not always available, the proposed mechanism allows the D2D devices to switch to the μ\muW band if necessary. In addition, the proposed mechanism detects the direction of the LOS links to perform the beam alignment. We have used tools from stochastic geometry to evaluate the performance of the proposed mechanism in terms of the signal-to-interference-plus-noise ratio (SINR) coverage probability. The performance of the proposed algorithm is then compared to the one of the single band (i.e., μ\muW/mmW) communication. The simulation results show that the proposed mechanism considerably outperforms the single band communication.Comment: 6 Pages, 6 Figures, Accepted for presentation in Wireless Telecommunication Symposium (WTS'18

    Circularly polarized electrically small antennas for emerging wireless applications

    Full text link
    © Institution of Engineering and Technology.All Rights Reserved. This paper introduces three circularly-polarized (CP) electrically small antennas for emerging wireless applications including wireless power transfer (WPT), Internet-of-Things (IoT), and Device-to-Device (D2D) communications in future fifth generation (5G) systems. First, an electrically small Huygens CP (HCP) antenna operating at L-band frequencies is presented that is facilitated by two near-field resonant parasitic (NFRP) elements, a crossed Egyptian axe dipole (EAD) pair and a crossed capacitively loaded loop (CLL) pair. The HCP antenna is electrically small (ka = 0.73), low profile (~ 0.04°0), and has decent cardioid-shaped radiation patterns with a broad half power beamwidth (>120°). It is attractive for many WPT and body-centric wireless sensor network applications. Second, with the rapid development of 5G wireless networks, a corresponding 28 GHz electrically small HCP antenna is reported. The overall size of this antenna is only p (1.5)2 × 1 ˜ 7 mm3 (ka = 0.94), which can be readily integrated into the various compact platforms anticipated for 5G IoT devices. Third, unlike the above two antennas that radiate uni-directional patterns, a compact 28 GHz omni-directional CP (OCP) antenna is presented for D2D communications in future 5G systems. It is electrically small (ka = 0.95), easy to fabricate, and its performance characteristics cover the entire FCC-specified 5G, 27.5 to 28.35 GHz band

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter

    Komunikasi Device-to-Device pada Jaringan Seluler 5G Menggunakan MmWave

    Full text link
    This article discusses about device-to-device communication on 5G cellular networks using mmWave. Device-to-device communication will support 5G cellular technology, because it can be a solution to overcome the limitations of cellular coverage and service capacity. D2D can be used in a variety of applications. The main problem in D2D is that interference between signals in one cell will be very vulnerable to occur, so that effective resource management is needed. In addition, the use of D2D will also increase the complexity of a cellular system, in terms of resource management, interference, and also the routing required. Several studies have been carried out to create D2D communication that can be implemented effectively on 5G. One of them is research to perfect the load balancing scheme which is one of the functions obtained from D2D communication. Load balancing is the distribution of cellular traffic loads, using D2D the traffic load is channeled to communication between devices and reduces the burden on the main network
    corecore