3 research outputs found

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper

    RSS-based Device-free Passive Detection and Localization using Home Automation Network Radio Frequencies

    Get PDF
    This research provided a proof of concept for a device-free passive (DfP) system capable of detecting and localizing a target through exploitation of a home automation network’s radio frequency (RF) signals. The system was developed using Insteon devices with a 915 MHz center frequency. Without developer privileges, limitations of the Insteon technology like no intrinsic received signal strength (RSS) field and silent periods between messages were overcome by using software-defined radios to simulate Insteon devices capable of collecting and reporting RSS, and by creating a message generation script and implementing a calibrated filter threshold to reduce silent periods. Evaluation of the system deployment in a simple room with no furniture produced detection rates up to PD Æ 100% and false positive rates as low as PF Æ 1.6% for baseline threshold detection along the line of sight (LOS) in a simple tripwire setup. Signal attenuation of foam blocks at different distances along this LOS ranged from 2.2-4.4 dB. Cell-based fingerprinting for localization using multiple nodes in this room achieved accuracy only as high as PA Æ 5.4% and false positives only as low as PF Æ 88.3%. A context-based localization method was developed in response and was able to achieve PA Æ 28.3% and PF Æ 40.0%. The system was then deployed in a similar room containing several metal objects and achieved PA Æ 42.2% and PF Æ 0.0%. Deployment in a similar room with RF absorbent objects achieved PA Æ 23.3% and PF Æ 53.3%. Feasibility of exploiting RF of a home automation network for DfP indoor detection and localization was demonstrated. Despite not achieving optimal localization performance, the results showed promise for future DfP system deployment on top of home automation RF devices

    Model-driven Personalisation of Human-Computer Interaction across Ubiquitous Computing Applications

    Get PDF
    Personalisation is essential to Ubiquitous Computing (Ubicomp), which focuses on a human-centred paradigm aiming to provide interaction with adaptive content, services, and interfaces towards each one of its users, according to the context of the applications’ scenarios. However, the provision of that appropriated personalised interaction is a true challenge due to different reasons, such as the user interests, heterogeneous environments and devices, dynamic user behaviour and data capture. This dissertation focuses on a model-driven personalisation solution that has the main goal of facili-tating the implementation of a personalised human-computer interaction across different Ubicomp scenarios and applications. The research reported here investigates how a generic and interoperable model for personalisation can be used, shared and processed by different applications, among diverse devices, and across different scenarios, studying how it can enrich human-computer interaction. The research started by the definition of a consistent user model with the integration of context to end in a pervasive model for the definition of personalisations across different applications. Besides the model proposal, the other key contributions within the solution are the modelling frame-work, which encapsulates the model and integrates the user profiling module, and a cloud-based platform to pervasively support developers in the implementation of personalisation across different applications and scenarios. This platform provides tools to put end users in control of their data and to support developers through web services based operations implemented on top of a personalisa-tion API, which can also be used independently of the platform for testing purposes, for instance. Several Ubicomp applications prototypes were designed and used to evaluate, at different phases, both the solution as a whole and each one of its components. Some were specially created with the goal of evaluating specific research questions of this work. Others were being developed with a pur-pose other than for personalisation evaluation, but they ended up as personalised prototypes to better address their initial goals. The process of applying the personalisation model to the design of the latter should also work as a proof of concept on the developer side. On the one hand, developers have been probed with the implementation of personalised applications using the proposed solution, or a part of it, to assess how it works and can help them. The usage of our solution by developers was also important to assess how the model and the platform respond to the developers’ needs. On the other hand, some prototypes that implement our model-driven per-sonalisation solution have been selected for end user evaluation. Usually, user testing was conducted at two different stages of the development, using: (1) a non-personalised version; (2) the final per-sonalised version. This procedure allowed us to assess if personalisation improved the human-com-puter interaction. The first stage was also important to know who were the end users and gather interaction data to come up with personalisation proposals for each prototype. Globally, the results of both developers and end users tests were very positive. Finally, this dissertation proposes further work, which is already ongoing, related to the study of a methodology to the implementation and evaluation of personalised applications, supported by the development of three mobile health applications for rehabilitation
    corecore