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Abstract

This research provided a proof of concept for a device-free passive (DfP) system capa-

ble of detecting and localizing a target through exploitation of a home automation net-

work’s radio frequency (RF) signals. The system was developed using Insteon devices

with a 915 MHz center frequency. Without developer privileges, limitations of the In-

steon technology like no intrinsic received signal strength (RSS) field and silent periods

between messages were overcome by using software-defined radios to simulate Insteon

devices capable of collecting and reporting RSS, and by creating a message generation

script and implementing a calibrated filter threshold to reduce silent periods.

Evaluation of the system deployment in a simple room with no furniture produced

detection rates up to PD = 100% and false positive rates as low as PF = 1.6% for base-

line threshold detection along the line of sight (LOS) in a simple tripwire setup. Signal

attenuation of foam blocks at different distances along this LOS ranged from 2.2-4.4 dB.

Cell-based fingerprinting for localization using multiple nodes in this room achieved

accuracy only as high as P A = 5.4% and false positives only as low as PF = 88.3%. A

context-based localization method was developed in response and was able to achieve

P A = 28.3% and PF = 40.0%. The system was then deployed in a similar room containing

several metal objects and achieved P A = 42.2% and PF = 0.0%. Deployment in a similar

room with RF absorbent objects achieved P A = 23.3% and PF = 53.3%.

Feasibility of exploiting RF of a home automation network for DfP indoor detection

and localization was demonstrated. Despite not achieving optimal localization perfor-

mance, the results showed promise for future DfP system deployment on top of home

automation RF devices.
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RSS-BASED DEVICE-FREE PASSIVE DETECTION AND LOCALIZATION

USING HOME AUTOMATION NETWORK RADIO FREQUENCIES

I. Introduction

Recent years have seen Internet-of-Things (IoT) services become more prevalent in

homes and other indoor settings. Many home automation devices use these services to

improve functionality and to allow a better interface to devices for users. Since home au-

tomation networks are capable of changing and monitoring indoor environments, they

can be exploited for indoor detection and localization of human targets. Detection and

localization can additionally be performed without requiring targets to carry devices or

intentionally participate in the process. Therefore, the research introduced in this chap-

ter explores the exploitation of home automation networks to conduct device-free and

passive indoor detection and localization.

1.1 Background

The development of systems for indoor detection and localization of a human sub-

ject is a popular topic of research. Detection is the indication of whether a human target

is present in a monitored area. Localization is the determination of the position of a

target in a monitored area. These topics are often also associated with tracking, or the

monitoring of the trajectory of a human target. As opposed to outdoor methods, indoor

methods focus on performing in enclosed settings with many obstructions.
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Although better performance can be achieved using pre-positioned, dense networks

and active target input, a more covert and cost-effective system is possible. A covert

system works without drawing the target’s attention to the system and without requir-

ing the target to carry any devices or otherwise actively participate in the detection or

localization process. Such a system is known to be device-free and passive (DfP). A cost-

effective system also makes use of the devices already existing in the area of interest.

To achieve DfP detection and localization, an indoor system can exploit devices al-

ready capable of affecting changes to the indoor environment and of monitoring changes

in the environment without requiring the target to carry any devices. One method to

achieve this is to use signals already designed to permeate indoor structures, signals like

those associated with a wireless sensor network (WSN).

A WSN is a group of nodes that collect data based on their specific functions and that

are connected together to form a network. An indoor detection and localization system

can exploit the devices and signals of a WSN to provide good performance while also

reducing both cost and installation time. Additionally, most WSNs have low unit cost,

so many nodes may be purchased and deployed in a large network that covers a larger

indoor area than could feasibly be accomplished with wired security or surveillance sys-

tems [1]. An increasingly popular WSN used indoors is the home automation network.

Home automation technology has existed for decades, but with the recent surge in

IoT services, the prevalence of home automation devices has increased as well. These

devices often have wireless capabilities and communicate with other nodes and a cen-

tral hub to provide automated functions in an indoor setting. Therefore, their signals

and communication protocols are designed to function even through walls. Since home

automation devices function well indoors, they are a prime candidate for exploitation

for indoor detection and localization purposes.
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1.2 Motivation for Research

A DfP system capable of indoor detection and localization has many potential ap-

plications. This includes a range of commercial and personal uses. For example, the

system can be used in a mall by owners to monitor the flow of people visiting stores

without necessarily purchasing items [2]. The location of assets and guides in stores

can be determined without encroaching on customer privacy [3]. Automated, indoor

location-based kiosks can give out safety information. The system can monitor hospital

patients or elderly residents who may not be able to carry monitoring devices or whose

privacy matters [4]. First responders can use the system to determine where a victim

is located in a building when conditions prevent video surveillance from successfully

capturing footage [5].

The exploitation of IoT home automation devices allows other applications as well.

Home automation aspires towards completely automated responses for improving hu-

man life; users will be able to control appliances with completely passive input, that is,

without the need for voice commands or other user input from mobile apps. This is

the same principle of DfP detection and localization. Therefore, both home automation

devices and a detection and localization system can work together to provide improved

home automation control. Smart assistants can monitor targets and provide reminders

or suggestions. Robot assistants can access the system to navigate a room to reach a

target.

A popular system of human localization is the Global Positioning System, but while

this system functions well outdoors when the line of sight between the satellite and the

tracked device is clear, it struggles to achieve reliable performance indoors. Current re-

search on indoor detection and localization systems is largely on device-based systems.

Those that are DfP have not yet exploited a specific home automation technology to

carry out detection and localization.
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1.3 Statement of the Research Problem

The purpose of this research is to provide a proof of concept for a DfP system capa-

ble of detecting and localizing a target through the exploitation of a home automation

network’s RF signals.

The system is developed on an existing home automation network, and Insteon tech-

nology is the chosen home automation technology pursued in this work. Research on

the technology is needed to understand how to use the network for detection and local-

ization and to discover any limitations that the proof of concept will need to overcome.

From this research, investigations need to be conducted to develop the tools for the ex-

ploitation of the Insteon devices. When the proof-of-concept system is developed, the

system is then deployed and tested to evaluate the performance of the system for future

development. Both detection and localization are tested.

Potential contributions of the research include demonstrating the feasibility of ex-

ploiting home automation networks for indoor detection and localization. The system

should also be designed to minimize monetary costs from hardware and installation

needs. Maintaining covertness is a concern. Other goals are to achieve high accuracy

and low false positive rates during deployment and testing. Robustness, or consistent

performance in different rooms, is also sought.

1.4 Document Organization

The remaining chapters are organized as follows. Chapter II provides background

information regarding techniques and methods for human detection and localization.

It also presents related works, compares home automation technologies, and explores

Insteon devices. Chapter III presents the details of the methodology, including variables

and definitions, for the testing of this proof-of-concept system. Chapter IV continues

system development with investigations of the Insteon devices and develops algorithms
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and tools for detection and localization. Chapter V conducts experiments on the de-

ployed system and presents several results and analyses, including signal attenuation

effects and other environmental effects. Chapter VI presents a summary of the research

and provides recommendations for future research.
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II. Background and Literature Review

This chapter presents background on the thesis topic of exploiting a home automa-

tion network for DfP detection and localization indoors. To understand the novelty

of this research and the approach taken, several topics are first discussed. Section 2.1

presents different techniques for detection and localization and argues for a DfP tech-

nique. Section 2.2 compares different methods for DfP detection and localization. Sec-

tion 2.3 summarizes related works in indoor detection and localization. Section 2.4

compares different home automation technologies for potential exploitation. Finally,

Section 2.5 presents Insteon-specific details.

2.1 Techniques for Human Detection and Localization

This section presents different techniques of human detection and localization sys-

tems and compares them. A technique in this research is defined as how a system phys-

ically approaches the problem and is identified by three categorizations: outdoor vs.

indoor, active vs. passive, and device-based vs. device-free. Since the focus of this re-

search is a proof of concept for a single-target detection and tracking system over an

already-existing WSN while minimizing costs and maintaining covertness, an indoor,

passive, and device-free technique is ultimately selected.

2.1.1 Outdoor vs. Indoor.

Outdoor Positioning Systems.

Outdoor positioning systems (OPS) consist of technologies that include satellite, radar,

or large radio systems. They are large-scale in that they can be used to track objects over

a wide area, but primarily function only outdoors and have limiting high costs.
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Figure 1. Diagram depicting discussed techniques with chosen technique highlighted

For example, global positioning systems (GPS) are capable of tracking devices through

satellite communication. Though they once were limited to military-only use, consumer

availability has made GPS the most popular human tracking technology. In fact, GPS is

a feature in many everyday items for individual consumers, including smartphones, ve-

hicle navigation, and fitness watches. However, GPS still has relatively high costs and

consumes a lot of energy, which makes it difficult to be ubiquitously deployed in many

nodes [2, 6].

The use of OPS has been wide-spread. However, the large scale of these systems

means that their technologies are often restricted, resulting in large monetary costs for

service usage or hardware and installation. In addition, with no functionality in indoor

environments and limited performance in cities with tall building or between moun-

tains due to required line of sight for communication to satellites, OPS precision is lack-

ing [1].

Indoor Positioning Systems.

Indoor positioning systems (IPS) consist of technologies that function inside build-

ings and typically use signals and fields collected by small, electronic devices. IPS are not

as popular as OPS, but research has increased in the past decade towards the creation

and improvement of IPS.
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IPS can be categorized into two types of technologies: non-radio technologies and

radio-based technologies. Non-radio technologies, like cameras, can be expensive due

to high equipment and installation costs, and often require unobstructed line of sight.

Radio-based technologies, however, can be deployed in any small environment, and of-

ten leverage already-existing radio signals. In fact, radio-based technologies are often

associated with home automation technologies, most of which operate on some radio

frequency. In addition, radio-based technologies are more interesting because they can

penetrate non-metal walls and do not necessarily require a clear line of sight like GPS

does or extra equipment like floodlights do [5].

Innovation with currently-existing technologies for use in detection, positioning,

and tracking keeps this area of research popular and continues to improve upon the

faults of OPS. While some IPS may use heavy-duty installations of new, positioning-

specific technology, research exists using currently-deployed technology for position-

ing [7]. For example, the ubiquity of Wi-Fi has encouraged researchers to deploy IPS

relating to Wi-Fi signals. Whether it is a part of the main functions of the technology or

an additional module that can be deployed on top of the technology, these innovations

are changing the possibilities of indoor positioning.

2.1.2 Active vs. Passive.

The categorization of techniques into active or passive involves whether the tech-

nique requires active participation towards detection or localization. This categoriza-

tion is often confused with that of device-based vs. device-free techniques, which have

to do with objects. Some works, like ref. [8,9], group active and device-based techniques

together because the target must actively remember to carry a device in order to be mon-

itored by the system. However, an active technique in general involves conscious and

intentional action from the target that enables detection or localization.
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For example, suppose that Target A carries a communication-less tag whereas Target

B carries a device computing and transmitting information to be used for tracking, even

if it is only forwarded to another node. Then Target A is in a passive system and Target

B is in an active system, because while Target A’s tag does not actively participate, Target

B’s device does. Also, as a second example, if the target must knowingly interact with the

environment, such as turning appliances on, for the monitoring to occur, then this is

active participation. Hybrid approaches, using both active and passive targets, are also

possible.

Active participation can be restrictive; not all individuals to be monitored are guar-

anteed to willingly participate. Passive participation, when the target does not have to

actively recognize that they are participating, allows for greater application and use and

provides system covertness.

2.1.3 Device-based vs. Device-free.

The question of whether the target is carrying a monitored node determines if the

technique is device-based or device-free. For example, in the first example above, both

Target A and Target B were in a device-based system. In the second example, the tech-

nique was device-free. While this may be straightforward, the concept of the success of

a device-free technique may not be as apparent.

Device-based Techniques.

Before explaining the device-free technique, the device-based technique is discussed.

The two “devices” that are typically used in a device-based technique are a mobile de-

vice, like a smartphone, or a tag, like an RFID tag [3]. Typically, the difference in the two

is that the tag is passive, whereas the mobile device is active due to its larger functional-

ity and capability for active participation by using its cameras and sensors.
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For example, the technology behind GPS is device-based, because the target is actu-

ally the GPS-capable device communicating with global satellites. Another example is

the light-sensing camera on a smartphone that may use triangulation based on the light

density from indoor lights [3]. Using the accelerometer, gyroscope, and digital compass

in a smartphone or monitoring Wi-Fi or Bluetooth signals emitted from the smartphone

can also achieve active, device-based localization. The smartphone either communi-

cates this information to monitoring nodes or some mobile app.

Tags, on the other hand, do not collect any data to be transmitted, but they may be

involved in the communication. The tag can consist of ultra-wideband, infrared, radio-

frequency identification (RFID), or other wireless sensors [3]. Signals are bounced off of

the tag and monitored, but the tag itself does not participate in the exchange of informa-

tion. For example, RFID are reference tags whose locations can be detected and tracked

using a RFID reader.

Device-based approaches often give more precision and accuracy in localization be-

cause the target is carrying the device. However, this assumes that the target is carrying

the device and that the device is fully equipped or properly functioning, e.g. no bent tag

or drained battery. Additionally, device-based techniques may raise privacy concerns if

the device is always worn by the target, who may want privacy in certain areas yet have

multiple uses for the device.

Device-free Techniques.

Without any device on the target, a device-free technique relies on signals in the

environment and the target’s natural effect on these signals. Many of these signals are

available and can be monitored by different techniques, including camera feed, infrared,

ultrasonic, and radio frequencies [3].

A simple example of the device-free technique is using a camera feed. The target

10



does not need to carry any devices, but instead is detected on the visual spectrum that

cameras capture. Infrared works the same way; it exploits how the human body’s heat

signatures differ from the environment. Echolocation, based on measuring the time that

sound takes to propagate and then reflect back to the source, is another simple example.

More complex is the use of non-visual and non-audio signals for detection and local-

ization. Radio-based device-free techniques commonly exploit path loss and the human

body’s natural attenuation or reflection of signals to determine detection or location.

For example, just like with echolocation, if a radio signal is sent out with the expectation

that is it returned but after some time is not, then a system may consider that a detection

event because the time of flight exceeded what was expected.

Device-free techniques are useful because they do not rely on the target to carry any

devices, which reduces hardware costs and allows detection and localization to occur

without needing the target to carry a device.

Summary.

Indoor techniques are interesting because they are able to exploit existing WSN sig-

nals, which could cut costs. Radio-based techniques favorably do not require unob-

structed line of sight to achieve target monitoring. Passive techniques do not require

active participation by the target, so can be covert. Similarly, device-based techniques

are less obtrusive than the device-based one, which may be more precise yet is suscep-

tible to device failures (e.g. forgetting the device or a drained battery).

An indoor, DfP technique then has low costs, performs covertly (without need of

a carried device or active participation), and can be deployed indoors on any existing

WSN. In accordance with ref. [10], the DfP approach should be used in an installed WSN

to detect changes in the environment and monitor targets passively without requiring

any devices to be attached to these targets.
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Figure 2. Diagram depicting discussed methods (measurements and approaches to de-
tection or localization) with selected methods outlined in green

2.2 Methods for DfP Detection and Localization

This research aims to choose a method for DfP detection and localization that best

fits these qualities: low cost, high precision and accuracy, and low computational over-

head. Therefore, this section presents different methods that are used in DfP works.

Methods consist of the measurement taken and the approach towards detection and lo-

calization. After a measurement is selected, DfP approaches for a single-receiver setup

and those for a multiple-receivers setup are then presented for potential use.

2.2.1 Measurements.

Many factors affect the localization algorithm, including network architecture, sen-

sor density, and geometric shape of the measurement area, but the most important

factors in accuracy are the type of measurement and precision that measurement pro-
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vides [2]. The measurements frequently used in DfP techniques are time, angle, and

signal strength [1, 6, 11]. This section discusses each of these three measurements be-

fore arguing for the use of the received signal strength.

Time of Arrival / Time of Flight.

The measurement of time can be used in many different ways depending on how it

may be measured at the nodes. For example, time of arrival (ToA) can be recorded as

a one-way or round-trip measurement. The time of flight, or time difference of arrival

(TDoA), is the difference between arrival times of a transmitting signal at two separate

receivers [2]. Ref. [12, 13] are device-based works that used ToA or TDoA. GPS is an ex-

ample of a TDoA system.

ToA and TDoA approaches can achieve high accuracy, but require strict time syn-

chronization of the network, making its use costly [14]. In fact, synchronization error

and multipath effects can reduce the accuracy of time-based measurements [2].

Angle of Arrival / Direction of Arrival.

Angle of arrival (AoA) is a measurement used to calculate the angle, either as am-

plitude or as phase, at which the signal arrives from one node to another [2]. AoA often

requires additional hardware to calculate the relative orientation based on the measured

arrival direction, thereby increasing implementation costs and power consumption [14].

Accuracy is affected by shadowing and multipath and its use has a limited interest to

large antenna arrays [2]. WSNs with small sensor nodes cannot support this non-energy-

efficient approach. The infrared-based work in ref. [15] and the device-based work in

ref. [16] both used AoA measurements.
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Received Signal Strength.

Received signal strength (RSS) is a measurement that takes into account the signal

strength of a received signal. This is often measured in dB or some variation.

One challenge of using RSS is the unpredictability due to multipath fading [1]. Multi-

path fading is often due to environmental attributes causing reflections, but noise may

also interfere with RSS. Ref. [17] claimed that their experimental study showed that RSS

cannot be used as a metric for distance measurements in localization algorithms be-

cause of its inconsistent behavior and unreliable results at the extremities of its range.

However, RSS can be processed before use in distance calculation [14].

RSS is favored for its simplicity and because it is often available as a recorded param-

eter in the receiver or in the communication message packets, which makes this mea-

surement approach fast and cost-effective [5, 14]. It is also favored because of its low

hardware configuration requirements [6]. The concept of path loss for signal strength is

also a basis for many techniques.

Comparison.

AoA requires specified hardware, which is not often found in existing WSNs. There-

fore, using AoA would increase hardware costs. RSS, on the other hand, is often available

as a recorded parameter. As a result, using RSS would not accrue these additional costs.

Time can have high accuracy, but ref. [12] compared RSS and TDoA measurement

approaches on localization and determined that while TDoA works better than RSS,

there are locations where it does not produce good estimates, whereas RSS can work

everywhere. This is because TDoA requires a clear connection with unobstructed line of

sight, but RSS can overcome effects from obstacles and multipath.
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2.2.2 Approaches for a Single Receiver Node.

The simple case of DfP techniques is detection using one receiver node and one

transmitter node. This is also referred to as the “tripwire case”. Detection is measured

as the ability to indicate whether a human target is present in a monitored area. With

RSS measurements, this is determined by monitoring RSS changes in the environment.

There are a few ways to approach this simple-case problem, such as baseline signal com-

parison, path loss model comparison, moving average threshold, or moving variance

threshold, which are all discussed below.

Localization is the technique used to determine the position of a target in a moni-

tored area. (This is not to be confused with tracking, which follows the target’s position

over time.) Localization is a more complex problem than detection. However, it is as-

sociated with poor results when used in a simple setup like the tripwire case, so this is

discussed more in the next section with the multiple-receiver setup.

Baseline Comparison.

Baseline comparison is an intuitive method for RSS-based detection where the target

is detected in the area of interest if the RSS decreases significantly from the baseline.

The level of significance may depend on several factors, and so configuration may be

required, especially in large spaces or spaces with large multipath effects.

With just one transmitter, one receiver, and no obstacles, human presence can be

detected when the observed RSS value decreases significantly from the baseline. Sig-

nificance can be set based on expected values (e.g. using commonly known values for

certain frequencies) or can be calibrated from previous test runs. The issue with using

expected values is that it does not consider path loss or multipath effects, so these val-

ues are not universal and may result in lower probability of detection or in higher false

positives.
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Path Loss Threshold Comparison.

Detection along or near the line of sight can be obtained using the path loss model.

The path loss model is

PL(d) = PL(d0)+10γ log10

(
d

d0

)
+Xσ (1)

where PL is the path loss, d is the distance, d0 is the reference distance, γ is the path loss

exponent, and Xσ is the zero-mean Gaussian random variable associated with path loss

due to shadowing.

With some points of calibration, the path loss exponent and shadowing variable can

be calibrated. Then, the path loss model can be used to determine a threshold of RSS

values that indicate that the target is in a subset of the area of interest, near the line of

sight of the transmitter and receiver.

Considerations for when the target completely blocks the transmitting node, pre-

venting most of the signal from reaching the receiver, or for when the target is far off

the line of sight are necessary when using this method. This approach also requires re-

calibration for any significant changes in setup or environment. With more than one

receiving node, this approach can also be adapted for localization.

Moving Average Threshold Comparison.

A statistical approach that compares two moving averages of the RSS of a single

stream can remove the need for recalibration and was presented in ref. [10]. Let qi be

the RSS of a signal. The long and short moving averages of a single stream (αl ,k and

αs,k , respectively) are simultaneously taken of a long window, wl , and a short window,

ws , and compared (4) to a threshold, τ. If there is a significant change between αl ,k and

αs,k , then a detection event occurred at time t = k +ws , where k is the time index.
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αl ,k = 1

wl

k+wl−1∑
i=k

qi (2)

αs,k = 1

ws

k+wl+ws−1∑
i=k+wl

qi (3)

∣∣∣∣αl ,k −αs,k

αl ,k

∣∣∣∣ H1

≷
H0

τ (4)

where H1 is the event of detection and H0 is no event.

Moving Variance Threshold Comparison.

Similar to the moving average approach, the moving variance approach compares

moving variance of the raw data, vt , to the variance of the silent period, v t . This is also

presented by ref. [10]. Unlike the moving average approach, the silent period must be

calibrated beforehand for some period [tst ar t , tend ]. Detection occurs when the variance

of the raw data stream is greater than the variance of the static period, or when vt >
v t + rσv , where r is the number of standard deviations, σv , that acts as the threshold.

q t =
1

w

k+w−1∑
i=k

qi (5)

vt = 1

w −1

k+w−1∑
i=k

(qi −q t )2 (6)

v t = 1

tend − tst ar t +1

tend∑
t=tst ar t

vt (7)

σv =
√√√√ 1

w −1

tend∑
t=tst ar t

(vt − v t )2 (8)
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Comparison.

Both the moving average and moving variance approaches can be performed in real

time. Adding an additional constraint for detection like the number of concurrent alerts

raised in a time period can also reduce the number of false positives [10]. In fact, ref. [10]

was able to find 100% probability of detection with zero false positives with specific

parameter values. However, these approaches require more computational overhead

that may be too costly for a simple approach or goal. Instead, the baseline comparison

should be sufficient with its low complexity.

2.2.3 Approaches for Multiple Receiver Nodes.

Similar to detection, there are multiple approaches to RSS-based localization. Two

of the most-used approaches are fingerprinting and imaging, both of which are dis-

cussed below. Before presenting these approaches, a general question (centralized vs.

distributed processing) of the multiple receiver approach is discussed.

Centralized vs. Distributed Processing.

In cases with just one transmitter and one receiver, the issue of centralized or dis-

tributed analysis approach is not of concern. However, these one/one scenarios are im-

practical, have coverage limitations and will result in more error for localization. With

more than one receiving node, whether the nodes communicate to estimate distance is

a significant question.

When the nodes communicate with each other, they use a centralized approach;

when they calculate their estimations independently, they use a decentralized approach.

Centralized algorithms are more accurate, but are not suitable for extremely large net-

works and have higher computational complexities and unreliability due to inaccurate

accumulated information [2]. Decentralized algorithms, on the other hand, are more
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computationally efficient and are easily implemented in large networks, but have de-

sign complexity if not synchronized, and individual nodes often have limited processing

capability prohibiting computation [2].

A limiting factor in this research is that the nodes to be used should be part of an

already-existing network, meaning that their computational capabilities are small or are

limited to their intended function. As a result, the centralized approach is preferred for

this research.

Radio Fingerprinting.

Fingerprinting is a classification-based approach to localization (that can also be

used for detection). These methods identify patterns using a unique signature [8]. In

terms of RSS-based localization, classification through fingerprinting consists of hav-

ing a radio map containing measurements that change depending on where a target is

and using this map to compare the observed readings [1]. Thus, this approach can be

divided into two phases: the offline phase and the online phase.

The offline, or training, phase first involves choosing location points in the area of in-

terest. This can be evenly-spaced in a systematic, grid-like fashion or can be irregularly-

chosen points spread throughout the area of interest. Points away from obstacles may

be preferred, as may points at locations of interest, such as near a bed, or near a certain

kiosk. Regardless of how this map is defined, the next step is to calibrate the map. Cal-

ibrating the radio map consists of recording RSS values at each of the points chosen in

the first step. These values should be an aggregate of values from all relevant receiving

nodes. However, how these values are stored may differ [18].

The online, or observation, phase is the fingerprinting of the currently collected raw

data against the data stored in the trained radio map. This can be approached many

ways. For example, ref. [8, 19] used MATLABr Naive Bayes and TreeBagger classifiers.
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Ref. [18] compared probabilistic techniques to a deterministic technique and found

that probabilistic techniques outperformed the deterministic one. The research also

found that non-parametric algorithm approaches for estimating the density function

outperformed parametric algorithm approaches.

The collection of unique signatures at specific locations allows for greater accuracy

[2]. However, fingerprinting often requires “extensive calibration to build a signal fin-

gerprint” and recalibration is required when the environment changes, such as when a

piece of furniture is moved [20].

Ref. [10] performed localization by first constructing a passive radio map and then

using a Bayesian inversion-based inference algorithm to classify the observed data as

similar to the saved data at a point on the map. The algorithm assumes that all loca-

tions are equally probable, and its accuracy and precision depend on the number and

location of the calibration points. In the offline phase, the map is constructed and the

target stands at different points in the area of interest. The RSS values for each receiving

node (ni , for some i ∈ {1,2, ..., N }, the set of all nodes in the system) are then recorded

and stored as a vector, sl at each location point, l . In the online phase, a signal strength

vector, su , of an unknown location is recorded and contains RSS values from all ni . Then

to determine the location of the target, the approach finds the location where the maxi-

mum probability occurs.

arg max
l

(P (u = l |su)) = arg max
l

(P (su = sl |l )) (9)

Ref. [9] presented a cell-based fingerprinting approach for tracking. The room was

first divided into equally-sized cells. Then, in the offline phase, 100 RSS measurements

were recorded for each cell with the target having different orientations and positions

within the cell. In the online phase, the median RSS from the training section was com-

pared to the observed value and maximum likelihood was used, similar to (9). This
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method does not have exact precision since the cells are of some area. However, this

is not an issue for most applications that do not need precision beyond a context, like

proximity to a bed or doorway, and this approach reduces calibration overhead [21].

The above fingerprinting approaches can only choose locations from the set of points

calibrated in the offline phase, but in-between points can be computed using some

other algorithm. Ref. [22] proposed spatial averaging, a deterministic, center-of-mass

approach that allowed the estimated location to not be a predetermined point on the

radio map, thereby making a radio map with continuous space. The task of adapting

this for a probabilistic approach could be undertaken in order to improve localization

accuracy without requiring more calibration overhead in the offline phase.

Radio Tomographic Imaging.

Radio frequencies can be used to build a tomographic image of the area of inter-

est, and the image can then be analyzed to detect or locate a target. Radio Tomographic

Imaging (RTI) is the “estimation from measurements along different spatial filters through

a medium” [5].

This estimation is often done with propagation models, which have less calibration

overhead than fingerprinting, but have demonstrated low accuracy [20]. Ref. [14] is an

example of a work that chooses a model of the signal propagation path for localization

instead of the fingerprinting method due to the time cost of calibration. Without need-

ing to re-calibrate the system to update the map of the area of interest, RTI is capable of

long-term localization, especially when paired with a state machine algorithm [23].

However, RTI often requires a lot of nodes to achieve better accuracy. This is because

RTI requires line of sight to perform localization [22]. Without line of sight, such as from

obstacles, accuracy degrades significantly [22]. The RTI experiments in the works dis-

cussed in Section 2.3 used 16 to 34 nodes, even in small areas of interest. This need
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for more nodes increases hardware and installation costs and limits the coverage area

possible to the number of nodes deployed [22].

Other basic approaches to RTI include the shadow-based RTI (SRTI) that estimates

using mean RSS and the variance-based RTI (VRTI) that exploits the RSS variance during

target movement [24]. In a comparison of SRTI, VRTI, and fingerprinting approaches,

ref. [24] noted that SRTI and VRTI were both flexible but showed less accuracy than the

fingerprinting method. Additionally, VRTI cannot detect stationary targets.

Some filters used in developing the image are the Kalman filter [6] or the bootstrap

particle filter, the multiple particle filter, the Markov Chain Monte Carlo filter, and the

Additive Likelihood Moment filter compared in [23].

Comparison of Multiple-Receivers Approaches.

The centralized-node communication approach is not scalable, has computational

complexities, and can be unreliable, but often results in better accuracy. The decen-

tralized approach is scalable and computationally efficient, but is limited by individual

node processing power and synchronization.

Multiple receivers are better-suited for accurate localization. The classification-based

fingerprinting method and the radio tomographic imaging approach were both dis-

cussed. While RTI requires less calibration overhead than fingerprinting and can achieve

better accuracy, it is limited by the number of nodes that can be deployed in the network.

Fingerprinting also does not require line of sight and permits some obstruction since it

mitigates multipath effects [22].

Probabilistic fingerprinting approaches outperform deterministic approaches. The

fingerprinting map is often created with discrete points, making accuracy dependent on

the number of points calibrated. However, most applications may be satisfied with cell-

or context-based precision.
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Summary.

Measuring RSS is preferred for DfP techniques because it is easy to measure and

exists for all nodes that send signals. This limits costs and allows an RSS-based DfP

approach to be deployed on almost any exploited WSN.

For RSS-based, one-receiver, DfP detection, the baseline signal comparison approach

is selected for its simplicity. Single-receiver DfP localization is not practical for accuracy,

so a multiple-receivers setup is preferred despite additional design and computational

complexities. For RSS-based, multiple-receiver DfP localization, the probabilistic fin-

gerprinting approach can be used for smaller networks. Cell- or context-based precision

is sufficient for most applications.

Given the goal of this research to exploit an already-existing WSN infrastructure’s

nodes for DfP detection and localization, a centralized approach is preferred over a de-

centralized one. The centralized approach allows all receiving nodes to share informa-

tion, thereby increasing accuracy.

2.3 Related Works

Works Using Different Measurements.

Three works included non-RSS measurements in their experimental studies, all with

varying technologies. Ref. [16] was an energy-based, Wi-Fi, device-based approach to

localization using direct path signal through path loss comparison and AoA phase dif-

ference. Their method reduced distance error compared to RSS, but that performance

was poor at a few locations, especially for weak links. For tracking, their method had

errors on average of 5 m but found errors greater than 10 m at a few locations with one

access point, but only 2.7 m for a system with five access points.

23



Figure 3. Diagram depicting studies of different related works reviewed

The other two works compared measurement approaches. Ref. [13] compared de-

vice-based techniques using RFID detection rate, Bluetooth technology RSS, or Wi-Fi

technology ToA. They found that RFID and Bluetooth are more accurate than Wi-Fi with

median errors of 0.435 m, 0.474 m, and 3.545 m, respectively. Ref. [12] compared RSS

maximum likelihood and TDoA least squares approaches for a DfP system using IEEE

802.15.4 technology attached mostly to the ceiling. They concluded that RSS was more

robust and that TDoA was more accurate.

Device-Based Bluetooth Works.

In addition to ref. [13], four other reviewed works specifically used Bluetooth tech-

nology, and all were device-based techniques. Ref. [25] tested the possibility of localiza-

tion using smartphones measuring RSS from Bluetooth Low Energy (BLE) beacons and

confirmed that the beacons “provide micro-location data that increases accuracy and
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functionality in smart home technologies,” but noted several limitations with a device-

based system. Ref. [26] introduced an RTI system described as a calibration-free finger-

printing method, and found that the system was robust to temporal changes and could

provide up to 187% improvement to traditional fingerprinting methods. Ref. [14] used

RSS and triangulation and found that the user’s real position could be estimated up to

30 cm without averaging and smoothing routines; with, the maximum deviation was re-

duced to less than 15 cm. Ref. [27] used a minimum error function (10) to estimate the

location of users carrying Bluetooth-transmitting devices and found that their method

resulted in a root-mean-square error (RMSE) of 2.309 m, but capitulated that this could

be improved upon with optimal base station placement and minimizing reflections and

path loss from walls and furniture.

EF =
√(

(d1/d2)2

S2/S1
−1

)2

+
(

(d1/d3)2

S3/S1
−1

)2

(10)

where S1, S2, and S3 are received signal strengths of base transmitters located d1, d2, and

d3 away from a transmitter.

Other Device-Based & Hybrid Works.

Unless otherwise stated, the following are device-based works. Interestingly, ref. [17]

investigated the reliability of RSS as a device-free measurement and concluded that

it was neither reliable nor consistent for distance measurements in localization algo-

rithms. However, no other literature occurred in research that corroborated these find-

ings. Instead, most device-based works often found success.

Ref. [28] used a moving mote that would send localization messages to anchor motes.

The researchers found greater than 95% success in two of the four quadrants of a room

with a new device-based localization algorithm and just four IEEE 802.15.4 anchors.

Most other works improved upon existing methods or compared them.
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Ref. [20] proposed a modified one-slope calibration method for device-based loca-

tion prediction on a Wi-Fi network and were able to predict RSS with higher accuracy

than a normal one-slop or multi-wall model. Ref. [29] improved RSS-based lateration

techniques in Wi-Fi and Zigbee networks and found that their regression method in

simulation and experiment significantly improved localization accuracy for RSS-based

lateration, with median error improved over 29% in both networks, and maximum lo-

calization error improved over 50%.

Two works used only simulations to compare algorithms. Ref. [30] used a direct tri-

angulation algorithm and a maximum likelihood estimator (MLE) algorithm on plume

intensity, which is similar to RSS, and compared them when the number of sensors were

varied and when the level of noise was varied. They found that neither algorithm per-

formed well when there were fewer sensors due to noise, but the direct triangulation

algorithm was preferred for its simplicity so long as the sensors are not in a line and are

close to the source to minimize the effects of noise. When varying the background noise,

they found that the MLE algorithm is more robust. Ref. [31] compared trilateration of

a mobile node transmitting RSS using maximum likelihood estimators, observation of

RSS path loss using least-squares, and RSS fingerprinting. They found that localization

accuracy depends on the number of anchor nodes and on the target node’s distance

from the network’s center. The maximum likelihood and fingerprinting estimators out-

performed the least squares estimator and showed similar performance, but maximum

likelihood’s lower complexity was recommended.

Other comparisons: ref. [32] compared multi-lateration, min-max, and fingerprint-

ing algorithms for Zigbee devices transmitting RSS and found that while all resulted in

an average error of less than 60 cm, multi-lateration gave better results than min-max

and with more reference nodes, fingerprinting had better results. Ref. [33] found that the

maximum likelihood algorithm in device-based approaches yielded better performance
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compared to the min-max algorithm when the number of nodes were higher because it

weights the RSS, and that multi-lateration fared worse than either of these algorithms.

Ref. [34] compared two Euclidean-distance, RSS approaches on Zigbee nodes and found

that the fingerprinting technique resulted in better accuracy compared to the maximum

likelihood algorithm (0.5 m vs. 1.2 m).

Two works used a hybrid approach of active and passive systems. Ref. [4] proposed

a system that leveraged human-object interactions to affect the RF field and were able

to achieve 95% localization accuracy and 58 cm tracking error for a single person in

multiple rooms. However, issues included the impracticality of installing sensors on all

appliances. Ref. [7] wanted to exploit the entirety of the home wireless network for lo-

calization and activity monitoring. In their device-based technique, smartphones were

carried and an app monitored RSS data for real-time position estimation with mean lo-

calization error of 3.24 m with only three access points. In their device-free technique,

they monitored appliances in the home and determined real-time location estimation

from power usage and RSS with mean localization error of 3.61 m.

DfP Infrared Work.

Only one reviewed work used infrared technology for DfP indoor localization. With

three sensors and a least-squares triangulation algorithm, ref. [15] measured a maxi-

mum error of 80 cm but were confident that an additional ±20 cm of accuracy was pos-

sible with optimized sensor configuration.

RSS DfP Signal Comparison Works.

Seven of the reviewed works used signal comparison for DfP detection and/or track-

ing using a one-transmitter, one-receiver setup in a room or smaller space. Of these,

only ref. [35] used Wi-Fi technology; the others used IEEE 802.15.4 technology. Ref.
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[11,35,36] measured RSS and graphed it as a function of time to record fluctuations due

to human presence, whereas ref. [37] graphed the observed frequencies of RSS. Works

using signal comparison appear to do so to verify that DfP human detection and track-

ing is possible or to test effects.

For example, ref. [36] showed that a slow walking pace significantly reduces RSS, but

fast paces only do so slightly, and that greater numbers of humans reduce the signal

strength more. Ref. [11] found that human attenuation in their system was approxi-

mately 3.97 dBm on the line-of-sight (LOS) path, that away from the LOS the presence

could be adequately detected up to 1.0 m away, and that human movement caused RSS

fluctuations and variations of around 10-15 dBm. Ref. [37] found that even without hu-

man movement, signal strength and its fluctuation are different at varying antenna an-

gles, and that human movement from slower to faster paces increased the fluctuations

in RSS. Ref. [35] showed that higher accuracy is found with longer time duration when

using detection to estimate speed (finding mean accuracy of 84.47% and 94.41% for uni-

directional and round-trip traversals of a straight-line path). Ref. [38,39] concluded that

wall-mounted access points (for Wi-Fi) resulted in higher localization accuracy when

compared to ceiling-mounted ones, that higher frequency (5.7 GHz vs. 2.4 GHz) resulted

in lower accuracy, and that people moving outside the area of interest do not affect the

data streams in the area of interest.

Ref. [10] found 100% probability of detection with zero false positives using moving

average and moving variance approaches with a two-transmitter, two-receiver setup.

RSS DfP Fingerprinting Works.

Fingerprinting was popular among the reviewed works. Most approaches (ref. [10,

18, 22, 40, 41]) leveraged Wi-Fi technology, and while ref. [8, 19] used only IEEE 802.15.4

technology, ref. [7] did not discriminate between the two 2.4 GHz frequencies. However,
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ref. [9, 21] used technology on the 433.1 MHz and 909.1 MHz frequencies. Experimental

setups were either a single room or a single floor, and the number of nodes were as few

as two transmitters and two receivers to as many as sixteen total.

Errors were less than 3.6% for the three MATLABr classifiers (Naive Bayes Gaussian,

Naive Bayes Kernel, and TreeBagger) used in ref. [8, 19]. The Bayesian inversion infer-

ence algorithm in ref. [10] resulted in a localization accuracy between 86.3% and 89.7%.

The wavelet feature-isolating approach in ref. [40] found simultaneous localization and

activity recognition accuracy of 95.4% and 59.3% for one and two targets, respectively.

Ref. [9, 21] both presented a cell-based, probabilistic fingerprinting approach using

linear discriminant analysis that achieved 97% cell estimation accuracy with 0.36 m lo-

calization error distance for one person. In ref. [9], they further found that their ap-

proach maintained an accuracy of over 90% with a substantial reduction in number of

devices (sixteen to eight) and with fewer calibration samples (100 to sixteen per cell).

The deterministic (Euclidean distance with post-processing spatial and temporal av-

eraging) approach in ref. [22, 41] enhanced accuracy to give a median distance error of

6.74 m and a 100% probability of detection in typical environments. However, ref. [18]

compared four fingerprinting algorithms and concluded that non-parametric proba-

bilistic algorithms outperformed others. They also concluded that the configuration of

nodes and the radio map data most affected accuracy.

Ref. [24] compared fingerprinting with RTI and found that their fingerprinting sys-

tem had 0.8 m accuracy and could detect a still target, but had no flexibility and was

expensive to configure.

RSS DfP Radio Tomographic Imaging Works.

RTI works often deployed many nodes, with the reviewed works using as many as

34 nodes (ref. [42]). Ref. [23] used simulations to show that the RMSE increased when
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the number of nodes removed from the system was increased, but ref. [24] found that as

few as sixteen nodes could still maintain DfP usability. Most works used IEEE 802.15.4

technology, but ref. [43] used Wi-Fi technology.

Ref. [44] demonstrated successful tracking of multiple human objects was possible

using the exponential model on mean attenuation of the RF signal of a link by a target,

a modified skew-Laplace measurement model, or a proposed magnitude measurement

model; in three different sites of different multipath effects but still small rooms, the

researchers successfully tracked up to three targets using all models.

Long-term monitoring is possible with RTI, as was shown in ref. [23], who presented

a system that used a radio map based on RTI with a state machine of some areas of

interest in a single-floor, single-bedroom apartment over a week. It was able to avoid

recalibration of the system, and they found only 0.23 m RMSE of the position.

Ref. [24] compared the RSS-based DfP localization algorithms SRTI, VRTI, and clas-

sification and determined that each algorithm had their own strengths and weaknesses,

so none could be preferred in the general case. SRTI had accuracy of 2 m, was capable

of automated configuration, could detect a still target, and was flexible. VRTI had an ac-

curacy of 1.2 m, was also flexible, and did not need configuration, but could not detect

a still target.

Some works tried to improve upon traditional RTI methods: ref. [43] introduced an

adaptive weighting RTI to improve accuracy in Wi-Fi environments with multipath and

interference and found that their method outperformed the traditional RTI method by

4.51% in localization accuracy with interference. With greater interference, the adaptive

weighting method showed even better performance. Ref. [42] proposed SubVRT, a sub-

space decomposition method to reduce noise for variance-based DfP localization and

were able to reduce localization RMSE by 41% (0.74 m vs. 1.26 m) compared to a normal

variance-based approach. They did so by removing intrinsic motion’s spatial signature

30



after finding that intrinsic motion (e.g. moving leaves) resulted in higher RSS variance

than extrinsic motion and considered the motion to be noise in the system.

Summary.

The current focus of indoor localization research largely seems to be to improve

upon existing methods and to choose the best method. However, home automation

networks have not been explicitly exploited. Furthermore, most of the experimental

setups are different from each other, making it difficult to choose a method in indoor

localization. By exploiting a home automation network though, the DfP setup can be

more generalized since many home automation needs and capabilities are similar from

home to home. Fingerprinting requires calibration and works with even small numbers

of nodes, which is more likely in home automation scenarios.

Different measurements are possible for indoor localization, but when compared,

RSS was more robust and did not require a clear LOS. Despite claims that device-based

methods could estimate location better than device-free methods, the accuracy and er-

rors reported from both sides are confounded by other variables and do not indicate fa-

vor either way. Still, device-free methods are mostly passive, which this research prefers.

None of the reviewed works used devices specifically intended for home automation.

The majority of systems involved frequency bands at 2.4 GHz due to the resonance fre-

quency of water, but 915 MHz signal attenuation also occurs. The IEEE 802.15.4 technol-

ogy is most popular, with Wi-Fi next. Only four works exploited sub-1 GHz frequencies,

but a few works tried to eliminate interference in the 2.4 GHz band.

Between fingerprinting and RTI for localization, fingerprinting could see significant

inaccuracies in estimation, but by taking a cell-based approach, this inaccuracy is re-

duced. With home-based human detection and localization cases, it is unlikely that

more precise localization is required.
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2.4 Comparison of Home Automation Technologies

Home automation technology is of interest in this research for several reasons. Fore-

most, DfP techniques can exploit the already-existing network that most home automa-

tion technologies provide. This eliminates many costs that are associated with a system

that is specified for localization only.

With continuing improvements in support and availability, homeowners and other

building designers are deploying home automation networks throughout the country.

This increased use and popularity of home automation technology also increases the

relevance of a DfP system that exploits the home automation network.

This section considers several home automation technologies that may be exploited

for DfP purposes. While many of these technologies can be used for DfP detection and

localization, the technology used in this research must be radio-based, low-cost, and

easy to exploit.

Lone Sensors.

Home automation technology has many forms and functions. In the case of lone

sensors, this general technology is used in home automation networks but does not nec-

essarily comprise its own network. For example, house alarm systems use a sensor that,

if triggered, sends information to a monitoring console. Their function is limited to sens-

ing a single event and sending it to another device. Outside of this simple conditional

function, they provide no other use, making their deployment small. This makes exploit-

ing lone sensors impractical. Motion sensors are similarly low-cost and have low power

consumption, yet are often multi-functioning with their own processing and communi-

cation components. However, they can often only locate moving objects, not stationary

ones, and purchasing detection-specific devices is not desired.
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Surveillance Cameras.

Surveillance cameras violate user privacy since they capture too much information

about the target. The data stream is large, making computational costs for processing

recorded footage high. Line of sight is also required. Furthermore, while multiple cam-

eras may be connected in a network, this is in the realm of a separate technology, e.g.

Wi-Fi, commonly.

Wi-Fi.

This wireless technology is based on the IEEE 802.11 standards and is popular in

home WSNs used primarily to connect devices to the Internet. Many home automation

devices may use Wi-Fi technology to communicate to a home network. Devices not

operating on Wi-Fi are often bridged over.

The operating frequencies are 2.4 GHz and 5 GHz, the former of which can see a lot

of interference [43]. A lot of data can be sent over Wi-Fi and at fast rates, but this results

in high power consumption [14, 45]. This is especially noticeable in mobile devices, but

larger devices are bulky and costly.

Bluetooth.

Bluetooth is a short-ranged technology designed to eliminate cords, such as for con-

necting headsets and radios or allowing hands-free device access [45]. The main use of

Bluetooth for home automation is mainly peripheral devices like speakers that connect

to a bridge allowing voice-activated controls to Bluetooth devices due to its short range.

Bluetooth operates on the 2.4 GHz frequency band like Wi-Fi, but is designed to con-

sume less power, thus limiting its range to only about ten meters [46]. Bluetooth devices

are widely available and are typically capable of measuring and reporting the RSS them-

selves [27].
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Bluetooth Low Energy (BLE) transmits smaller amounts of data than does regular

Bluetooth and is preferred for its low energy consumption. This is attractive, but most

related works using Bluetooth or BLE technology apply a passive device-based approach

[13, 14, 26, 27].

Zigbee.

One of the major home automation protocols, Zigbee is built on the IEEE 802.15.4

standard and has low cost, short delay, and low power consumption [45]. Its technolo-

gies operate on at least one of the three frequency bands: 868 MHz, 915 MHz, or 2.4

GHz [47], but more commonly use the 2.4 GHz frequency. The line-of-sight transmis-

sion range of IEEE 802.15.4 is 70 meters, or about 10 meters with obstructions, making

successful packet delivery in a typical indoor environment limited [1].

Z-Wave.

Z-Wave operates on the 908.4 MHz frequency [47] and has a range up to 30 m [45].

Its protocol requires complex routing strategies and a confusing array of different types

of network master, slaves and other modules [46].

Power Line Technologies.

Power line-protocol technologies like X10 are part of an older home automation ap-

proach. Instead of using wireless radio waves, these technologies communicate using

the building’s electrical power line (PL). Typical power lines have a slow, limited speed,

but installing high-speed alternatives have high installation costs [46]. Other than by

monitoring human interaction with devices connected on the PL, PL technology poten-

tial in a DfP system is limited.
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Insteon.

A dual-band home automation protocol, Insteon simultaneously operates on the

915 MHz RF band and on the PL, increasing its reliability [48]. It is a “responsive, easy-

to-install, simple-to-operate, reliable, and affordable technology for home automation”

with many documents available online [46].

Also, Insteon is capable of simulcasting, or the broadcasting of messages even when

other devices are transmitting. This feature allows messages to have low probability

of being cancelled [47]. This means that more messages can be broadcast in an envi-

ronment. With the knowledge that Insteon’s security is flawed [49], this indicates that

Insteon technology can be exploitable for DfP.

Summary.

Lone sensors are too simple for exploitation, and non-radio technologies like cam-

eras or the X10 have high processing costs, line-of-sight requirements, high installation

costs, or are not as ideal as radio-based technologies.

Wi-Fi is popular, as is the 2.4 GHz frequency band on which it and other technolo-

gies like Bluetooth and Zigbee operate. However, many interference sources and over-

crowding on this frequency make these technologies less attractive. Z-Wave and In-

steon, on the other hand, operate on bands with 908 MHz and 915 MHz center fre-

quencies, respectively. However, Z-Wave has a complicated routing protocol, whereas

Insteon simulcasts its messages, which means more RF signals can be exploited in an

Insteon network.

RSS DfP systems work because the human body attenuates radio signals. The 2.4

GHz band is often used for DfP because the human body contains about 70% water, and

the resonance frequency of water is 2.4 GHz [8, 11, 18, 19]. However, the human body

also attenuates other frequency signals, including the 915 MHz signal at approximately
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Table 1. Comparison of some home automation technologies for DfP applications

Technology Freq. Band Pros Cons

Sensors Varies
- small
- low unit cost

- limited use and capability

Cameras
Wi-Fi

(typically)

- capable of detection and
localization of stationary
and moving targets

- privacy concerns
- computational costs
-requires LOS

Wi-Fi
802.11

2.4 GHz
- very common
- can send large data

- interference
- high power consumption

Bluetooth
802.15.4
2.4 GHz

- consumes low power
- intrinsic RSS capability

- short range
- mainly device-based approaches

Zigbee
802.15.4
2.4 GHz

(typically)

- low cost
- short delay
- low power consumption

- only 10 m obstructed range

Z-Wave 908.4 MHz - available documentation - complex routing

X-10 Powerline
- slow
- limited speed
- high installation costs

Insteon
Dual-band

915 MHz (RF)
136 MHz (PL)

- affordable
- simulcasting
- available documentation

- no intrinsic RSS capability

0.3-0.5 dB per mm of tissue [50].

The 915 MHz band is one of the bands used by Zigbee technology, but Zigbee devices

more commonly prefer the 2.4 GHz band. This and the greater availability of literature

on Insteon technology makes Insteon more promising as a network to exploit.

2.5 Insteon Devices

Section 2.4 compared different home automation technologies and argued for In-

steon because it does not operate on the 2.4 GHz frequency band that sees a lot of

interference, is capable of simulcasting, and is a simple-concept technology with vast

and readily-available documentation. In fact, the information is this section is largely

from Insteon documents [51–53]. This section discusses the Insteon technology more
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in-depth with a focus on Insteon communication protocols, which determine their ca-

pabilities. Familiarization with the protocols will help formulate an approach for de-

ploying an RSS-based DfP system on the Insteon home automation network.

2.5.1 Intra-network Communication.

Insteon uses both PL and RF for communication [51]. As previously established,

the focus of the research will be on the radio side, but understanding both protocols is

important. The Insteon protocols for communicating between Insteon devices over PL

or RF change slightly. Thus, only Insteon RF devices communicate with other Insteon

RF devices, and only Insteon PL devices communicate with other Insteon PL devices.

Dual-band Insteon devices capable of both RF and PL communication use both pro-

tocols, but separate the two media. This is useful when PL signals originate on the oppo-

site PL phase from the receiver, which would cause the signals would be strongly attenu-

ated, but a single dual-band device installed on the PL phase can bridge the message to

RF. If a message is relayed to another device, then two things can occur. If the message

is received on the PL, then the device will relay the message on RF before relaying it on

PL in the next time-slot [51]. If the message is received on RF, then it is relayed via PL in

the next time-slot and then immediately relayed via RF. This allows re-synchronization

at the earliest opportunity [51].

Power line communication describes the movement of electrons across a PL. In most

North American homes, these power lines are typically two-wire 110 VAC lines con-

nected at a main electrical junction box. On the physical layer, the Insteon PL protocol

operates using the 131.65 KHz frequency band with a BPSK modulation [51]. PL mes-

sages are broken up into five or eleven packets [52]. Insteon claims that over the PL,

Standard messages take 50 ms to send, while Extended messages take 108.33 ms.

Insteon RF physical layer communication operates at a 915 MHz center frequency
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using FSK modulation [51]. The instantaneous bandwidth at this frequency is 3.84 GHz.

The sensitivity of the communication is -103 dBm with a range of up to 150 feet of un-

obstructed line-of-sight. Over RF, messages are not broken up into packets due to faster

messaging. Insteon claims that it takes 2.708 ms to send a Standard message and 5.625

ms to send an Extended message. Since zero crossings occur every 8.333 ms, either mes-

sage can be sent during one PL half-cycle.

Despite these differences, both Insteon protocols have a common, general frame-

work, including their message structure and their message repeating, signaling, and

simulcasting features.

Message Structure.

Two types of Insteon messages exist: the 10-byte Standard message and the 24-byte

Extended message [51]. The fields for both include a source address, a destination ad-

dress, flags, command bytes, and a cyclic redundancy check (CRC) byte for message

integrity. The Extended message additionally contains fourteen bytes for User Data,

which is used for downloads, uploads, encryption, and other advanced applications.

Both message fields are displayed in Table 2.

The source (‘From’) address is the device ID of the originator node. The destination

(‘To’) address can be the destination node’s device ID for a Direct message, the device

type, sub-type, and firmware version for a Broadcast message, or the group number for

a Group Broadcast message [52].

The ‘Flags’ field has a three-bit message type (the left-most bit is Broadcast or Not-

Acknowledge (NAK), followed by the Group flag, the Acknowledge (ACK)) flag, a one-bit

extended flag (0 for Standard messages), a two-bit ‘Hops Left’ field counted down on

each transmission, and a two-bit ‘Max Hops’ field [52].

Broadcast messages contain general information with no specific destination and
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Table 2. Insteon message fields [51]

Insteon Standard Message (10 Bytes)

3 Bytes 3 Bytes 1 Byte 2 Bytes 1 Byte
From Address To Address Flags Command 1, 2 CRC

(a) Standard

Insteon Extended Message (24 Bytes)

3 Bytes 3 Bytes 1 Byte 2 Bytes 14 Bytes 1 Byte
From Address To Address Flags Command 1, 2 User Data CRC

(b) Extended

Table 3. Possible flag bytes for Insteon messages [51]

Bytes Description

0xC# Group Broadcast
0x4# Direct Group Cleanup
0x6# Direct GC ACK
0xE# Direct GC NAK
0x8# Broadcast
0x0# Direct
0x2# Direct ACK
0xA# Direct NAK

are used extensively during device linking. Group Broadcast messages are directed to

linked devices in a group. Direct messages are point-to-point, and ACK responses are

required for reliability. There are no ACKs or NAKs for Broadcast or Group Broadcast

messages. However, after a Group Broadcast message is sent, the origin node sends a

Direct ‘Group Cleanup’ message to each member of the group individually and waits

for the individual acknowledgements [52]. All possible flag codes are given in Table 3.

The octothorps (‘#’) indicate an unknown nibble from message re-transmission flags.

Message re-transmission is described in more detail in this section.

The ‘Command’ field consists of two possible commands, but some functions only

require one command. The second command may be ignored or may contain processed

information. Some commands relevant to this research are listed in Table 4.
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Table 4. Example Insteon command codes and message bytes [51]

Cmd1 Cmd2 Description

0x11 Group No. or On level Light ON
0x12 Group No. or Ignored Light ON Fast
0x13 Group No. or Ignored Light OFF
0x14 Group No. or Ignored Light OFF Fast
0x10 0x00 ID Request
0x19 Depends Light Status Request

The CRC is first computed by the transmitting device. A receiving device computes

its own CRC of the message and compares it to the one in the message field [52].

Message Repeating in Insteon Peer Networks.

Insteon devices act as peers able to send, receive, or relay messages [46]. They can re-

peat messages to relay the message to a node out of range or to re-transmit the message

due to non-acknowledgement. This is particularly useful in situations where devices are

out-of-range or their signals are too attenuated to receive messages from the originating

device. This process may need more than one intermediate node and have more than

one path, but these allow for higher probability that a message is successfully received

at the destination node.

Re-transmissions occur only in direct messaging, when the origin device fails to re-

ceive an acknowledgement from the destination node about the original message [52].

In such cases, the origin node will resend the message up to five times. This is separate

from repeating, so the node can send out even more messages.

Message relay, or hopping, occurs naturally in the simulcasting network. In order to

prevent network saturation, only up to three hopping repeats are allowed [52].

The records of repeating messages are kept in the Max Hops and Hops Left fields of

the Flag field (its bottom nibble) [52]. Message originators often set the two fields equal

to each other. If Hops Left is non-zero, the device will repeat the message. When a mes-
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sage is received with a Hops Left value of zero, the message is not relayed. Destination

nodes do not relay messages designated to them.

Every time a message failed because it took more hops than the number in Max

Hops, then this number increases up to the limit of three [52]. Therefore, a message

always hops at least once, with at most four hops. After five retries, if the destination

node’s acknowledgement does not arrive at the origin, then this is noted. As a result,

Insteon suggests that it is good practice to unlink devices from the network when phys-

ically removing them to avoid unnecessary message re-transmission.

PL-connected Insteon devices know when messages are not received due to being

tied to a universal clock–the zero-line crossing [52]. A powerline cycle is 1/60 Hz. A

time-slot is six or thirteen PL half-cycles for Standard or Extended messages, respec-

tively. During a single time-slot, a message can be transmitted, re-transmitted, or ac-

knowledged.

According to ref. [49], Insteon devices send out four different signal bursts. The dif-

ference is characterized by their duration (34, 84, 134, and 184 ms). It is not clear when

or why these different signals are sent out.

Simulcasting and Signaling.

Data is transmitted with the most significant bit sent first. Wait times after send-

ing PL messages allow RF devices to re-transmit a message. Data in Insteon messages

do not route. Instead, Insteon devices simulcast with reference to a global clock–the

PL zero crossing. Simulcasting is when Insteon devices send messages out even when

other devices may be transmitting. As a result, concerns of cancellation are “practically

impossible” according to Insteon, because they require two messages to be absolutely

180 degrees out of phase with the same amplitudes.
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2.5.2 Internet Communication.

Software Application.

Few Insteon devices are designed to be Internet-enabled, but the Insteon Hub can

connect a typical network of Insteon devices to the Internet. As its name implies, the

Insteon Hub acts as an Insteon-to-Ethernet bridge, connecting a network of Insteon de-

vices to the home Internet. This allows, for example, a user to use a Wi-Fi-connected app

on their phone to turn the living room light on instead of manually pressing the button.

The app interfaces the user to the Hub, and allows any number of devices to connect

to the Insteon network. Scheduling is available, alerts can be sent via push notifications

or email alerts, and camera footage and control are available. But while most users use

the app, the modem located in the Hub has a serial communication protocol with a

specific command syntax.

The command syntax is a URL: <ipaddress>/X?YYYYY=I=X, where ‘X’ is a number

(‘0’ if short command, i.e. does not include destination and flags or ‘3’ if a full com-

mand); ‘YYYYY’ is the command in bytes; and the suffix is always ‘=I=X’ [53]. The com-

mand is not limited to five characters as this example suggests. To better understand

this, the Uniform Resource Identifiers (URIs) for some device control commands are

presented in Table 5. Also, the URI command to view the Hub’s buffer is <ipaddress>

/buffstatus.xml, while the command to clear the buffer is <ipaddress>/1?XB=M=1.

2.5.3 Security and Exploitation Potential.

Network security for Insteon devices is claimed to be maintained through Linking

Control and through Encryption within Extended Messages [51]. Linking Control is en-

forced by requiring physical possession of devices and masking non-linked network traf-

fic for messages relayed outside the network. Insteon devices do not act on commands

from unlinked devices. Linking devices requires two options: either the user physically
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Table 5. Insteon serial communication URI examples for control commands [53]
Command Cmd1 Cmd2 URI Example & Explanation

On 0x11
Group No. .../3?0262347cfd0F11FF=I=3
or On level Increment brightness to On level 0xFF (highest) for device 34.7C.FD

Fast On 0x12
Group No. .../0?1205=I=0
or Ignored Immediately turn on all devices in group 05

Off 0x13
Group No. .../3?0262347cfd0F1300=I=3
or Ignored Turn device 34.7C.FD on to 0xAA brightness immediately

Fast Off 0x14
Group No. .../0?1305=I=0
or Ignored Instantly decrease brightness to Off for all devices in group 05

Start Dim/Brt 0x17
01 = bright .../3?0262347cfd0F1701=I=3
00 = dim Enter brightening phase for device 34.7C.FD

Stop Dim/Brt 0x18 Ignored
.../0?1802=I=0
Cancel phase

ID Request 0x10 0x00
.../3?026240506D0F1000=I=3
Request device 40.50.6D to send device identification details

Status
0x19 Depends

.../3?02623966990F1900=I=3
Request Request device 39.66.99 to send On-level of light in Cmd2

presses a button on the device or the user must read the device address from the label on

the device and manually enter it when prompted. Additionally, Insteon devices can con-

nect outside the Insteon network with bridges, and security is maintained by masking

the two high-bytes in the address fields of messages unless the traffic is from an Insteon

device already linked or from a device that already knows the address.

Exploiting a home automation network is important because a home automation

network is pre-existing and functions regularly, with signals already being communi-

cated across the network ready to be captured for RSS readings. With no need to install

a DfP-specific network, the elimination of costs is a major factor.

Unfortunately, Insteon devices do not collect or transmit messages containing the

signal strengths of their received signals. A crude indicator of RSS could be monitor-

ing dropped packets, but this would be difficult to exploit given Insteon’s simulcasting

and message relaying functions. Therefore, a cheap alternative should be sought for the

purposes of this research. Note that other than the network security details for the In-

steon network presented above, no Insteon documentation exists concerning security,

especially for Insteon Hubs and the associated software applications.
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2.6 Summary

Indoor, radio-based, DfP techniques are low-cost, perform covertly, and can be in-

stalled on a WSN to detect changes in the environment and approximate the target lo-

cation passively, without requiring any devices to be attached.

Measuring RSS is preferred for DfP techniques because the measurement is easy to

measure and the signals already exist in wireless home automation networks, which

lowers costs. For one-receiver, RSS-based DfP detection, the baseline signal compari-

son approach is a simple approach. For RSS-based, multiple-receiver DfP localization,

the probabilistic fingerprinting approach outperforms the deterministic approach and

can be used for networks with fewer nodes, as is the case in home automation networks.

Since this research plans to exploit a home automation network’s nodes for DfP detec-

tion and localization, the centralized approach is attractive because it allows all receiv-

ing nodes to share information, thereby increasing accuracy.

Insteon technology is chosen among the home automation technologies because of

its simulcasting feature and the availability of papers detailing its technology. However,

there is the concern that Insteon devices are not capable of recording RSS. A cheap alter-

native should be sought for the purposes of this research. Also noted is that no Insteon

documentation exists concerning security of Insteon Hubs and the associated software

applications.
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III. Methodology

The goal of the research is to provide a proof of concept for achieving DfP detection

and localization through the exploitation of a home automation network’s RF signals. At

minimum, the proof of concept involves demonstrating that the attenuation from hu-

man presence of a selected home automation network’s signals can be used in detection

and localization. Successful detection and accurate localization of a human target using

a network of these nodes are also sought.

Three experiments are planned to establish this proof of concept. First, success-

ful detection of human presence in a room with a simple one-transmitter, one-receiver

setup is planned. Second, accurate cell-based localization of a human target in a mul-

tiple receiver setup using fingerprinting techniques is planned. Finally, the localization

system is moved to other rooms to test for robustness despite varying room setup.

Before these experiments can be carried out, preliminary work must be conducted.

Exploitation of the Insteon network for this research physically involves the monitoring

of the Insteon RF messages for RSS, but Section 2.5 pointed out that Insteon devices

do not collect or transmit RSS, so an alternative must be developed. The methods for

detection and localization must also be developed before deployment.

Therefore, the approach for establishing a proof of concept is to first undergo pre-

liminary work establishing the methods for exploiting the Insteon home automation

network and for conducting the detection and localization. Afterward, the three pri-

mary experiments will be conducted to demonstrate success and accuracy of an RSS-

based DfP system that exploits a home automation network’s RF communications. This

chapter details the assumptions, equipment, experimental approach, evaluation met-

rics, and environments used in developing and verifying the proof of concept.
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3.1 Assumptions

The assumptions below apply to the entire proof of concept system in order to limit

the number of factors and variables to consider and to focus instead on just establishing

a general proof of concept.

Assumption 1 Height is insignificant and all components are at comparable height.

Assumption 2 There is negligible variability in how human targets of different sizes at-

tenuate signals.

Assumption 3 The network to be exploited has enough transmitters to send signals across

the entire area of interest.

Assumption 4 The home automation devices are able to transmit and receive in any di-

rection. Receiving nodes are also able to receive in any direction.

Assumption 5 Only one person can be in the area to be detected or localized at a time.

Assumption 6 Localization of a target within a cell of space provides sufficient precision.

3.2 Equipment

The proof of concept is a system of nodes capable of detecting signal strength and

of sending this information to a database for processing. The system should have af-

fordable hardware, have low installation costs, and be unobtrusive and inconspicuous.

The processing of data should happen quickly with alerts to detection and localization

visibly printed somewhere. This section presents all the devices and related materials

used in the research to form the RSS DfP detection and localization system for the proof

of concept.
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3.2.1 Insteon Home Automation Network.

A home automation network is needed because its RF signals are the focus of ex-

ploitation by the system. As discussed in Section 2.4, the Insteon network is used in this

research mainly because it transmits on the less-frequently-used 915 MHz band. Let an

Insteon network be comprised of an Insteon Hub and any number of Insteon RF devices.

The Insteon Hub (model no. 2245-222) is a central command device for Insteon net-

works. As discussed in Section 2.5.2, the Hub connects the Insteon network to the Inter-

net. It is also a dual-band device. All Insteon devices have their own ID, and that of the

Hub used in this research is 39.21.82. The Windows Store version and version 1.9.8 of

the Android software application, “INSTEON for Hub,” were used in preliminary work

and for network setup.

Most other Insteon devices are just dual-band devices with the same basic capa-

bilities. Without loss of generality, the Insteon Dimmer Keypad 6-Button (model no.

2334-232) acts as other devices in the Insteon network. This is a popular smart device

often installed in place of a standard wall switch and which can link other devices in the

network.

The Keypads used in this research are modified for portability; they are installed in a

PVC outlet box with a two-gang wall plate (see Fig. 5). The Keypad sits in one gang and

a duplex outlet sits in the other. Power is supplied by a six-foot outdoor power cord that

connects to a typical outlet. The unique IDs of all six Keypads used in this research are

listed in Table 6.

For the purposes of this research, all Insteon devices are considered transmitters.

The Hubs are labeled in diagrams by an ‘H’ or ‘TX’. Keypads are also positioned with

receiving nodes to simulate a future development where these devices have DfP capa-

bilities. For purposes of this research, the assignment of Keypads to a general number

and the assignment of Keypads to groups for Group messaging are shown in Table 6.
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(a) Hub (2245-222) (b) Dimmer Keypad 6-
Button (2334-232)

Figure 4. Insteon devices used to comprise an Internet-enabled home automation net-
work

Figure 5. Insteon Dimmer Keypad encased in PVC outlet box with additional outlets

Table 6. Keypad IDs and assignments (‘x’ is ‘belongs to’) for Group messaging

Group No. (Firmware-designated No.)
No. Device ID 2 (05) 3 (06) 4 (07) 5 (10) 6 (11)

1 34.7C.FD x x x x x
2 34.E0.2A x x x x x
3 40.4D.DF x x x x
4 40.50.6D x x x
5 39.66.99 x x
6 39.45.65 x
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3.2.2 Data Collection and Processing System.

Any data collection and processing system (DCPS) should be comprised of RSS re-

ceivers, a location to store the database, and a processor for applying the detection and

localization methods. Ideally, the DCPS utilizes the same resources as the home au-

tomation network devices. However, Section 2.5.1 discussed how Insteon messages do

not have a field for carrying RSS indicators (RSSI) that can be used for this research.

The proof of concept only seeks to establish that exploitation of the home automation

network is possible for detection and localization in hopes of future joining of the sys-

tem with existing home automation devices. Thus, this proof of concept must have an

alternate method to detect RSS.

This alternative could be RSS receivers capable of collecting 915 MHz signals and

of connecting to a processing database. Software-defined radios (SDRs) are such de-

vices. As a result, the nodes used in this research are NooElec NESDR Mini 2 SDR USB

receivers, which are light-weight, low-cost, modified USB dongles with SDR capabili-

ties [54]. The nominal frequency range of the receiver is approximately 25-1750 MHz,

which includes the Insteon RF frequency. The instantaneous bandwidth is 2.4 GHz

(nominal) with a maximum of 3.2 MHz (Insteon has a 3.8 GHz instantaneous RF band-

width). These receivers also have MATLABr support, allowing for real-time wireless sig-

nal processing. The devices can also be equipped with a telescopic monopole antenna

with a meter-long cord (Figure 6).

Because they are USB devices, the receivers connect easily to a computer that can

act as the database and processing unit. For simplicity, a laptop is used. To allow more

receivers to connect to a single laptop, a USB hub is connected to the laptop. USB ex-

tenders are also used to position the receivers across the room.

However, it should be noted that in a truly deployed scenario, the receivers would be

the actual home automation devices themselves and thus not need to be extended or

49



Figure 6. NooElec receiver and antenna used for data collection

connected through wires. As a result, the devices would be able to transmit their results

wirelessly (or in Insteon’s case, either through the PL or over RF) to the database and

processing unit. The processing unit (e.g. the Hub) would then collect these signals and

perform the necessary algorithms for detection or localization.

Therefore, the DCPS for this proof of concept consists of NooElec NESDR USB re-

ceivers and a laptop. The DCPS may be referred to as the “receiving unit” or the “receiv-

ing system.” The NooElec receivers are referred to as “receivers” or “nodes”, which are

not to be confused with the Insteon devices. In diagrams, a node is labeled as ‘RX’.

3.2.3 Miscellaneous.

In lieu of actual human targets, foam blocks are used for simplicity. Specifically,

ECCOSORB® AN-79 blocks (Figure 7) are used as an alternative to human targets. Each

foam block is a 2 ft x 2 ft (0.61 m x 0.61 m) square block of 4.49-inch (11.4-cm) width.

They consist of carbon-treated polyurethane foam treated and absorb microwaves rang-

ing from 600 MHz - 40 GHz [55]. The number of foam blocks estimated to simulate

human attenuation is one. Two blocks will be vertically stacked to simulate a human

body. The terms “target” and “human” in this research are interchangeable with the

foam blocks.
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Figure 7. Section of ECCOSORB® AN-79 foam block

3.3 Methods and Evaluation Metrics

Two main types of experiments are conducted in Chapter V: detection with a simple

setup and localization with multiple nodes. The localization experiment is divided into

two sub-experiments, which are introduced in the next section. This section presents

the experimental approach and evaluation metrics for detection and localization using

the proof of concept’s RSS-based DfP system.

3.3.1 Detection with a Simple Setup.

Concept and Approach.

The minimal approach to establishing the proof of concept is to perform detection

using a tripwire configuration. This consists of only one transmitting device and one

receiving node with no obstructions between them. When the devices are communicat-

ing, RF signals exist. If a human subject stands between these two devices, then their

presence should disrupt the RF field by absorbing and/or reflecting the signal. As a re-

sult, the signal strength received at the receiving node should be less than when there

was no target between the devices.
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This attenuated signal is the basis for the tripwire detection experiments conducted

in Section 5.1. If the baseline signal for when there is no target is known in addition

to knowing the event signal for when there is a target, then a threshold can be used to

perform detection. During detection, if the collected RSS falls inside this threshold, then

a detection event has occurred. This method, the baseline threshold comparison, was

introduced in Section 2.2.2.

The experiment for simple-setup detection is split into two cases: detection at the

midpoint and detection along the LOS. The first case assumes that the human only ap-

pears in the middle of the setup. This is a prefatory case that does not require the system

to factor in the target’s distance from either device or from the LOS. If successful, this

experiment can establish a single signal attenuation value and show that the basic de-

tection model functions.

The second case expands on this and takes into consideration how the signal atten-

uation changes as the target gets closer to the source or the receiver while remaining on

the LOS of the two devices. It is not expected that detection using this method is suc-

cessful all along the LOS; e.g, when the target is close to either device, the signal may be

too attenuated by the target to reach the receiving node. Therefore, this experiment can

demonstrate the accuracy of the tripwire detection model and also investigate the effect

of distance along the LOS on signal attenuation.

Further cases, including that of detection outside the LOS, are a problem better an-

swered with localization using multiple receivers (see Section 3.3.2).

Variables and Equations.

For detection in general, the response variable is the mean RSS, R, or the single RSS

value, R, both of which are measured in dB. R is calculated using the following equation:

R = 20log10

∣∣ρ∣∣ (11)
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where ρ is the relative amplitude of the signal. In the case of midpoint detection, the

control variable is target presence, which is a Boolean variable denoted by subscripts b

for no presence (baseline) and e for presence (event). The mean RSS for when there is

human presence, Rb , and for when there is not, Re , are compared for signal attenuation

and threshold calibration (see Definition 1 below).

LOS detection has two control variables: human presence and the distance from the

Hub. This distance, d , is a discrete variable belonging to a set of distances predeter-

mined in the environment setup in Section 3.4.1. Mean RSS comparisons for signal at-

tenuation levels and threshold calibrations occur at each d . Multipath and other effects

are assumed to be negligible in the detection experiments.

Definition 1 In a particular setup, the mean signal attenuation, Ra(d), of a target at a

distance, d, along the LOS is the difference between the mean RSS for when there is no

target present, Rb , and that for when the target is present, Re (d).

Ra(d) = Rb −Re (d) (12)

Both Rb and Re are taken during calibration and provide the basis for the detection

threshold. Assuming that the signal attenuation is statistically significant (i.e. not sta-

tistically equal to zero), a range for the threshold, δr (d), can be constructed. The upper

threshold separates baseline RSS from event RSS to determine detection, and the lower

threshold is used to reduce false detection from outlier RSS not due to attenuation.
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Definition 2 The range of the detection threshold, δr (d) = r+(d) - r−(d), for distance d is

determined using the following definitions for the upper and lower thresholds:

r+(d) = min
(
Rb − sbσb(d),Re (d)+ seσe (d)

)
(13)

r−(d) = Re (d)− seσe (d) (14)

where σb(d) and σe (d) are the standard deviations of the RSS values, and sb and se are a

positive real number calibrated experimentally.

Then, during observation, the event of detection is defined as follows:

Definition 3 The event that a target is detected occurs when the measured R(d) is within

the calibrated threshold for that d; i.e., at d, the detection event occurs when

r−(d) < R(d) < r+(d) (15)

For example, if at d = 2, the system calibrated Rb(2)±σb(2) = 50±2 dB and Re (2)±
σe (2) = 45± 1 dB, the Ra(2) = 5 dB. Also, if sb = 1 and se = 1, the threshold would be

(r−(2),r+(2)) = (44,46) dB. An RSS of R(2) = 47 dB would not be a detection event, but

R(2) = 45 dB would. But if sb = 3 and se = 2, the upper threshold would be r+(2) = 44 dB.

The method is also depicted in Figure 8.

Evaluation Metrics.

In the detection experiment, several results appear and are evaluated. One of these

is Ra . To compare the event signal against the baseline signal and determine that the

signal attenuation calculated using (12) is significant enough to perform detection, a

one-tailed, paired t-test is used. Several paired collections of Rb and Re are collected for

this.
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Figure 8. Flow chart depicting the detection method

Metric 1 The significance of the signal attenuation level is determined using a one-tailed,

paired t-test. Let X D (d) = Ra(d) = Rb −Re (d) for some distance, d. The test hypotheses

are:

H0 : X D = 0

HA : X D > 0

This t-test is performed in MATLABr using the function

ttest(R_o,R_e,’tail’,’right’)

where R_o is the vector containing all Rb and R_e is the vector containing all Re (d).

In cases where detection can be performed, the null hypothesis should be rejected

at α = 0.05; i.e., Rb is significantly larger than Re (d), and their difference is a significant

signal attenuation level. All Ra(d) will be presented in a table and an error bar chart. If

these levels are significant, then detection thresholds can be calculated. The thresholds
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for each d will be presented side-by-side in an error bar chart. This will help visualize

the calibrated thresholds for comparison and to qualitatively predict performance of

detection.

If paired calibrations are not necessary, then the one-tailed, unpaired t-test can be

used to verify that Ra(d) is statistically significant.

Metric 2 For unpaired calibrations, the signal attenuation at distance d is significant if

the p-value is small in an unpaired t-test. Let X 1 = Rb and X 2 = Re (d). Assuming that

the true variances of Rb and Re (d) are equal, then the test is conducted as follows:

H0 : X 1 −X 2 = 0

HA : X 1 −X 2 > 0

df = n1 +n2 −2 (16)

sp =
√

(n1 −1)s2
X1

+ (n2 −1)s2
X2

df
(17)

t = X 1 −X 2

sp

√
1

n1
+ 1

n2

(18)

After the t-statistic is computed, the following MATLABr command can be used to calcu-

late the p-value:

1-tcdf(abs(t),df))

The null hypothesis should again be rejected based on α= 0.05.

In addition to these calibration results, the other results appear when actually con-

ducting the detection experiment. Two evaluation metrics are used for evaluating the

detection system: the probability of detection, PD , and the probability of false positives,

PF . The goal is to have the probability of detection as close to 100% as possible and the

probability of false positives as close to 0% as possible.
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Metric 3 The probability of detection, PD is the likelihood that the system correctly detects

a target.

PD = P (Detection Noted | Target Present) (19)

= # of detection noted when the target is present

# of total trials when target is present

Metric 4 The probability of false positives, PF , is the probability that the system incor-

rectly identifies a measurement as an event even though there was no target present.

PF = P (Detection Noted | Target Not Present) (20)

= # of no detection noted when the target is not present

# of trials when target is not present

Both of these metrics will be presented in a table for comparison of different d . Each

distance is tested independently. The threshold parameters sb and se are determined

based on PD and PF , and a ROC graph will present the findings of this investigation.

3.3.2 Localization with Multiple Receivers.

Basic Concept and Approach.

Localization is a more practical expansion of detection in that it involves a larger

area and approximates a target’s location rather than just notes presence. Instead of

one-dimensional LOS detection, localization is a two-dimensional problem. As a result,

this problem benefits from multiple receiver nodes stationed around the area of inter-

est. Each node in the area of interest collects its own RSS and computes the mean RSS

over a period of time. Since the nodes are in different locations, each one estimates the

signal strength in the room differently. For different target locations, these different val-

ues from each node can be stored in a database, which can then be used to match an
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observed RSS to select the probable location of a target. This is known as fingerprinting,

a topic introduced in Section 2.2.3.

Fingerprinting is an expansion of the baseline comparison that first calibrates a map

containing unique signatures for various points from various nodes and then compares

the raw data to classify the location. With home automation, the areas of interest are not

pin-point locations, so the cell-based method discussed in Section 2.2.3 is an adequate

approach.

In the offline phase, the area of interest is divided into cells. The location of both

home automation devices and receiving nodes are not used in this method, but in this

research, the receiving nodes are set on the outer edges of the area of interest (in prac-

tice, devices should be deployed in inconspicuous locations without impeding move-

ment). Additionally, the nodes should be spread out and not clumped together (home

automation devices are typically positioned in such a manner). A human target will be

positioned in each of the cells to be calibrated, and data will be collected from the nodes

to create RSS signatures at each cell. This is the offline data map. In the online phase,

the target is standing at a single location and the observed data from all nodes is col-

lected. To locate the target, this data is matched to the offline data to find the location of

maximum probability.

Variables and Definitions.

The response variable in all localization experiments is also R or R. These are cal-

culated the same way as in (11). The main control variables for all experiments is target

location. The experiment in Section 5.2 additionally has target orientation as a control

variable to evaluate the effect of target orientation on calibration and localization. The

remaining experiments also vary the room setup as a control variable to test the robust-

ness of the proof of concept.
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If the calibration time for detection is determined to produce statistically similar

mean RSS to those of larger periods, then the same can be said for the localization cal-

ibration time. As a result, this is not re-evaluated. Additionally, the signal attenuation

levels are not of importance since thresholds are not used for localization. Instead, lo-

calization begins with the collection of RSS data for each possible target location from

each node. Let there be C cells of interest and N receiving nodes deployed.

Let Re be the (C+1)×N offline data matrix of calibrated mean RSS for target presence

in all C +1 cells (including the case where the target is not present in any cell) from all

N nodes. Let Re (c) be a length-N vector in Re containing the mean RSS values for target

presence in cell c from all N nodes. Let Re (c,n) be the single mean RSS value of the

attenuated signal of a target standing in cell c taken from node n.

Offline calibration is performed as follows: for some time period, T , calibration data

is taken from node n of a target standing in cell c. This value is averaged into Re (c,n).

This calibration is also performed for when the target is not in the area of interest as

Re (0,n). Each possible target location then has N mean RSS values, one from each node,

and this is stored in Re (c). When all data is collected for all nodes and all cells, then this

data is stored in the matrix Re . (See the left-hand side of Figure 9.)

In the online phase, all N nodes simultaneously collect RSS data starting at time t0.

Each node, n, computes and stores the mean RSS over a time period, τ < T , in R(t1,n)

where time t1 = t0 +m ·τ for some integer m. The accumulation of R(t1,n) for all nodes

is R(t1), a vector of size N . Then at some time t1 during which human presence occurs,

a cell in which human presence exists is selected by comparing the observed data vector

R(t1) to each of the Re (c) vectors in Re and finding that cell at which the maximum

probability of match occurs. (See the right-hand side of Figure 9)

The probability of match for a sample at some t1 is defined by the average P-values

calculated using two-sided p-tests comparing R(t1,n) and Re (c,n) for each node.
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Definition 4 To select the most probable target location, cp , for the true location, ctr ue ,

the two-sided Welch’s t-test is used. Since it is unknown whether or not the variance of

the RSS for ctr ue is equal to that for cp , the variances are estimated separately. Letσe (c,n)

and ne (c,n) be the standard deviation and number of steps from the offline collection and

let σ(t1,n) and no(t1,n) be similar variables from the online collection for some n, c, and

t1. Then the two-sided Welch’s t-test hypotheses are:

H0 : R(t1,n) = Re (c,n)

HA : R(t1,n) 6= Re (c,n)

Let s1 = σe (t1,n), s2 = σ(c,n), n1 = no(t1,n), and n2 = ne (c,n). Then the t-statistic is

calculated as follows:

t = Re (c,n)−R(t1,n)

s∆
(21)

where

s∆ =
√

s2
1

n1
+ s2

2

n2
(22)

and the degrees of freedom used in significance testing are

df =
(

s2
1

n1
+ s2

2
n2

)
(s2

1/n1)2

n1−1 + (s2
2/n2)2

n2−1

(23)

Assuming that H0 is true, the Welch’s t-test calculates a p-value that represents the prob-

ability that the observed value is close to the offline value. The MATLABr function for the

t-distribution is again used to find the p-value:

2 * (1 - tcdf(abs(t), df))
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Definition 5 Let P (c,n) be the probability that the observed value is close to the offline

value. Then the selected location cell, cp , at t1 is some c for which the probability of match

for a sample at some time t1 is the maximum; i.e., ∃ c such that

cp = arg max
c∈{0,1,...,C }

(
1

N

N∑
n=1

P (c,n)

)
(24)

But if cp = 0, then no presence was detected.

Figure 9 depicts the localization method.

Evaluation Metrics.

Accuracy, P A is the primary metric for evaluating the localization system. It deter-

mines how many correct selections the system makes. The goal for this value should be

100%, but at minimum, the system accuracy should at least be greater than the proba-

bility of random guessing (1/(C +1)).

Metric 5 The probability of correct localization is the likelihood that the system correctly

selects the true target cell in all c ∈ {0,1, ...,C } (i.e. including the empty case):

P A = # of total correct cell selections

# of total trials
(25)

In addition to accuracy, the system is evaluated by the overall true positive rate and over-

all false positive rate. The goal of the true positive rate is 100% and of the false positive

rate is 0%. These rates are denoted as PD and PF , respectively, and are similar to the

metrics for detection, but are defined with more conditions.
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Figure 9. Flow chart depicting the localization method
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Metric 6 Let D be the event that the localization is successful when the target is in a cell

c ∈ {1,2, ...,C }. Then the overall true positive rate is the probability of D.

PD = P (cp = ctr ue ∈ {1,2, ...,C } | ctr ue ∈ {1,2, ...,C }) (26)

= # of correct cell selections when ctr ue 6= 0

# of trials when ctr ue 6= 0

Metric 7 Let F be the event that localization is incorrect when the target is in the empty

case cell, c = 0. Then the overall false positive rate is the probability of F .

PF = P (cp ∈ {1,2, ...,C } | ctr ue = 0) (27)

= # of incorrect cell selections when ctr ue = 0

# of trials when ctr ue = 0

For a more detailed evaluation of localization, the true positive and false positive

rates are also measured for each possible cell. Each possible location, c, has its own

PD (c) and a PF (c) with similar goals as their overall counterparts above.

Metric 8 The true positive rate for a possible location, c, is the probability that the most

probable selected cell, cp , is the true target location, ctr ue :

PD (c) = P (cp = c | ctr ue = c) (28)

= # of times that cp = c when ctr ue = c

# of trials when ctr ue = c

Metric 9 The false positive rate for a possible location, c, is the probability that the most

probable selected cell, cp , is not the true target location, ctr ue :

PF (c) = P (cp = c | ctr ue 6= c) (29)

= # of times that cp = c when ctr ue 6= c

# of trials when ctr ue 6= c
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3.4 Environments and Scenarios

This section presents the experimental setups of the two main experiments con-

ducted in Chapter V. The simple setup for detection used in the experiments in Section

5.1 is discussed first. The second main experiment is multi-node localization. Setup

2 is used in the first localization sub-experiment in Section 5.2. Setup 3 is used in the

remaining sub-experiments in Section 5.4 and has three cases of varying room types.

3.4.1 Setup 1: Simple Setup in Empty Apartment Room.

For simple detection, the equipment is just one Hub and one receiver. Since the ex-

periment that uses this scenario only attempts to demonstrate proof-of-concept success

of the simplest case, an empty apartment room is used. It is a 10 ft x 10 ft (3.0 m x 3.0 m)

room with an additional 2.5 ft x 4.3 ft (0.76 m x 1.3 m) section (see Figure 10). The walls

are plaster and the floor is carpeted. There are two large, two-pane windows along one

wall and two doors. This room has no furniture or fixtures other than the ceiling fan;

the room is in the exact condition as when a new inhabitant first enters the unfurnished

room. This minimizes multipath effects and reflections that would occur with obstacles.

The devices in this scenario are set up as in Figure 10. Because this is the tripwire

case, the node is set up across from the transmitter. The center of the room with the

devices at the midpoint of either wall edge is selected, but the method should function

in any case. For the experiments in Section 5.1, no other devices should be in the room

in order to maintain the effort of minimizing other effects on the signal, like reflection

from objects. Therefore, the processing unit is located outside the closed door.

The set of distances tested is DH = {1.0,2.5,4.0,5.0,6.0,7.5,9.0} ft (DH = {0.30,0.76,

1.22,1.52,1.83,2.29,2.74} m) and is noted in Figure 10. Midpoint detection is conducted

at 5 ft (1.5 m). LOS detection is conducted at all d ∈ DH . The target should symmetrically

and perpendicularly straddle the LOS to block the direct signal as much as possible.
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Figure 10. Diagram of apartment room without furniture, with one transmitting device
(TX) and one receiving device (RX), and with LOS distances marked

3.4.2 Setup 2: Multi-Node Setups.

To establish that localization is also possible with the proof of concept, the same

empty apartment room is used. Since this is a more practical scenario than the tripwire

scenario, a typical home automation network is set up. Assume that a typical Insteon

network for a single apartment room of this size is one Hub and three Keypads. The

home automation devices are set up typically where a smart light switch or smart outlet

would exist and are spread out across the room. Since the DfP system would ideally be

deployed as a home automation device, the receivers are positioned next to the Keypads

and their units are labeled as ‘N#’. The setup is seen in Figure 11.

Note that the area of interest in the room is only the 10 ft x 10 ft (3.0 m x 3.0 m) square

area. Since multipath effects are not expected to be minimized in localization, the door

is not closed, and the DCPS was located inside the room but outside the area of interest.
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Figure 11. Diagram of Room A including cell division and node setup (H is an Insteon
Hub (transmitter), N# are receiver nodes)

The division of the room was chosen to be 2 ft x 2 ft (0.61 x 0.61 m) cells. These di-

mensions for the cell were chosen to be the same length as the foam block. This resulted

in a total of C = 25 cells, which are labeled in Figure 11.

Additionally, in the first part of the section, the orientation of the foam block wall will

vary as a factor to examine. Four orientations are used and are depicted in Figure 12 with

respect to the orientation of the room diagrams. These target orientations are referred

to as ‘O#’ in the experiments.

3.4.3 Setup 3: Multi-Node Setups in Various Rooms.

To determine the robustness of the proof of concept, the system must be deployed

in rooms with other properties. Three rooms are used in the experiments in Section 5.4.

The number of devices and nodes should not vary in these rooms since they all have the

same number of outlets and light switches. The major difference between these rooms
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(a) O1 (b) O2 (c) O3 (d) O4

Figure 12. Possible foam block target orientations in a cell with respect to room layout

and Room A is the existence of obstacles. Obstacles can absorb and reflect signals to

varying degrees, thus either exacerbating the results or improving them.

Room A: Empty Apartment Room.

Room A is exactly the same as the furniture-less, three-node setup in Scenario 2 (see

Figure 10) and serves as a baseline comparison.

Room B: Apartment Room with Few Obstructions.

Room B is similar in construction materials as Room A, but includes some furni-

ture: an all-in-one desktop, a printer, a desk, two chairs with metal frames, and a few

other smaller objects. The addition of furniture makes this case more similar to a typi-

cal apartment room in which this system may be deployed. So more multipath effects,

reflections, shadowing, etc. are expected. Figure 13a depicts the room setup with like-

nesses of the larger furniture. Additionally, the dimensions of the room are 11.5 ft x 12 ft

(3.5 m x 3.7 m).

Room C: Apartment Bedroom.

Room C is also similar in construction materials as Rooms A and B. However, instead

of mainly metal objects, the furniture in Room C consists largely of absorbent materials

including a queen-sized bed, pillows, stuffed animals, books, and clothes. As a result,

more absorption and attenuation of signals is expected in this room than the others.
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(a) Room B (b) Room C

Figure 13. Floor plans of Rooms B and C including larger furniture items

Figure 13b depicts the room setup with likenesses of the bed and bedside table. The

dimensions of the room are 12.4 ft x 12.9 ft (3.8 x 3.9 m).

3.5 Limitations

The approach towards the proof of concept has been mostly developed now with

assumptions, equipment, experimental methods and evaluation metrics, and testing

scenarios. However, certain limitations still exist. For example, Insteon devices do not

constantly transmit. Without a field of RF signals to exploit, the event of human pres-

ence will be difficult to detect. Also, RSS is not recorded by Insteon devices, so SDR

receivers were chosen as an alternative. However, how these SDRs operate in the proof-

of-concept system is still to be discovered. Therefore, additional preliminary work is

needed before the proof of concept can be deployed.
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IV. Preliminary Work for System Development

The previous chapter presented approaches to testing the RSS DfP detection and

localization system, but additional preliminary work is needed to develop the actual

proof of concept. For example, a way to get an Insteon network to transmit signals to

be exploited must be developed. Therefore, this chapter pursues the development of

a method for generating Insteon messages on a prompt and the development of data

collection and processing algorithms and scripts for eventual detection and localization

in the next chapter. The work in this chapter spans various subjects, including protocol

sniffing, reverse engineering, security analysis, and code development.

4.1 On-Demand Generation of Insteon Message Fields

The proof-of-concept system exploits existing Insteon RF signals in the area of inter-

est. Thus, this system requires the home automation network to transmit signals when it

wants to use detection or localization. As with most home automation devices though,

Insteon devices do not continuously transmit signals. These silent periods are not ex-

ploitable, but it would be prudent to investigate how the proof-of-concept system can

generate these signals when it wants to perform either detection or localization.

4.1.1 Preliminary Investigations.

The goal of this section is to investigate how to generate signals to reduce these non-

exploitable silent periods. There is ideally a method that completely eliminates the silent

period by overriding the Insteon protocol that synchronizes messages on the zero-line

crossing (see Section 2.5.1). However, the reduction of silent period should be sufficient

for purposes of this proof of concept. The reduction of the silent period can be achieved
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by prompting Insteon devices to send messages on demand. Therefore, two questions

are investigated for this section: how to prompt Insteon devices to send messages on

demand and which message to send.

Conditions.

The generation of signals should be on demand for when detection or localization is

desired. In other words, only when detection or localization is about to be carried out

does the signal generation occur. This saves power consumption costs and reduces the

disruption of normal use of the home automation network.

The signals should contain authentic Insteon messages. In other words, actual In-

steon devices should be able to collect and process these messages. If the message con-

tains a command, then the device should also carry out the command. This prevents

the unnecessary use of a device operating on the 915 MHz band without any other pur-

pose. This also promotes the generation of additional signals due to the message relay

protocol discussed in Section 2.5.1.

The generated signals should not alter any device physical state. For example, signals

should not change the light status of a device from ‘On’ to ‘Off,’ change brightness levels,

or put the device into the linking state. This condition should keep the system discrete

and unobtrusive.

The signals should transmit from an Insteon device. In other words, Insteon de-

vices themselves should send out these signals, not a separate-party rogue device oper-

ating on the 915 MHz frequency and capable of crafting their own Insteon RF messages.

Again, this continues the idea that this system exploits an already-existing network of

devices. Also, Insteon devices relay messages only to and from other Insteon devices, so

this condition also increases the number of signals in the network.
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Reverse Engineering the Hub App.

The first investigation attempts to find out how to exploit Insteon devices to send

messages on demand. As evidenced in Section 2.5, information about general Insteon

specifications and design are generously provided, but to generate Insteon signals for

exploitation, the proof of concept needs to investigate non-intended uses and possi-

bilities of the devices and their protocols. In fact, Section 2.5.3 noted that no Insteon

documentation exists concerning security, especially for Insteon Hubs and the associ-

ated software applications. Internet connectivity is a popular avenue for exploiting IoT

devices. Therefore, the Insteon Hub and its app are promising for these purposes.

The user interface of the mobile app is explored first. This method of using the offi-

cial app requires only a device capable of running a version of the “INSTEON for Hub”

app and capable of connecting to the Internet. Using the app showed that response time

is often very slow and irregular between sending messages. Up to four seconds of wait

time were observed since the app waits for a status update from the device and must re-

fresh before another button could be pushed to send another message out. Rarely would

an instant (< 1 s) response occur. Therefore, using the app as it is intended would not

generate enough signals for clear detection and localization using RSS, so more investi-

gation is necessary.

Instead of going through the app to generate messages, finding out how the app

sends commands from the Internet to the Hub could eliminate the long, in-app wait-

ing time. Documentation on the Insteon Application Programming Interface (API) ex-

ists [56]. While the API does say that the commands are sent by HTTP and gives infor-

mation on what commands can be sent, the information is API-specific and requires

items like API keys. According to the Insteon website, getting an API key is reserved for

developers and “strategic partner.” Pursuing this is beyond the proof of concept, but it

is discussed in Section 6.3 for future development. Hence, the investigation continues.
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Mobile apps are often written by developers and contain plenty of information about

how the device functions. Reverse engineering a mobile app allows non-developers to

look at the code and therefore learn more about the app and how it functions. To reverse

engineer the “INSTEON for Hub” app, the same version of the app was downloaded

from APKPure [57]. After extracting the compressed file, the Android Package (APK) was

converted into a Java Archive (JAR) file. Then to display the Java source code of the JAR

file, a Java decompiler was used. The result was an easy-to-read and -navigate source

code with intuitive strings and class names in a search-capable graphical interface.

The main objective of reverse engineering the Hub app was to find out how the app

sends messages to the Hub. Therefore, the keyword ‘send’ was first searched in the de-

compiler. The result was 189 items, but the SmartLincManager class was the most rel-

evant. In the class, commands like sendCommand and sendWebCommand were found. In-

terestingly, a few of the commands had arguments of strings of the same format as the

serial communication protocol discussed in Section 2.5.2.

The search query ‘http’ produced much clearer results in the same class. For exam-

ple, there were strings that created an HTTP GET message with an Authorization field.

There was also a command, httpRequest, that asked for a string of the Hub address, a

double of the port number, and a string of the command. Cases for various commands

were also seen. Based on these findings, the SmartLincManager class sends messages

from the app to the Hub using the serial communication protocol.

Therefore, the approach to pushing Insteon devices to send messages appeared to

be to use the Insteon Hub and prompting it to send messages by interfacing with it

through its serial communication protocol. Such a task is simple and can be achieved

using any device capable of establishing a HTTP connection. For simplicity, an Internet-

connected laptop will be used for further investigation of this on-demand message gen-

eration.
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Candidates for a Command to Send from an Insteon Device.

With an idea as to how to prompt Insteon devices to send messages more quickly

than through the mobile app, the next part of the investigation attempts to determine

what type of message would be ideal to send to reduce silent periods. Section 2.5.1 dis-

cussed the protocol for the three different types of Insteon messages. The Broadcast

message is not a candidate, because it is often used for linking devices, which would

disrupt normal use and thus violate one of the above conditions. Device and Group

messages, on the other hand, have more uses.

According to the API, the only valid commands for Group messages are ‘On,’ ‘Off,’

‘Start Dim Up,’ ‘Start Dim Down,’ and ‘Stop Dim’. Direct messages have other possibil-

ities for the different types of devices. For instance, a dimmable device like the Keypad

or LED bulb can be validly sent ‘Get Status,’ ‘Beep,’ or ‘Instant On’ in addition to the

Group commands. The issue with the Group message possibilities is that they all could

violate the physical state alteration condition. ‘Get Status’ is a prime candidate since the

command only asks the device to send back the light status. ‘Stop Dim’ is a secondary

candidate since it only affects the physical state if the devices are currently dimming up

or down, which is not common.

Other than looking at the possible commands, the protocol for either Group or Direct

messages is a factor. With Direct messages, the protocol is short and simple; the orig-

inating device sends out the message, and the destination device receives it and sends

back an acknowledgement. Group messages, however, have a longer protocol; the orig-

inating device sends out the Group messages, then follows up with individual messages

to each of the group members asking for an ACK. Each of the devices then sends back an

ACK. So while the Direct message protocol only sends two messages, the Group message

protocol sends 2G +1 messages, where G is the number of members in the group. This

assumes no repetition, so these numbers are minimums for perfect transmission.
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So while the Direct message has the prime ‘Get Status’ command, it only expects two

messages sent out. And while the Group message can expect 2G+1 messages for just one

command, its best command is ‘Stop Dim,’ which has a small chance of disrupting the

user’s control. Ref. [53] also suggests that ‘ID Request’ is a better example than ‘Get Sta-

tus’ because the response is two messages: an ACK and then a message with the Insteon

ID.

Testing HTTP Serial Communication in a Browser.

Reverse engineering the Insteon app revealed that communication to the Insteon

Hub from the app uses HTTP requests based on the serial communication protocol.

Thus, further investigation into the protocol described in Section 2.5.2 should help de-

sign the HTTP requests for message generation. To investigate, URLs are crafted for

different commands to send through a web browser. Wireshark is additionally used to

sniff the HTTP packets being exchanged.

As previously mentioned, the two commands of interest are the ‘Get Status’ Direct

command and the ‘Stop Dim’ Group command. Since these commands do not create

any visual changes in the home automation network, the Hub buffer is also checked

to verify that the messages are sent and acknowledged. The Hub’s IP address and port

number can be found at https://connect.insteon.com/getinfo.asp. This webpage

checks Insteon’s online database of devices and returns devices that have been found on

the current network until the device changes account ownership or is removed from the

database by manual request. Information on this page includes the link to the Insteon

device, the user’s network IP and gateway, and some Hub device specifics. Based on this

information, the four preliminary URLs to test are listed in Table 7.
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Table 7. URLs for testing the Hub’s serial communication protocol

Description URL

View Insteon buffer http://10.1.0.26:25105/buffstatus.xml
Clear Insteon buffer http://10.1.0.26:25105/1?XB=M=1
‘Get Status’ direct message http://10.1.0.26:25105/3?0262347cfd0F1900=I=3
‘Stop Dim’ group message http://10.1.0.26:25105/0?1805=I=0

To use the URL commands, the request must come from an address on the same net-

work as the Hub. As expected, when the URL to view the buffer was accessed, authen-

tication was prompted and required a username and password. The default credentials

are on the back of the Insteon Hub and seem randomly generated without any database

of possible combinations found anywhere on the Insteon site. These credentials can be

changed by the user with the app, but the app does not force this change. The monitored

HTTP packet showed that the authentication realm is basic protected and that the cre-

dentials are base64-encoded from username:password format. Successful access of the

buffer showed residual data, so the buffer was erased, producing all 0’s. Figure 14 shows

a Wireshark example of the sniffed HTTP packet of a successful attempt at accessing the

buffer.

The first URL command tested was the ‘Get Status’ Direct message. The attempt was

successful; in the buffer was

0262 347CFD 0F1100 06 0250 347CFD 392182 20 00FF

which, according to documentation, is the appropriate output. The buffer is space-

delimited here for better explanation. The first three segments echo the message sent.

The following segments are the response. For the status request of Keypad 1 when

turned completely on to maximum brightness, the response was that the message from

34.7C.FD to 39.21.82 was a Direct message acknowledgement (20) with the response

00FF indicating the status. If the device was off when the status was requested, then that

last segment was 0000.
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Figure 14. Screenshot of Wireshark capture packet containing HTTP GET and all header
fields

Next tested was the ‘ID Request’ Direct message. The attempt was successful; in

the buffer were three different segments: the command echo, the first ACK, and the ID

response.

0262347CFD0F1000 060250347CFD392182201000 0250347CFD0142448F0176

Then was the ‘Stop Dim’ Group message. It is unclear if the attempt was successful;

the buffer was not as expected from the documentation:

0262 000005CF 180006

Other Direct commands, like Status Request, were attempted for Group messages,

but the buffer did not update. These results suggest that only the Direct commands can

be used for the proof of concept. Nevertheless, it would be interesting to see if the Hub

emits a signal for these commands to see if there are other possibilities than what was

written.

Viewing Signal Spectra of Different Commands.

Using the SDR, the spectrum analyzer in MATLABr revealed a lot of information:
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1. The Hub did send out a signal for ‘Stop Dim’ Group messages, and it was one long signal.

Ref. [53] says that certain controllers do not send out a Group Cleanup after this com-

mand.

2. Different signal lengths (like in ref. [49]) were observed even when sending the same com-

mand.

3. Direct messages produced one message, but signal lengths were never as long as that of

the ‘Stop Dim’ Group message.

4. ‘Stop Dim’ Group messages to larger groups did not increase the length of the signal.

5. Valid, visible commands like ‘On’ or ‘Fast Off’ to a group produced more than one signal.

For a group of two devices, one long message followed by two short messages and then a

long message was observed. For a group of three devices, it was long, short, short, short,

long; and so forth for bigger groups. This corresponds with Group Cleanup protocol.

6. Four additional long signals were sent out when sending a visible command to a group

with a missing device.

7. Only one signal was observed when sending a single-message Group command with a

missing device.

8. One long signal was observed when sending Direct commands to a device not plugged in

but still previously linked to the Hub.

9. Three medium-length signals were observed when sending a Direct command to a device

plugged in but not previously linked to the Hub.

10. Five long signals were observed when sending any Direct command to a device neither

plugged in nor previously linked to the Hub.

11. For any command with more than one signal, there are pauses between signals. This is

most likely due to zero-line crossing synchronization.

12. There appears to be a small buffer for messages prompted while messages are currently

sending; after refreshing the URL many times, signals still appeared even after the refresh

stopped.
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4.1.2 Message Generation Script and Test Use.

Appendix A contains the entire Python 2 script for generating Insteon messages to

send RF signals when prompted. The above investigations directed the script to use

HTTP GET requests to prompt the Hub to send out signals. The investigations also

showed that a Direct message to any unlinked device (e.g., 00.00.00) with any com-

mand (e.g., 0x1000) is the best message to send that follows the conditions. With just

one message, five long signals were observed in the spectrum analyzer. This reduces

the number of message generations required, which would have consumed more power

and accrued greater computational costs.

To further lower costs, the minimum number of bytes to send over HTTP is desired.

After trial and error, only two of the header fields from Figure 14 were found to be nec-

essary: Cache-Control and Authorization, in that order. Therefore, the entire HTTP GET

request has the following format:

GET /3?02620000000F1000=I=3 HTTP/1.1\r\n

Cache-Control: max-age=0\r\n

Authorization: Basic <base64 credentials>\r\n

\r\n

where the base64-encoded username:password could change. Credentials are user-

inputted as an argument or found in a file called “prevCreds,” which is not secure, but

not an issue for this proof of concept.

This request is sent through a socket. The socket is connected to the Hub’s IP address

and TCP port and sends the request. If successful, the connection would close such that

one message is sent over one connection.

To get the Hub IP and Port, three different methods were written into the script: file

parsing, user-inputted argument, or parsing http://connect.insteon.com/getinfo.

asp. The script checks a file, “prevHubConnect” for a valid address/port combination.
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Table 8. Arguments for the message generation script

Argument Description

-s –src
Hub IP address and TCP port number as ip:port
Default: checks file then web page

-a –auth
Authorization credentials for Hub as username:password
Default: checks file

-c –count
Number of times to send message
Default: infinite loop

-t –time
Delay in s between sending messages
Default: 0.5 s

This can be bypassed if the script is called with an argument specifying the address and

port. If a valid destination is not found, then the script scrapes the above URL.

The requests are sent in a loop, whose length can also be determined by an argument

parameter. By default, this is an infinite loop that is broken if the process ends. Since

this script is designed to be run as soon as data collection begins, then the process ends

when data collection ends. Alternatively, the argument parameter can designate the

number of messages to send before quitting.

The requests also are time-delayed. The default is 0.5 s, but this can be changed by

an argument as well.

By default, the script finds the Hub’s IP address and port number, retrieves the au-

thorization credentials, and infinitely loops to send the same message over HTTP every

0.5 s. Table 8 lists all the arguments that can be passed into the script and their effects.

Figure 15 presents examples of calling the function and the console outputs. As verified

by the spectrum analyzer, the script generates the same signals as expected from the

investigations.

The script is designed to run from the data collection scripts. Ideally, this process

would not be necessary in a real system. Instead, the devices would have their own pro-
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(a) Default parameters, Hub found on website (b) Changed count parameter, Hub previously
manually set

(c) Set authentication parameter to bad credentials

Figure 15. Examples of console outputs for message generation script

tocol for sending RSSI for DfP detection or localization. However, for the proof of con-

cept, it is sufficient to run the script from a second laptop with an Internet connection

and a Python compiler.

4.2 Data Collection and Processing Algorithms

Ideally, Insteon devices would send RSSI to each other. If this were true, the the

proof-of-concept system would only have to sniff these RSSI. However, it was discussed

in Section 2.5.1 that Insteon messages do not have a field for carrying RSSI. Without this

capability, the system needs an alternative to perform RSS-based DfP detection and lo-

calization. This alternative is NooElec receivers (see Section 3.2). This section discusses

the scripts and algorithms for detection and localization that make use of the SDR re-

ceiver.

All data collection and processing scripts are written in MATLABr because there was

a support package for the NooElec receivers. Separate algorithms are developed for de-

tection and localization because of their different approaches and setups, as discussed

in Section 3.3. However, several aspects should remain the same. One such aspect is

that RSS calculation during data collection is the same in both methods.
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Table 9. SDR configuration parameters for MATLABr collection

Parameter Value

Tuner frequency 915 MHz
Tuner gain 45 dB

Sample rate 2.4 MHz
Samples per Frame 2560

The SDR collects signal data. Table 9 shows the collection parameters set in MAT-

LABr for the SDR. The length of a collection is set by a predetermined simulation time

in seconds. Data from every collected frame is converted into RSS in dB using (11). The

equivalent MATLABr command to convert to RSS from the amplitude collected from the

SDR frame data, z, is:

20 * log10(abs(freqz(z,1,ω)))

where freqz(z,1,ω) is the frequency response of the digital filter andω= 2π x
N , where N

is the frame length and x ∈ [−N
2 , N

2 −1].

Using this method, a frame that collected a 915 MHz signal would have two peaks.

Therefore, for every sample, the largest two values captured in a frame are averaged

together and recorded as the single RSS value, R, along with the time that this frame

was captured. Additionally, the first step collected was observed to always be an outlier,

most likely because of device initialization, and so is ignored for every collection.

4.2.1 Detection with a Single Node.

Section 3.3.1 presented the method for detection in a simple tripwire scenario. There

are two main phases: setup and calibration, and online data collection and processing.

Similar to Figure 8, Figure 16 reflects these phases as well as the algorithm for determin-

ing a detection event during an experiment.
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Figure 16. Flow chart depicting the algorithm for a detection event

Calibration Script for Detection.

The left-hand side of Figure 16 depicts the calibration phase for detection. As men-

tioned in Section 4.1, the message generation script is only able to reduce the silent pe-

riods of the Insteon protocol, not eliminate it. Therefore, the largest difference in the

calibration phase of Figure 16 compared to that of Figure 8 is the inclusion of a silent

period calibration and filter threshold.

Let the s subscript denote a silent period when neither the target nor the 915 MHz

signal is in the area of interest. From a preliminary analysis of the mean silent period

RSS, R s , was much less than either Rb or Re (about 14 dB vs. about 60 dB). However,

single values of Rb (without the target) were observed as low as 20 dB. Such results would

cause a very large standard deviation, and since the method uses a deviation-dependent

threshold for detection, this could form a large threshold with a very high probability of

false positives. Therefore, the silent period needed to be filtered out for collection in

both calibration and online phases.
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However, using the mean, R s , by itself would not eliminate these outlier values of Rb

since R s was less than these observed minimum values of Rb . Another preliminary ob-

servation of the silent period was that the collections sometimes observed a few values

of Rs that were much higher than the mean, ranging from 20-50 dB. Since this max Rs

was still less than Rb , a filter threshold using the average of max values instead of the

smaller mean could be beneficial for reducing outlier data not reflecting typical behav-

ior. At least for detection, this could be very important.

Definition 6 Let maxR s be the average maximum Rs value observed in several collections

of the silent period and σs be the standard deviation of all Rs in these collections. Then

the silent period filter threshold, fs is defined to be four times σs above maxR s :

fs = maxR s +4σs (30)

The detection experiment in Section 5.1 will determine if this filter threshold is suf-

ficient or excessive. Note that localization may not use the same filter threshold since

fluctuations in RSS should not be as big of a concern in fingerprinting as it is for base-

line threshold detection.

In the calibration phase of the script for detection, computing this filter threshold

is the first step. In a real scenario, calibration of the silent period should not need to

occur more than once. Suppressing the network signals for a short period to calibrate

this silent period should not be too much of an inconvenience anyway. Regardless, the

experiments in this research simply calibrate the silent period once, before calibrating

the baseline and event periods.

Baseline and event periods are calibrated for every distance d in the detection exper-

iment. In a real scenario, these periods would need to be re-calibrated every time there

is a large change in the area, such as new furniture. However, that is not a concern for
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providing a proof of concept.

The script for calibration after the silent period filter threshold is computed then

begins calibration of the baseline period. The user is prompted to begin the calibration

and when the process is completed, Rb , σb , and nb are calculated after running all Rb

through the filter threshold. Immediately following this calibration is the event period,

after which Re ,σe , and ne are calculated similarly. In both cases, the message generation

script should already be running, and for the event period, a target should be present at

the d being calibrated.

After both baseline and event periods are calibrated, the mean signal attenuation

level, Ra , is calculated using (12) and the detection threshold is computed using Defini-

tion 2. This threshold is then stored for detection.

Collection and Processing Script for Detection.

The right-hand side of Figure 16 depicts the algorithm for the online phase of detec-

tion. Detection is written to allow for live collection and determination of a detection

event. No RSS values are recorded during detection; instead, every step above the filter

threshold is compared against the detection threshold as per Definition 3.

Due to fluctuations in signal strength, it is not expected that every R for which there

is a target will produce a detection result. Instead, it is more plausible to evaluate the

detection event for a period of time. Let τ in detection be the time period in which a

detection event must occur. If the baseline threshold is breached before this time limit,

then a detection event is reported (Figure 17a). If the live time, t , exceeds τ, then no

detection is noted (Figure 17b).

For the experiment, live collection occurs in a loop for some number of trials. In the

line-of-sight case, the user is also prompted enter a distance d in order to use the appro-

priate threshold. The distance tested is assumed to have been previously calibrated.
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(a) Detection noted (RSS in threshold) (b) No detection noted (timed out)

Figure 17. Examples of live collection plots for detection with baseline threshold range
as dashed green lines

4.2.2 Localization with Multiple Nodes.

The cell-based fingerprinting method is covered in Section 3.3.2. Similar to detec-

tion, there are two main phases, but these are referred to as the “offline” and “online”

phases. Figure 9 in Section 3.3.2 depicted how the localization method works.

Offline Calibration Script for Localization.

In addition to the program-based calibrations, users should also note the cell divi-

sions in the area of interest. Although there is potential for having a room builder that

does this within the system, for this proof of concept, the area of interest is manually

drawn up, with one example in Section 3.4.2. The cells should be labeled consecutively

from 1 to C .

The calibration script first asks for this number of cells so that it can allocate its ar-

rays. The number of nodes, N , is sensed by the program (using sdrinfo) for the same

purpose. Once both arrays are allocated, the script then asks the user to calibrate the

cells, one at a time. During calibration, a user first calibrates the empty case, when there

is no human presence in any cell. After which, a target should be inside the cell while the

signal is being emitted for cells 1 to C . For each case, the program records all Re above

the filter threshold, computes Re (c,n) from each node and stores it into the matrix Re .

85



(It also computes and stores σe (c,n) and ne (c,n).) When all C + 1 cells are calibrated,

live collection may begin.

Online Collection for Localization.

The online phase script is similar to the live collection phase script for detection in

that they are both time-limited programs. However, the fingerprinting method is much

more complex than the baseline comparison method. The system must scan a short

window, τ, of the samples and use the probability-based fingerprinting method in order

to select the probable location of a target. For developmental purposes, the proof of

concept separates live collection and processing from the actual analysis.

During live collection for the proof-of-concept experiments, the script loops for the

number of trials, and the user is prompted to begin each trial. The signals above the

filter threshold from all nodes n ∈ {1,2, ..., N } are collected and processed for mean RSS

as a function of time. For every window beginning at t1 = t0 +mτ, the results are stored

as a vector of R(t1,n) values (σ(t1,n) and no(t1,n) are also included). The vectors from

all trials are then saved for later analysis.

Online Analysis Script for Localization.

In the analysis script, the program loads the saved data from each trial and per-

forms the probabilistic selection algorithm for the windows of samples. If a window’s

recorded values from the N nodes do not probably match the Re (c0) vector, then a cell

c ∈ {1,2, ...,C } is selected as the most probable location of the target, as per Definition 5.

The window time and cell location can both be printed to the console for each localiza-

tion result returned, but these are just stored in arrays for analysis.

A possible difference between this script and the one for detection is that the silent

period filter threshold may be set differently. A big difference is that this script involves
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multiple nodes simultaneously collecting. As a result, the algorithm is slightly more

complicated and the computational complexity is greater. This led to the separation of

the collection and location analysis phases for this proof of concept. Therefore, several

limitations exist for localization as-is, but they are acceptable for a proof of concept.

4.3 Summary

The DfP system requires RF signals to exploit, but Insteon devices produce silent pe-

riods when they do not need to transmit. Therefore, the message generation script was

developed to send these messages over HTTP to the Insteon Hub. Investigations showed

that the Insteon app communicated to the Hub using HTTP requests. As a result, URL

commands were attempted in a browser to verify that this works and to sniff the HTTP

packet of a successful connection. Several different commands were attempted for both

Direct and Group Broadcast messages. Although the Direct message for ‘ID Request’ was

a prime candidate for generating signals discretely for DfP purposes, spectrum analysis

revealed that a more general Direct message to an unlinked or improbably device ID like

00.00.00 always results in five long signals, which reduces the frequency that a connec-

tion must be established for a message to be sent.

Since Insteon devices do not transmit or receive RSSI in their messages, the proof of

concept needed an alternative for collecting RSS values. The result was affordable SDR

receivers that could be integrated into currently-existing devices. Scripts were written to

collect and analyze RSS using these receivers for either detection or localization.

With scripts for message generation, simple setup detection, and cell-based local-

ization written, the proof-of-concept system has been developed and can be deployed

for detection and localization.
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V. Experiment Results and Analyses

This chapter presents results from the deployment of the RSS DfP system in order

to test the proof of concept’s detection and localization capabilities and to evaluate the

performance of the system for future use and development. Section 5.1 presents work

to verify that the target attenuation of the 915 MHz signal is significant for detection and

localization using the system. Results from detection at the midpoint and then along the

LOS of a simple tripwire configuration are also presented. Sections 5.2 and 5.3 contain

experiments seeking to demonstrate that fingerprinting-based localization is possible.

Section 5.4 presents and compares results from localization performance in different

rooms to evaluate the robustness of the system.

5.1 Detection with Simple Baseline Threshold Comparison

The primary question for the proof of concept is whether Insteon devices emitting

915 MHz signals can be used for RSS-based DfP detection. The experiments presented

in this section attempted to answer this question by using the proof-of-concept system

to first establish that the foam blocks, as an approximation of the human body, does at-

tenuate the signal significantly enough for detection. When this was shown, the system

could then be used to perform detection of a target at the midpoint of the tripwire. The

same principles could then be applied for detection of a target located at other points

along the LOS of the two devices.

The experimental setup was discussed in Section 3.4.1 and visually depicted in Fig-

ure 10. Sections 2.2.2 and 4.2.1 explained the methods and algorithms for detection used

in the system.
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Table 10. Results for silent period calibration for detection in Room A

Trial ns R s (dB) Max Rs (dB) σs (dB)

1 854 13.9 22.4 1.5
2 859 13.9 32.5 2.3
3 858 13.9 18.4 1.3
4 857 13.8 40.5 2.6
5 860 13.8 42.2 3.3
6 856 13.7 46.1 2.6
7 862 13.7 28.3 1.6
8 861 13.7 22.5 1.8
9 857 13.9 24.6 1.4

10 873 14.3 49.1 4.6
11 872 14.0 27.7 1.4
12 869 14.2 41.6 3.2
13 876 14.2 44.6 3.0
14 864 14.3 48.7 4.9
15 869 14.6 29.4 1.8

Avg 14.0 34.6 1.6

5.1.1 Signal Attenuation and Calibration at the Midpoint.

The first step to demonstrate that the system functions was to successfully capture

signal attenuation levels at the midpoint in Room A. For analysis, the calibration script

was separated into the three different periods: silent, baseline, and event. First, the

silent period was calibrated to view what ambient noise was picked up by the receiver

nodes. This silent period could then be removed from the other collections. Fifteen

60-second collections were recorded without a signal and without a target present. The

results from all fifteen collections are shown in Table 10.

Approximately 860 steps for each 60-second trial were recorded using the receiver

nodes. The variance was high when a few stray signals much greater than the mean were

detected (e.g. trials 10 and 14). As per Definition 6 in Section 4.2.1, this data was used

to construct a silent period filter threshold. The weighted average of the maximum Rs

among all 12,947 samples was 34.6±1.6 dB. Therefore, the silent period filter threshold
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was such that any values under fs = R s + 4σs = 41.0 dB were ignored in the baseline,

event, and detection period collections to reduce outliers from silent periods.

With fs calibrated, the baseline and event periods were then collected for threshold

calibration. These collections were paired; for each trial, the event period was collected

right after the baseline period. Fifteen trials were conducted for each period, each for

60 seconds. Despite having the same time length of capture as the silent period trials,

these results had only about 370 steps each because of the filter threshold. These results,

along with paired signal attenuation levels calculated using (12), are shown in Table 11.

Figure 18 shows the boxplots summarizing the collected signals from each period for

each trial. The mean signal attenuation level from a single target at the midpoint of

Room A was Ra = 4.0±0.8 dB.

A one-tailed, paired t-test was used to confirm that Rb and Re were significantly dif-

ferent to allow experiments for detection at the midpoint (see Metric 1). The test results

are shown in Table 12. The p-value was less than 0.0001, so the mean difference, Ra , is

statistically significant. This means that detection at the midpoint could be performed.

To avoid needing to pair baseline and event collections in future detection calibra-

tions, the difference of Rb and Re was evaluated and compared against the paired dif-

ference. Over 5537 samples, Rb = 61.1±1.3 dB, and over 5512 samples, Re = 57.1±1.0

dB. This resulted in a difference of 4.0± 1.7 dB. The paired difference was not signifi-

cantly different from this difference of Rb and Re . Therefore, pairing baseline and event

periods would not be required for future detection calibrations.

The calibration values used for computing the calibration filter threshold and the

baseline detection thresholds are summarized in Table 13. For detection at the mid-

point in Room A, the threshold was initially set to 57.1±2(1.0) dB. Statistically, the range

of ±2σe should produce a small PF while still detecting presence, even in a short time

frame for detection.
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Table 11. Results from paired calibration of baseline and event periods at the mid-
point in Room A

Trial
Baseline Period, b Event Period, e

Ranb Rb (dB) σb (dB) ne Re (dB) σe (dB)

1 361 61.1 1.4 367 56.8 0.8 4.3
2 371 61.1 0.8 362 56.8 0.9 4.3
3 363 61.1 1.3 368 55.2 0.8 5.9
4 371 61.1 1.3 370 56.9 1.1 4.2
5 375 61.0 2.0 364 56.9 1.1 4.0
6 367 61.2 1.1 362 57.0 0.9 4.2
7 363 61.2 1.1 359 57.0 0.9 4.2
8 370 61.2 1.1 369 57.0 1.1 4.3
9 372 61.1 1.9 360 57.0 1.2 4.1

10 374 61.2 1.4 363 57.1 1.0 4.1
11 375 61.2 1.4 380 57.2 1.2 4.0
12 364 61.3 1.3 376 57.4 1.1 3.9
13 370 61.0 1.3 379 57.7 1.0 3.3
14 364 60.2 1.3 365 57.8 1.1 2.4
15 377 61.2 1.3 368 58.1 1.2 3.1

Avg 61.1 1.3 57.1 1.0 4.0

Figure 18. Boxplot of paired calibration trials of baseline (red, +) and event (blue, *)
periods
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Table 12. Results from the one-sided, paired t-test of Rb and Re for determining signal
attenuation, Ra , at the midpoint in Room A

hypothesis test result 1 (reject H0)
p-value < 0.0001

95% confidence interval [3.7 dB,∞)
test statistic 20.5743

degrees of freedom 14
mean difference 4.0 dB

standard deviation 0.8 dB

Table 13. Calibration values for detection at the midpoint in Room A

Variable RSS (dB)

Avg. Max Silent RSS (maxR s) 34.6
Std. Dev. of Silent Period (σs) 1.6

Avg. Baseline RSS (Rb) 61.1
Std. Dev. of Baseline Period (σb) 1.3

Avg. Event RSS (Re (5.0)) 57.1
Std. Dev. of Event Period (σe (5.0)) 1.0
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5.1.2 Detection at the Midpoint.

From calibration in the previous section, the detection threshold at the midpoint

was set at 57.1± 2(1.0) dB. A total of 1,000 trials were performed using this threshold.

The target was not present in the room for 500 of these trials, but was positioned at the

midpoint between the transmitter and receiver devices for the other 500 trials. Each trial

collected signals for up to τ= 1 s, which should be an appropriate time frame to allocate

for detection. When detection was noted, the trial immediately terminated. Between

each trial, the program paused for a randomly-generated time of up to five seconds.

The results from all 1,000 trials are presented in Figure 19 and evaluated in Table 14.

True positives were detected throughout the threshold range. While outlier values were

collected, they were not recorded as a detection event. For one-second trials, the prob-

ability of detection was favorable at PD = 100%. All true positive detection events hap-

pened within 0.5 s, which suggests that a one-second interval is sufficient for detec-

tion at the midpoint using the calibration values. The probability of false positives was

PF = 5.6%. Most of these false positives occurred near the upper threshold, which sug-

gests that the threshold range could be lowered in order to achieve a desired, lower PF .

In fact, doing so achieved that very result. Two additional threshold ranges, ±1.5σe

and ±σe , were similarly tested for 1,000 trials (500 with no target present and 500 with

the target at the midpoint) each. Figure 20 presents both histograms of the collected RSS

distribution from these experiments. The probability of detection and the probability of

false positives from all three thresholds are displayed in Table 15. Also, the accompany-

ing ROC graph is in Figure 21.
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Figure 19. Histogram from midpoint detection trials showing the distribution of RSS
collected before trial terminated due to detection event or time out

(a) ±σ (b) ±1.5σ

Figure 20. Histograms comparing RSS distribution from midpoint detection trials with
two other threshold ranges
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Table 14. Contingency table from detection at the midpoint
Target Presence

Yes No Total

D
et

ec
ti

o
n

Yes
500 28

528
100.0% 5.6%

No
0 472

472
0.0% 94.4%

Table 15. Comparison of PD &PF performance of three baseline threshold ranges for
midpoint detection

Threshold PD PF

±2σe 100.0% 5.6%
±1.5σe 99.8% 1.6%
±σe 98.6% 1.0%

Figure 21. ROC graph for midpoint detection performance from varying the threshold
range (points left to right: ±1σ,±1.5σ,±2σ)
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Although±2σe had 100% probability of detection in one-second samples, the±1.5σe

and ±σe thresholds performed similarly at PD = 99.8% and 98.6%, respectively. These

small differences are insignificant. However, by decreasing the size of the threshold, the

changes to the probability of false positives were more significant (PF = 1.6% and 1.0%,

respectively). Therefore, the ±1.5σe threshold was preferred over the ±2σe threshold for

the smaller PF and over ±σe for the higher PD . This threshold parameter (se = 1.5) was

used in the rest of the detection experiment.

5.1.3 Line-of-Sight Calibration Thresholds.

To increase the functionality of the detection system, detection along the LOS was

considered. Seven locations between the two devices were chosen: d ∈ DH = {1.0, 2.5,

4.0, 5.0, 6.0, 7.5, 9.0} ft (see Section 3.4 for metric conversions). The silent period cali-

bration was reused from above since the environmental setup remained the same. The

event calibration at d = 5 ft was also recycled. This left the event period to be calibrated

for the remaining six locations along the LOS. As previously mentioned, separation of

baseline and event calibrations was possible because paired calibration did not produce

significantly different results from unpaired calibration. As a result, the baseline period

calibrations were also recycled and used in calculating signal attenuation at different d .

The event at each d was calibrated with fifteen 60-second collections. Table 36 in

Appendix B lists all of the summary statistics from each trial for all d . Table 16 below

presents the resulting Re (d) and the calculated Ra(d) for each d . Interestingly, Ra(d) did

not increase as the target approached either device. Instead, the opposite was observed.

At both ends, the mean signal attenuation was less than 2.4 dB compared to approxi-

mately 4.0 dB near the center. Also, Ra(2.5) was much greater than Ra(7.5) despite both

being 2.5 ft away from a device.

One possible explanation is that when the target was close to either device, more sig-
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Table 16. Calibration values for LOS detection at distance d from the Hub in Room A

d (ft) Re (d) (dB) σe (d) (dB) Ra(d) (dB) σa(d) (dB) t p-value H0 result

1.0 58.7 1.1 2.3 0.3 104.43 < 0.0001 reject
2.5 56.6 1.0 4.4 0.6 196.99 < 0.0001 reject
4.0 57.0 1.1 4.0 0.8 173.24 < 0.0001 reject
5.0 57.1 1.3 4.0 0.8 175.24 < 0.0001 reject
6.0 57.3 1.1 3.7 1.1 160.85 < 0.0001 reject
7.5 58.6 1.1 2.4 1.2 107.27 < 0.0001 reject
9.0 58.9 1.2 2.2 0.1 90.11 < 0.0001 reject

nals were fully absorbed, so only slightly attenuated baseline signals reflecting around

the room were actually detected. Since the target at 7.5 ft was farther from the transmit-

ting device, the target did not block a lot of the transmitted signals, which would allow

more signals to propagate and reflect around the room, around the target, before reach-

ing the receiver. Another possible explanation is that the silent period filter threshold

was too high for calibration closer to the devices, resulting in highly-attenuated signals

that were not recorded.

Regardless, the baseline threshold detection method should still function at d if

Ra(d) is statistically significant from Rb . One-tailed, unpaired t-tests comparing Re (d)

to Rb were used to test this as per Metric 2. The results are presented in Table 16. In all

cases, there was strong evidence to reject H0, so detection could occur at all d ∈ DH .

However, based on the thresholds in Figure 22, the performance of detection at some

distances may not be favorable. In particular, d = 1.0, 7.5, and 9.0 ft had thresholds that

overlapped the error lines for the baseline signal (shown as d = 0 in Figure 22). To help

reduce the number of false positives that would accumulate for detection at these dis-

tances, the minimum argument described in Definition 2 for the threshold was imple-

mented such that r+(d) = Rb −σb , while r−(d) remained unchanged. The r+(d) change

is reflected in the figure as the magenta error bars for d = 1.0, 2.5, and 9.0 ft. Results from

LOS detection should answer how adequate this change was.
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Figure 22. Error plot depicting Re (d)±1.5σe (d) detection thresholds for LOS distances
and alternate upper thresholds Rb −σb for distances 1, 7.5, and 9 (magenta) compared
to the baseline signal threshold Rb ±σb (Distance = 0, red)

5.1.4 Detection along the Line of Sight.

With the thresholds calibrated, experiments for detection along the LOS were con-

ducted. Similar to the experiment at the midpoint, at each distance, 1,000 trials were

performed, of which 500 trials contained target presence and 500 did not. Each trial

was again one second long in duration. Figure 39 in Appendix B contains histograms

showing the trial results for each of the d , not including the midpoint.

As summarized in Table 17, detection was possible at all points, but to varying de-

grees of success. The probabilities of detection were fairly successful (PD > 99%) at all

distances except for right in front of the originating device (at d = 1.0 ft, PD = 53.2%).

This poor result can be attributed to the small threshold and the small attenuation value.

Closer to the two devices, the number of false positives was much higher. While

target distances of 2.5, 4.0, 5.0, and 6.0 ft all resulted in PF < 6.5%, distances of 1.0, 7.5,

and 9.0 ft respectively resulted in PF = 53.2%, 51.0%, and 49.6% over 500 trials. These

were with the alternate upper thresholds, r+(d) = Rb −σb . PF should decrease with a

smaller r+(d). However, further lowering r+(d) could also result in a lower PD .
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Table 17. Thresholds and performance (PD ,PF ) evaluation of LOS detection

d (ft)
Thresholds (dB)

PD PFLower Upper

1.0 Re (1.0)−1.5σe Rb −σb 81.8% 53.2%

2.5 Re (2.5)±1.5σe (2.5) 99.8% 2.8%

4.0 Re (5.0)±1.5σe (4.0) 100.0% 1.8%

5.0 Re (5.0)±1.5σe (5.0) 99.8% 1.6%

6.0 Re (6.0)±1.5σe (6.0) 99.8% 6.4%

7.5 Re (7.5)−1.5σe (7.5) Rb −σb 99.8% 51.0%

9.0 Re (9.0)−1.5σe (9.0) Rb −σb 99.6% 49.6%

Summary.

Motion sensors only work when the target moves, but RSS-based DfP detection can

be used to detect human presence even when the target is stationary. This was demon-

strated by detection experiments along the LOS of a transmitting home automation de-

vice and a receiving device. The detection experiments first calibrated thresholds for

detection at different distances and then used these thresholds to test detection in a

one-second time frame at each distance.

Mean signal attenuation levels were calculated for each distance using either paired

or unpaired calibrations. Interestingly, the Ra one foot away from either device were

much less than the level at the midpoint. Nevertheless, all signal attenuation levels were

statistically significant from zero, with values at different distances ranging from 2.2±0.1

dB to 4.4± 0.6 dB. Therefore, detection could be performed at all seven of the tested

distances.

The experiment conducted at the midpoint showed that detection was possible, pro-

ducing accurate detection and very few false positives. PD and PF were shown to vary

depending on the threshold chosen, but ±1.5σe produced adequate PD and PF in the

1,000 trials of one-second periods.
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As expected, PD from a baseline threshold method was high all across the LOS. In

fact, all but d = 1.0 ft performed at PD = 99.6% or higher in properly detecting a target

within one second at that distance. The probability of detection at d = 1.0 ft was PD =
81.8%, which was not entirely unfavorable, but the probability of false positives was high

at PF = 53.2%. Distances for which Re (d)+1.5σe did not overlap with the error in the

baseline signal performed much better in detection and with much lower PF .

The experiments in this section demonstrated that the proof-of-concept system can

be used for detection along the LOS of two devices communicating using home automa-

tion signals. Limitations to this method were also shown, especially near either device.

While simple-setup detection does perform, its setup, deployment and function are lim-

ited in real-life scenarios.
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5.2 Localization with Cell-Based Fingerprinting

Localization with a multi-node setup has greater potential for deployment and use in

real-life scenarios. It expands upon detection in that it can be used to detect targets and

determine the target’s location. By deploying multiple nodes, localization can determine

target presence in a two-dimensional area of interest rather than just a one-dimensional

LOS. The goal of the experiment in this section was to establish the functionality of DfP

localization using the proof-of-concept system.

The method of localization investigated in this section was cell-based localization.

This method was discussed in Section 3.3.2. To evaluate its performance, the experi-

ment was conducted in Room A, described in Section 3.4.2. This setup differed from

the detection experiment especially in that the area of interest was a 10 ft x 10 ft area

with three receiving devices, the door was opened, and the DCPS laptop was inside the

room. The tools of localization are similar to detection, but vary in processing due to the

number of receiving nodes used (see Section 4.2.2).

5.2.1 Offline Data Collection and Mapping for Three Nodes.

The first step in evaluating cell-based localization was to analyze the calibration

data. As mentioned in Section 3.4.2, the area of interest was divided into 25 cells, each

measuring 2 ft x 2 ft (0.61 m x 0.61 m). Figure 11 in that section presented this division

as well as the placement of the devices.

Despite the changes in this room from the detection setup, the silence period should

still have the similar R s . To verify this, the silence period was recorded and analyzed

again for five trials of 60 seconds each. As expected, R s across all three nodes was well

within the values observed during detection. To improve results and reduce calibration

time, the filter threshold for both event and localization collections was manually set for

all nodes. A concern from the detection experiments was that the filter threshold was too
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high to collect highly-attenuated RSS. Unlike simple-setup detection, fingerprinting-

based localization can leverage high fluctuations to make its offline data map. There-

fore, the manually-set filter threshold was lowered to one standard deviation above the

midpoint of the mean and the max Rs :

filter threshold dB = 14.0+34.6

2
+1.6 = 25.9 (31)

which should be low enough to capture more highly-attenuated signals while still reduc-

ing the silent period.

Calibration of the target in each cell, including the empty case (c = 0) when the target

was not in the room, was then performed. All three nodes participated in the calibration

of each cell. A factor of interest in the experiment was the orientation of the target,

so four different target orientations were calibrated for each cell (see Figure 12 in Sec-

tion 3.4.2). As a result, a total of 104 collection periods were recorded. Each collection

period was 60 seconds, during which all nodes were collecting and sending data to the

DCPS laptop. In total, calibration for a 25-cell room took approximately two hours.

The Re calibration results for all 25 cells from each of the three nodes for each of

the four orientations are displayed for comparison in the heat maps of Figure 23. For

certain cells, target orientation did matter and produced noticeably different Re . This

likely occurred because the target would block the LOS between the Hub and the node.

For example, N2 was able to distinguish the target location in cells C11 and C23 across

all orientations, but O1 produced a more distinguishable C23, while O2 produced the

most distinguishable C11. Similarly, N3 was able to distinguish C11, but mostly when the

target was in O4. N1 should have similar behavior for O1, but in all cells and orientations

from N1, there were no clear explanations for the observed Re . For N3, C1 appeared

lowly attenuated in all orientations and may be important in localization. Through just

a qualitative examination of these heat maps, orientations may affect performance.
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(a) N1 O1 (b) N2 O1 (c) N3 O1

(d) N1 O2 (e) N2 O2 (f) N3 O2

(g) N1 O3 (h) N2 O3 (i) N3 O3

(j) N1 O4 (k) N2 O4 (l) N3 O4

Figure 23. Calibration maps of Re values for each node (N#) and orientation (O#) where
every cell corresponds to the same cell in the Room A cell division (Fig.11)

(a) Node 1 (b) Node 2 (c) Node 3

Figure 24. Calibration maps of Re from each node for OAvg, the data set averaging results
from all orientations, where every cell corresponds to the same cell in Room A (Fig.11)
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Table 18. Calibration map values of the empty case from all three nodes (Re (0,n))

Node ne (0,n) Re (0,n) (dB) σe (0,n) (dB)

1 494 58.3 5.7
2 514 60.8 2.0
3 482 59.9 1.3

To compare how a data set without respect to orientation performs, the results from

all four orientations were averaged into another data set, “OAvg”. Figure 24 displays

these averaged orientation results in a heat map for each node. For N2, the distinguish-

able LOS calibrations for C11 and C23 were still reflected in the averaged data. For N3,

the highly-attenuated C15 for O4 and C3 in O1 became indiscernible in OAvg, but the

lowly-attenuated C1 for all orientations was still discernible. From a qualitative exam-

ination, using OAvg may result in heavy reliance on cp selections of only C1, C11, and

C23 compared to mixed results expected from using the orientation-based data.

Since the empty case does not depend on target orientation, its calibration from the

four orientation data sets was also averaged and used in all data sets. These calibration

values are presented in Table 18. The empty-case Re from all three nodes were rela-

tively similar despite the different distances at which the nodes were positioned from

the Hub. This indicates that the path loss was only one factor for lower RSS. Another

factor could be slight variations in the hardware from device to device. Regardless, these

values were also similar to the non-empty cases, which suggests that false positives may

be extremely high.

None of these concerns should matter in fingerprinting when the fingerprints are

unique enough to accurately select the true location. However, the heat maps suggest

that there may be a lot of possibilities for matching cells to target locations since not all

cells have significantly unique signatures from just three nodes.
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5.2.2 Cell-Based Localization with Three Nodes.

To investigate these concerns, an experiment was conducted at every cell c ∈ {0, ...,C }

in the room. Only one of the four orientations was tested at each cell c ∈ {1, ...,C }, and

these orientations were determined by a random number generator. Observations at

each cell occurred for six 30-second trials. In each trial, five-second intervals (τ = 5 s)

were used for localization. Therefore, a total of 1,560 location results were collected in

this experiment. The observation data was analyzed five ways using the different data

maps from calibration: O1, O2, O3, O4, and OAvg.

The confusion matrices for this experiment are shown in Tables 37-41 in Appendix B.

The performance metrics for each cell location are summarized in Table 19. The PD (c)

for each cell that matches the target orientation is in boldface. The result from the data

that produced the highest PD (c) is italicized. In cases where the PD (c) was the same

across all data sets, the result with the lowest PF (c) is italicized.

Only for seven cells (c ∈ {3,9,17,20,23,24,25}) did the highest PD (c) belong to the

data that matched the target orientation. So when orientation was taken into account,

only 38% of the cells using that data set performed best among all data sets. Of these

cells, PD (c) was still never higher than 35%. Of all the cells in any data set, only 21

achieved PD (c) higher than 10.0%. This is most likely low because the individual cells

did not produce unique enough signatures. In fact, some cells (c ∈ {4,16,18,19,22}) were

not selected even once for the 1,560 trials. Certain cells were more preferred on average

as maximum-probability selections, especially C11 and C23. Often, high PD (c) were also

associated with high PF (c) (e.g. C11 for O3 and C3 for O2).

Table 20 is a summary of the average cell results of each data set for only those trials

in which the target orientation matched the data set orientation. While the average false

positive rates of the cell were relatively low (average PF (c) ≤ 6.0%) in these trials for all

four orientation data sets, so were the average true positive rates (average PD (c) ≤ 7.1%).
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Table 19. Localization performance by cell (PD (c),PF (c)) based on different foam
block orientation calibration data sets with PD (c) for each cell that matches the tar-
get orientation in boldface and the result from the data set that produced the highest
PD (c) italicized (in case of tie, the result with the lowest PF (c) is italicized)

Target O1 Data O2 Data O3 Data O4 Data OAvg Data
c O PD (c) PF (c) PD (c) PF (c) PD (c) PF (c) PD (c) PF (c) PD (c) PF (c)

1 1 0.0% 3.2% 0.0% 6.1% 1.7% 17.6% 3.3% 23.5% 5.0% 34.4%
2 2 3.3% 2.3% 0.0% 2.7% 0.0% 0.4% 0.0% 0.4% 0.0% 0.7%
3 2 1.7% 0.7% 23.3% 14.5% 0.0% 1.8% 0.0% 3.5% 0.0% 0.1%
4 2 0.0% 0.3% 0.0% 3.8% 0.0% 4.7% 0.0% 0.5% 0.0% 0.1%
5 1 0.0% 0.5% 1.7% 3.2% 0.0% 0.9% 0.0% 0.9% 0.0% 0.1%
6 3 15.0% 1.9% 3.3% 2.4% 0.0% 1.3% 11.7% 0.1% 10.0% 1.1%
7 1 0.0% 0.6% 28.3% 14.3% 0.0% 6.9% 10.0% 10.7% 3.3% 12.4%
8 4 0.0% 0.8% 8.3% 6.7% 0.0% 0.7% 0.0% 0.1% 0.0% 0.3%
9 1 1.7% 1.7% 0.0% 2.7% 0.0% 0.4% 0.0% 0.1% 0.0% 0.2%

10 3 1.7% 1.3% 3.3% 5.3% 0.0% 0.3% 0.0% 0.1% 1.7% 0.1%
11 4 15.0% 2.9% 5.0% 3.3% 25.0% 34.3% 0.0% 10.8% 30.0% 2.6%
12 3 15.0% 11.9% 20.0% 14.7% 0.0% 0.9% 11.7% 18.2% 18.3% 20.3%
13 4 15.0% 5.3% 3.3% 1.6% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1%
14 3 11.7% 4.9% 6.7% 3.6% 0.0% 0.6% 0.0% 0.1% 1.7% 2.5%
15 1 1.7% 1.5% 1.7% 3.7% 3.3% 1.8% 0.0% 0.0% 0.0% 0.4%
16 1 0.0% 3.2% 5.0% 1.5% 0.0% 0.5% 0.0% 0.0% 1.7% 0.5%
17 4 10.0% 11.7% 0.0% 0.1% 3.3% 9.4% 16.7% 13.9% 11.7% 13.0%
18 3 0.0% 6.9% 0.0% 0.7% 0.0% 6.4% 0.0% 0.3% 0.0% 1.2%
19 1 0.0% 2.2% 0.0% 0.4% 1.7% 0.7% 0.0% 0.1% 0.0% 0.9%
20 1 13.3% 6.5% 0.0% 0.1% 1.7% 0.1% 0.0% 0.7% 1.7% 0.7%
21 4 23.3% 10.7% 0.0% 0.1% 0.0% 0.9% 0.0% 0.0% 0.0% 0.2%
22 4 0.0% 7.7% 0.0% 0.3% 0.0% 2.1% 0.0% 11.3% 0.0% 1.7%
23 3 5.0% 1.7% 1.7% 4.3% 35.0% 2.1% 18.3% 2.3% 18.3% 3.0%
24 2 1.7% 1.7% 5.0% 0.7% 0.0% 0.3% 0.0% 0.1% 0.0% 0.8%
25 1 3.3% 4.3% 0.0% 1.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.3%
0 N/A 1.7% 1.5% 0.0% 1.7% 11.7% 5.2% 1.7% 3.5% 3.3% 2.5%

Additionally, when taking into account all trials using the OAvg data set, similar average

performance was observed. Therefore, it cannot be said that isolating the orientation of

the target necessarily improved performance of this method.

Table 21 shows overall performance and accuracy for different data sets, without re-

spect to target orientation. The overall false positives were high (PF ≥ 88.3%) whereas

the overall true positives and the accuracy were low (PD ,P A ≤ 5.5%). High PF were ex-

pected due to the calibrated empty-case values not being unique enough to distinguish
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Table 20. Average localization performance of cells (avg PD (c), avg PF (c)) for different
data sets for trials where the target orientation matched the calibration orientation

Data Set avg PD (c) avg PF (c)

O1 2.2% 2.7%
O2 7.1% 5.4%
O3 5.8% 1.9%
O4 2.8% 6.0%

OAvg 4.1% 3.8%

Table 21. Accuracy (P A) and overall localization performance (PD ,PF ) from different
target orientation calibration data sets

Data Set D (PD ) F (PF ) A (P A)

O1 83 (5.5%) 59 (98.3%) 84 (5.4%)
O2 70 (4.7%) 60 (100.0%) 70 (4.5%)
O3 43 (2.9%) 53 (88.3%) 50 (3.2%)
O4 43 (2.9%) 59 (98.3%) 44 (2.8%)

OAvg 64 (4.1%) 58 (96.7%) 66 (4.1%)

the case from most of the other cells.

In general, the system’s cell-based method did not perform well, even when factoring

in orientation. Therefore, orientation-based matching can be unreliable and may not be

better than disregarding orientation. Using the averaged data, however, had the benefits

of less calibration time and less computational overhead during localization. This is

important in potential deployed scenarios where the human to be localized may have

any orientation in the room.

5.2.3 Remarks about the Method.

The performance of the proof of concept’s cell-based localization method was highly

unfavorable. Accuracy of the O1, O2, O3, O4, and OAvg data sets (P A = 5.4%, 4.5%, 3.2%,

2.8%, and 4.1%, respectively) was only better than random guessing (1/26 = 3.8%) for

three of the data sets, yet only barely so. Even orientation-based fingerprinting did not

result in favorable results.
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One suggestion would be to allocate even more time for calibration and investigate

whether this improves the uniqueness of the signatures for localization. Another sug-

gestion would be to change the time allocated for producing a localization result, but to

do so would restrict the system’s ability to locate targets that do not remain stationary

during that time period. Instead, this section looks to improve the system’s fingerprint-

ing method.

Thresholds for Reducing False Positives.

One approach for reducing the probability of false positives is to implement a thresh-

old for the probabilities P (c,n) before a cell can be selected as a probable target location.

Since the method uses a Welch’s t-test to test how well the observation data matches the

offline data, requiring that at least one p-value for a candidate cell return a minimum

value of 0.05 (a normal threshold for hypothesis testing) should reduce incorrect selec-

tions. In the case that this threshold requirement is not reached by g nodes of any of the

candidate cells, then the empty case would be the reported result (cp = 0).

For example, let g be the minimum number of nodes in a cell for which the p-value

must be greater than 0.05, and for some trial with N = 3 and just two possible cell loca-

tions, C1 and C2 (and the empty case), let the true location be C2. If the p-values for C1

were P (1,1) = 0.00002, P (1,2) = 0.64, and P (1.3) = 0.04 (0.23 average) and for C2 were

P (2,1) = 0.24, P (2,2) = 0.37, and P (2,3) = 0.03 (0.21 average), then the current method

would choose C1 (cp = 1) because of the higher average. With the added threshold re-

quirement, if g = 0 or 1, a false location would be reported. But if g > 1, C1 would no

longer be a location candidate for cp because two of its values were less than 0.05. C2

would then be correctly identified as the target location. However, if g = 3, the empty

case would be reported because P (2,3) > 0.05 and so g = 3 was not satisfied.

Table 22 shows the accuracy and overall performance for each data set after this

108



Table 22. Accuracy (P A) and overall localization performance (PD ,PF ) for cell-based
localization using threshold requirements (g )

g = 0 g = 1 g = 2 g = 3
Data Set PD PF P A PD PF P A PD PF P A PD PF P A

O1 5.5% 98.3% 5.4% 5.5% 98.3% 5.4% 5.7% 98.3% 5.5% 5.4% 66.7% 6.5%
O2 4.7% 100.0% 4.5% 4.7% 100.0% 4.5% 4.4% 98.3% 4.3% 4.6% 58.3% 6.0%
O3 2.9% 88.3% 3.2% 2.9% 88.3% 3.2% 2.7% 78.3% 3.4% 0.7% 36.7% 3.1%
O4 2.9% 98.3% 2.8% 2.9% 98.3% 2.8% 2.6% 88.3% 3.0% 0.8% 21.7% 3.8%

OAvg 4.1% 96.7% 4.1% 4.1% 96.7% 4.1% 3.9% 88.3% 4.2% 0.9% 28.3% 3.6%
Average 4.0% 96.3% 4.0% 4.0% 96.3% 4.0% 3.9% 90.3% 4.1% 2.5% 42.3% 4.6%

method update was applied to the same data from above. Figure 25 is the accompany-

ing graph displaying ROC for each data set and shows that no data set achieved PD and

PF performance better than random guessing, but as g increased, performance also im-

proved. The changes from g = 0 to g = 1 were nonexistent. When g = 2, slight changes

were observed. Interestingly, PD of the O1 data set increased from 5.5% to 5.7%. All

other data sets produced small decreases in PD and a decrease in PF of up to 10.0%. On

average, P A increased slightly from 4.0% to 4.1%.

Applying this threshold requirement on all nodes (when g = 3) produced greater

changes. The average PF for all data sets was only 42.3% compared to 96.3% in the origi-

nal method. PF of a data set decreased to as low as 21.7% from values greater than 88.3%.

The lowest decrease in any one data set from the original method was by 31.6%, but the

greatest was by 76.6%. However, PD also decreased for all data sets. The change in PD

was small (0.1%) for O1 and O2 data sets, but was more significant in the other data sets.

For example, for OAvg, PD went from 4.1% to 0.9%. However, P A increased for the O1,

O2, and O4 data sets, producing an average P A of 4.6% from all data sets.

These results demonstrated that increasing g could decrease PF but often also de-

creased PD . This means that X0 was selected more as g increased. This suggests that

many locations had similar average p-values but also relied on high results from just

one or two nodes, so inaccurate locations were reported. Thus, g is useful for reducing

PF by increasing the likelihood that xp = 0 as opposed to reporting inaccurate locations.
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Figure 25. ROC graph of overall performance (PD ,PF ) with varying g for each orientation
data set for cell-based localization (left to right is decreasing g )

Proximity for Increased Accuracy.

Minimal improvements in P A were observed from implementing g above. A large

reason for these poor results was that the calibration data for all 25 cells and the empty

case were not unique enough to select the cell in which a target was actually located.

Therefore, instead of continuing with the cell-based method, this section looks also to-

wards an alternate approach for improving P A.

Considering the application of home automation devices, a DfP system does not

necessarily need to be able to locate targets throughout an entire room. In fact, home

automation networks are deployed typically to allow remote access of common appli-

ances. Therefore, an exhaustive calibration map like that of the cell-based method may

be unnecessary. Home automation applications are not confined to simple area like

cells, but rather expand to an area defined by context and situation. For example, a daily

alarm could be configured to not go off if the user is not located on the bed. Other ar-
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eas in the room could be not interesting for localization. This concept is context-based

fingerprinting.

To transition from cell-based methods and argue in favor of context-based meth-

ods, a proof of concept that a similar method would produce better P A can be shown

by adapting the previous experiment to allow proximity selections as a true positive. In

the experiment above, the room was a 5 x 5 grid of cells, and localization was performed

such that only one of those cells could be the true result. However, by expanding local-

ization to larger areas, P A could greatly improve. For example, instead of just a single

cell as a returned result, let adjacent cells also be true results. Then localization of a tar-

get in C1 (ctr ue = 1), for example, would be positive if C1, C2, C6, or C7 were returned

(cp ∈ {1,2,6,7}).

Thus, this section investigates P A changes due to proximity selection including ad-

jacent cells as opposed to strict selection of single cells. The results could either only

remain the same or improve, but improvements would suggest that context-based fin-

gerprinting would produce better localization P A and that using strict cell approxima-

tions could be too restrictive in this system. The same calibration and observation data

as from above was used. During analysis, all adjacent cells and the actual cell where

the target is located were considered positive matches. The P A results of this proxim-

ity-based system are listed in Table 23 and shown in Figure 26. Both also present the

previous results from strict-cell fingerprinting for comparison.

The five data sets went from average P A = 4.0% to 22.2% with the proximity-based

approach. This average improvement suggests that many cells in the offline data maps

did not produce unique enough signatures, especially in comparison to their adjacent

cells. Therefore, further reducing the set of possible locations of a target and limiting

these locations to non-adjacent regions could improve the localization method for de-

ployment on top of home automation devices.
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Table 23. Comparison of accuracy (P A) for strict cell and proximity methods by data
set

Data Set
Strict Cell

P A

Proximity
P A

O1 5.4% 31.3%
O2 4.5% 25.1%
O3 3.2% 20.8%
O4 2.8% 17.1%

OAvg 4.1% 16.8%
Average 4.0% 22.2 %

Figure 26. Comparison of accuracy (P A) for strict cell and proximity methods by data set

The cell-based fingerprinting method no longer appears plausible for the current

proof-of-concept system due to its poor performance in PD , PF , & P A. But by expanding

to a context-based fingerprinting method using threshold requirements, both P A and

PD could improve and PF could decrease. This was suggested by improved results after

implementing a proximity-based approach and a threshold parameter in analysis of the

cell-based localization experiment. However, a true context-based system should also

reduce costs from calibration. This includes reducing data that needs to be collected,

processed, and stored as well as reducing the nearly two hours of calibration for a 10 ft x

10 ft room.
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5.3 Localization with a Context-Based Method

The previous localization experiment was met with unfavorable results. As a result,

two considerations to the method were investigated in Section 5.2.3 to improve upon

the low P A, high PF , and high calibration costs of the cell-based fingerprinting method.

This section outlines the context-based, maximum-probability fingerprinting method

that is the result of those efforts. This section also tests the method’s performance by

conducting an experiment for locating a target in only a few regions of interest.

The cell-based method was ambitious in its desire to locate a target in all possible

cells in a room. However, since home automation is an intended use of this proof-of-

concept system, an accurate response at all of these cells would be excessive. For exam-

ple, localization of a target in a corner of the room that no one frequents is unnecessary.

Thus, while context-based methods are limited in precision, it focuses only on localiza-

tion of a target in regions that could provide useful information.

Many uses of home automation networks are based on the principle of being able

to access and control appliances and settings remotely. High precision is not necessary

for many uses of these devices, so localization in a single room can instead be separated

into just a few context regions. One example of such an application is keeping the living

room lights on for as long as the user occupies the TV couch. A smart personal assis-

tant can prompt the user with available food choices just by localizing the user in the

vicinity of the kitchen near meal times. Music could move around the house with the

user seamlessly, without the current limitation of having to actively prompt devices to

broadcast elsewhere. Other uses of home automation are similar; they are responses to

human needs, and context-based localization can be used to assess these needs.
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5.3.1 Methodology.

This method is still a maximum-probability fingerprinting method, so most of the

principles from the previous method still apply. For example, the hardware does not

change. The response variable is still the observed mean RSS in dB calculated using (11)

with the same MATLABr command seen in Section 4.2.2. The main control variable for

all experiments is target location. The Welch’s t-test described in Definition 4 is still used

to compare the observed means, R(t1,n), over a period of time, t1, from each node, n, to

the offline data matrix values for each possible context region.

The main changes are those that incorporate the considerations investigated in Sec-

tion 5.2.3: reducing PF by adding a threshold for the maximum average p-values and

improving P A by decreasing the set of possible locations while still covering a large area.

Thus, this methodology amends that described in Section 3.3.2.

The following assumptions for this context-based method are added to those in Sec-

tion 3.1 to further improve performance:

Assumption 7 A context region provides adequate localization precision.

Assumption 8 Each context area is chosen such that it should produce a unique signa-

ture from the other context areas. Specifically, no areas should overlap.

Assumption 9 No more than five context regions should exist in a room, and this number

should be lower for smaller rooms.

Assumption 10 There are at least three nodes in the system.

Instead of dividing the entire area of interest and collecting offline data for each of

the cells, data is collected for only the contexts of interest. A context region is described

as x ∈ {1,2, ..., X }, where X ≤ 5 in any one room. Each context region should not overlap

114



with other regions to more likely produce a unique RSS signature. There are at least

three nodes in the system (N ≥ 3) to increase reliability.

During offline calibration, only the x regions need to be calibrated. All other regions

are designated to be the empty case (x = 0), when the target is either not in the room or

not in a region of interest. The empty case is not calibrated. Since this method only has

X cases compared to C +1 cases, total calibration costs are significantly reduced.

Calibration collections are still collected over a period T from all N nodes in the

room when the target is in some x ∈ {1,2, ...X }. However, instead of remaining stationary

during calibration, the target is free to roam or sweep the region of interest. This is to

more accurately depict the entire region as opposed to just a cell. Furthermore, since

target orientation was not determined to be significant in affecting system performance

as compared to an average of the orientations, the target is also allowed to assume any

orientation during calibration. The result from one node n for the region x is some mean

RSS, Re (x,n), with standard deviation, σe (x,n), from some ne (x,n) collection steps.

During the online observation phase, data is collected similarly to before: all N nodes

simultaneously collect RSS data starting at time t0. Each node n computes and stores the

mean RSS over a time period, τ< T , in R(t1,n) where time t1 = t0+m ·τ for some positive

integer m. The accumulation of R(t1,n) for all nodes is R(t1), a vector of size N . Then at

some time t1 during which human presence occurs, the context region, xtr ue , in which

human presence exists is attempted to be matched by the most probable region, xp , by

comparing the observed data vector R(t1) to each of the calibrated Re (x,n) and finding

the region for which the maximum probability of match occurs.

Again, the probability of match for a sample at some t1 is defined by the average

p-values calculated using two-sided Welch’s t-tests comparing the observed R(t1,n) to

the offline Re (x,n) for each node, as described in Definition 4. However, there is an

additional argument for selecting a region that involves the minimum number of P (x,n)
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Figure 27. Flow chart depicting the context-based localization method

values, g , for a candidate region, x, that must have p-values greater than the significance

level, α.

Definition 7 Let P (x,n) be the probability that the observed value is close to the offline

value for some context region, x, from some node, n. Then the selected location region,

xp , at t1 is some x for which the probability of match for a sample at some time t1 is the

maximum AND for which at least g values of P (x,n) > α for x among all n ∈ {1, ..., N }

nodes, where α= 0.05 and g is experimentally varied. If there is no x for which this argu-

ment is satisfied, then the selected context region is the empty case, x = 0; i.e.,

xp =


arg max

x∈{1,2,...,X }

( 1
N

∑N
n=1 P (x,n)

)
if

∑N
n=1 [P (x,n) >α] ≥ g

0 otherwise

(32)

Figure 27 depicts this method without the examples of Figure 9.
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5.3.2 Evaluating Context-Based Localization.

To evaluate this new method, localization was performed again. As previously men-

tioned, the response variables were RSS values and the control variable was the target

location in a region. An additional control parameter was g . The same evaluation met-

rics used in cell-based localization were used here in context-based localization, except

the parameter was now regions, x, not cells, c (see Section 3.3.2). These metrics are P A,

PD , PF , PD (x), and PF (x).

Experiment Setup.

Room A was used as described in Section 3.4.2, but with five nodes and only three

possible locations. The first location, X1, was the light switch that controls the ceiling

light. The second location, X2, was the closet door. A possible application for localizing

the target would be to prompt a smart assistant for the weather to help the target decide

what to wear. The third location, X3, was the window. A possible application would be to

change the angle of the blinds to keep the sun from harming the target’s eyes. Figure 28

depicts this new setup.

Offline Data Collection and Mapping.

For simplicity, the manual silence period filter threshold of 25.9 dB was used again.

The time period for more nodes using the proof of concept system required a longer

collection period because collection was not parallel. Therefore, calibration of the three

locations was five minutes each. The script was paused every fifteen seconds to change

the orientation of the foam blocks and their specific location within the region. The re-

sults of each region’s Re (x,n),σe (x,n), and ne (x,n) from each node are listed in Table 24.

An important observation from these calibrations was that the nodes positioned in

or near a region such that the node was likely to be blocked were more likely to observe
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Figure 28. Diagram of Room A showing regions (X#) for context-based localization

Table 24. Summary statistics from context calibration of Room A
Node

N1 N2 N3 N4 N5
ne Re σe ne Re σe ne Re σe ne Re σe ne Re σe

R
eg

io
n X1 351 57.1 8.7 331 61.3 1.8 328 61.4 1.7 330 59.0 4.7 373 52.6 10.8

X2 355 57.8 6.3 357 61.2 1.6 385 61.1 2.6 357 58.4 5.1 350 52.8 10.4
X3 337 58.7 5.5 297 61.3 1.7 311 60.3 1.8 369 56.4 7.8 379 52.9 10.3

higher fluctuations. For example, X1-N1 saw a smaller Re and a larger σe compared to

X2-N1 or X3-N1. X3-N4 was the same. X2-N3 also observed higher fluctuations than

did X1-N3 or X3-N3 due to the node’s position to the right of X2; the calibrated target

blocked the LOS only briefly near the edge of the region. These attributes should help

uniquely define the regions in the offline data map.

Other nodes not near a region of interest also showed interesting results: N5 for in-

stance had very low Re and highσe in all cases. However, these were relatively the same,

which is consistent with the fact that the node was never blocked during calibration. N2

saw a similar behavior for all three regions, except Re and σe were more typical.
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The offline data results from calibration produced noticeable behaviors from differ-

ent nodes for different regions, which suggested that localization would be more accu-

rate than cell-based localization. Limiting the number of locations allowed for this. Also,

with this method, only fifteen minutes were needed for calibration. This was a signifi-

cant decrease from the two hours of the cell-based method, which also only allocated 60

seconds (4 min for averaged orientation) for each cell.

Observation Phase and Analysis Results.

One trial was performed at each of twenty different locations. Each trial was 60 sec-

onds long, and τ = 20 s for selecting a most probable region (an increase from 5 s be-

cause of the increase in nodes for a non-parallel collection script). As a result, three

location results were reported for every trial, for a total of 60 results for the entire exper-

iment. The results from each trial are listed in Table 42 in Appendix B. In this section,

Table 25 presents the confusion matrices with varying g .

The confusion matrix shows that the threshold parameter did not affect the results

until g > 2, which was expected based on observations of the calibration data. As g

increased, selecting the empty case (xp = 0) was more prevalent (from just 2 selections

when g ≤ 2 to 38 when g = 5). The X1 region was often confused for a target in the empty

case. This is likely because of how a target in X1 would only greatly affect N1. X1 was

also the most prevalent region selected among the three regions and was reported up

to 30 times (50%). This false predictor was reduced with increasing g , but suggests that

data did not fluctuate enough among different regions in the empty apartment room to

produce perfect results.

The performance metrics of the individual regions are presented in Table 26. These

results are also displayed in Figure 29 to examine the effect of g on region performance

and also in the ROC graph in Figure 30. When g ≤ 2, X1 and X3 were both highly success-
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Table 25. Confusion matrices with varying g for context-based localization in Room A
Actual Region

X1 X2 X3 X0
P

re
d

ic
te

d X1 9 10 1 9 29
X2 4 3 4 3 14
X3 1 2 9 3 15
X0 1 0 1 0 2

(a) g = 0

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 9 10 1 9 29

X2 4 3 4 3 14
X3 1 2 9 3 15
X0 1 0 1 0 2

(b) g = 1

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 9 10 1 9 29

X2 4 3 4 3 14
X3 1 2 9 3 15
X0 1 0 1 0 2

(c) g = 2

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 9 11 1 9 30

X2 4 2 4 3 13
X3 1 2 8 2 13
X0 1 0 2 1 4

(d) g = 3

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 5 9 2 7 23

X2 5 3 1 3 12
X3 1 2 6 1 10
X0 4 1 6 4 15

(e) g = 4

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 4 4 0 6 14

X2 3 1 1 0 5
X3 0 0 3 0 3
X0 8 10 11 9 38

(f) g = 5

ful with PD (1),PD (3) = 60.0%. X2 was also able to achieve PD (2) = 20.0%. However, X0

was not correctly identified once. PF was also much better than in the cell-based case,

but X1 still had PF (1) = 44.4%.

As seen in the confusion matrix, as g increased, the average PF (x) should have de-

creased as more empty-case selections were reported. This was observed for g = 3 and 4

with an improvement from average PF (x) = 21.7% to 17.6%. This was mostly attributed

to the lower PF (1), which was 28.0% for g = 3 and 17.1% for g = 4, as a result of more

frequent xp = 0. PF (x) of other regions also decreased, but that of X0 increased greatly,

up to 64.4% when g = 5. Nonetheless, average PD (x) in all g was much better compared

to average PD (c) of the cell-based method.

To better depict this method’s performance, Table 27 lists the accuracy (P A) and over-

all performance metrics (PD ,PF ) with varying g . (The next section graphs these metrics

and compares them to those for two other scenarios). P A using this method was better

than the 25.0% probability of random guessing for four regions. Higher g lowered P A.

The best accuracy was P A = 35.0% when g ≤ 2, but only decreased to 33.3% at g = 3,

30.0% at g = 4, and 28.3% at g = 5.
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Table 26. Performance by region (PD (x),PF (x)) for context-based localization using
threshold requirements (g ) in Room A

g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
Region PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x)

X1 60.0% 44.4% 60.0% 44.4% 60.0% 44.4% 60.0% 28.0% 33.3% 17.1% 26.7% 7.4%
X2 20.0% 24.4% 20.0% 24.4% 20.0% 24.4% 13.3% 24.4% 20.0% 20.0% 6.7% 8.9%
X3 60.0% 13.3% 60.0% 13.3% 60.0% 13.3% 53.3% 11.1% 40.0% 8.9% 20.0% 0.0%
X0 0.0% 4.4% 0.0% 4.4% 0.0% 4.4% 6.7% 6.7% 26.7% 24.4% 60.0% 64.4%

Average 35.0% 21.7% 35.0% 21.7% 35.0% 21.7% 33.3% 17.6% 30.0% 17.6% 28.3% 20.2%

(a) PD (x) (b) PF (x)

Figure 29. Effect of varying g on region performance (PD (x),PF (x)) in Room A

Figure 30. ROC graph for context-based region performance (PD (x),PF (x)) with varying
g in Room A (for X1-3, left to right is decreasing g ; for X0, left to right is increasing g ;
dashed line is random guess reference)
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The trend of PD with increasing g was similar; detection was highest at 46.7% when

g ≤ 2 and decreased slightly to 42.2% at g = 3, but drastically lowered to 31.1% at g = 4

and then 17.8% at g = 5. Based on P A and PD alone, enforcing g = N may be too strict

and may cause fewer correct selections than desired for a system.

However, PF favorably decreased as a result. It was at 100.0% until g = 3, where it

decreased slightly to 93.3%, then more drastically to 73.3% at g = 4 and only 40.0% at

g = 5. In many cases, a lower PF is more acceptable than a high P A or PD . Therefore,

in this scenario, it appeared that the most acceptable performance was when g = 5.

Regardless, this system performed much better with context regions than with cells.

Summary.

A context-based method was developed in this section by adapting the cell-based

method to improve P A and lower PF and calibration time. The changes were a threshold

parameter, g , for the number of nodes in region selection that must return a p-value

greater than 0.05 and a limit, X < 5, to the set of possible locations to just a few context

regions. This would optimize the system to give users target location only in regions of

interest instead of a whole room. With fewer possible locations, calibration time was

also reduced or could be reallocated to producing better calibration maps.

The experiment conducted using this method produced the expected improvements.

With just three regions of interest (four regions to select from, including the empty case),

the system was able to achieve accuracy 28.3% ≤ P A ≤ 35.0%. The cell-based method

only achieved P A ≤ 5.38%. Detection using this new method was also higher with 17.8% ≤
PD ≤ 46.7% compared to the cell-based PD ≤ 5.53%. Also, the cell-based method ob-

served a PF only as low as 88.3%, but this method was able to reduce PF down from a

worst-case 100.0% to 40.0%.

The context-based method then is an improvement upon the cell-based method.
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Table 27. Accuracy (PD ) and overall localization performance (PF ) for context-based
localization using threshold requirements (g ) in Room A

g PD PF P A

0 46.7% 100.0% 35.0%
1 46.7% 100.0% 35.0%
2 46.7% 100.0% 35.0%
3 42.2% 93.3% 33.3%
4 31.1% 73.3% 30.0%
5 17.8% 40.0% 28.3%

Though the results are not optimal, they are promising for future development of this

DfP localization system using home automation devices.

5.4 Investigating System Robustness in Different Rooms

The previous section conducted localization an empty room. Despite not achiev-

ing perfect accuracy, the proof of concept could still benefit from deploying in scenar-

ios that are more realistic and evaluating the performance changes. These scenarios

were introduced in Section 3.4.3 with the hope of using cell-based localization. How-

ever, as the previous section demonstrated, a context-based approach produces better

results. Therefore, this section presents experiments that investigated localization re-

sults in other environments.

5.4.1 Localization in Room B.

The second scenario allowed an investigation into how the system performs in a

room that is not empty and that has only two context regions. Room B is shown in

Figure 31 with these two regions. X1 was the space near the computer desk. Poten-

tial applications would be to monitor the time the user spends at the computer or to

activate the desktop monitor as the user approaches the desk. X2 was the space near the

closet.
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Figure 31. Diagram of Room B showing regions (X#) for context-based localization

Table 28. Summary statistics from context calibration of Room B
Node

N1 N2 N3 N4 N5
ne Re σe ne Re σe ne Re σe ne Re σe ne Re σe

R
eg

io
n X1 521 47.2 6.6 551 59.7 5.5 539 60.0 3.3 532 60.8 2.1 542 60.3 3.3

X2 619 46.4 6.7 636 60.8 2.7 614 60.3 2.4 627 60.2 2.8 629 60.4 2.7

All nodes except N4 should be affected by X1 since the target should block the LOS of

these nodes some time during calibration. The X2 region may not be well distinguished

with larger g because the target would only affect N4 and only in part of the region.

Therefore, the X2 selection may often be confused with the empty case selection. Since

this scenario only had two context regions, the expected P A performance should be at

least 33.3%.

Calibration.

Since Room B only had two context regions, additional calibration time was given to

both regions. Calibration was a total of fifteen minutes like in Section 5.3.2. Arbitrarily,

124



the division of the five extra minutes was two minutes to X1 and three to X2 for a total of

seven and eight minutes, respectively. The calibration results are shown in Table 28.

The calibration of X1 and X2 did not produce data that was as different as what

would have been ideal for fingerprinting. Instead, similar to the results from Room A, the

changes in position and orientation of the target within a region produced high σe and

similar Re for all nodes. Only the behavior in one node should have been reflected dur-

ing X2 calibration, but most nodes just fluctuated normally. N1 and N4 both recorded

a decrease in Re and a higher σe . N4’s behavior could be attributed to reflections. N2’s

behavior was consistent with its distance and how the target would block the LOS a bit.

These results however were not significantly different from X1 to X2.

Compared to X2, X1 should have decreased Re in all but just one node. Due to the

orientation and positioning of the target,σe should also have been high for X1. For three

of these nodes, these behaviors should not have been observed for X2. N2, N3, and N5

did reflect these expected behaviors, but perhaps not significantly enough.

From a qualitative observation of these signatures, these results may not be signifi-

cant enough for xp to distinguish X1 from X2. The added concern is that the positioning

of the nodes and the context regions were not optimal for prediction and that the empty

case should also not be very distinguishable from X2, which would mean higher PD and

PF when X0 is not be reported.

Observation Results.

Fifteen trials were conducted in Room B (five for each of the possible three cases).

In each trial, the target was positioned and oriented randomly in the region. Collections

were each one minute long, and the localization interval was τ = 20 s. The total num-

ber of localization events was 45. The results from each trial are shown in Table 43 in

Appendix B. The confusion matrices in Table 29 summarize these results.

125



Table 29. Confusion matrices with varying g for context-based localization in Room
B

Actual Region
X1 X2 X0

P
re

d
ic

te
d X1 6 4 9 19

X2 9 11 6 26
X0 0 0 0 0

(a) g = 0

Actual Region
X1 X2 X0

P
re

d
ic

te
d X1 6 4 9 19

X2 9 11 6 26
X0 0 0 0 0

(b) g = 1

Actual Region
X1 X2 X0

P
re

d
ic

te
d X1 6 4 9 19

X2 9 11 6 26
X0 0 0 0 0

(c) g = 2

Actual Region
X1 X2 X0

P
re

d
ic

te
d X1 6 2 5 13

X2 9 10 9 28
X0 0 3 1 4

(d) g = 3

Actual Region
X1 X2 X0

P
re

d
ic

te
d X1 7 2 2 11

X2 6 7 3 16
X0 2 6 10 18

(e) g = 4

Actual Region
X1 X2 X0

P
re

d
ic

te
d X1 3 1 0 4

X2 2 1 0 3
X0 10 13 15 38

(f) g = 5

As expected, xp = 0 was uncommon when g ≤ 2. Even with g = 3, this empty case

was only selected four times. However, when g = 4, xp = 0 was highly prevalent at 18

times. Even more, when g = 5, xp = 0 accounted for 38 of the possible 45 events (84.4%).

This supports the calibration observation of how similar the values were in all nodes.

X0 was difficult to select until g = 5 because X1 affected four nodes and X2 only affected

one. The method preferred X1 and X2 when possible, and since the calibration of all were

similar, selecting X0 was unlikely. Only when g was high could more discrimination take

place such that xp = 0 was more frequent.

The confusion matrices also depict how X1 and X2 were commonly confused when

g ≤ 4. However, xp = 2 was more frequently reported for a target in X1. This is likely

because when only enforcing g on a couple of nodes, N1 achieved high P (2,1) and was

sufficient for xp = 2. Whereas when incorrectly localizing the target in X2 with xp = 1, it

was difficult to achieve larger P (1,n) than P (2,n) from any node.

The individual region performance metrics are presented in Table 30. Figures 32 and

33 additionally depict the performance trends from each region with varying g . On ave-
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Table 30. Performance by region (PD (x),PF (x)) for context-based localization in
Room B using threshold requirements (g )

g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
Region PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x)

X1 40.0% 43.3% 40.0% 43.3% 40.0% 43.3% 40.0% 23.3% 46.7% 13.3% 20.0% 3.3%
X2 73.3% 50.0% 73.3% 50.0% 73.3% 50.0% 66.7% 60.0% 46.7% 30.0% 6.7% 6.7%
X0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 6.7% 10.0% 66.7% 26.7% 100.0% 76.7%
Avg 37.8% 31.1% 37.8% 31.1% 37.8% 31.1% 37.8% 31.1% 53.3% 23.3% 42.2% 28.9 %

(a) PD (x) by Region (b) PF (x) by Region

Figure 32. Effect of varying g on region performance (PD (x),PF (x)) in Room B

Figure 33. ROC graph for context-based region performance (PD (x),PF (x)) with varying
g in Room B (for X1 & X2, left to right is decreasing g ; for X0, left to right is increasing g )
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rage, the regions saw true positives 37.8% ≤ PD (x) ≤ 53.3% and false negatives 23.3% ≤
PF (x) ≤ 31.1%. Therefore, on average, the individual regions performed well. However,

this was mostly because of the lack of xp = 0 until g was higher. The best performance

was when g = 4 where xp = 1 and xp = 2 still occurred in conjunction with xp = 0 as

opposed to the other cases when either xp = 0 hardly ever occurred or was the dominant

occurrence.

This empty case saw both ends of the PD (0) spectrum and either end was often ac-

companied by a similar PF (0); e.g. (PD (0),PF (0)) = (0.0%,0.0%) for g ≤ 2, and for g = 5,

(PD (0),PF (0)) = (100.0%,76.7%). The other region selections also saw high PD (x), but

only at the cost of a high PF (x). The average performance was greatly influenced by

these extremes observed for X0.

Table 31 presents the accuracy and overall performance metrics. When g = 5, the

best PF was observed; PF = 0.0% because xp = 0 was so frequent. P A also increased

from 37.8% when g ≤ 3 to 53.3% when g = 4 and then decreased to 42.2% when g = 5.

However, the similar P A does not reflect a small change in successful selections for all

regions. As previously shown, the similarly high P A is mostly because in all of the X0

trials, the target was 100.0% correctly located, but only at the expense of low frequency

of xp = 1 and xp = 2 that made it difficult for targets in either X1 or X2 to be correctly

located.

Higher g in this scenario was able to produce ideal PF but failed to more success-

fully locate the target in the other regions. This was because calibration did not produce

unique signatures between the two regions. This could be because of non-optimal po-

sitioning of the nodes with respect to the regions. Nevertheless, P A and PD were still

better than random guessing.
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Table 31. Accuracy (P A) and overall localization performance (PD ,PF ) for context-
based localization in Room B using threshold requirements (g )

g PD PF P A

0 56.7% 100.0% 37.8%
1 56.7% 100.0% 37.8%
2 56.7% 100.0% 37.8%
3 56.7% 93.3% 37.8%
4 46.7% 33.3% 53.3%
5 42.2% 0.0% 42.2%

5.4.2 Localization in Room C.

The third scenario allowed an investigation of the effects of more absorbent mate-

rials in the room on localization performance. Room C was discussed in Section 3.4.3.

Most important was that there was a large bed in the room as well as other absorbent

materials like clothes, books, and pillows strewn about. Figure 34 depicts the localiza-

tion setup of the room with larger furniture. Ideally, fingerprinting-based localization

would still perform as normal despite these absorbent materials. However, due to the

small differences seen in previous experiments, it was more likely that the performance

would be worse, especially with nodes positioned near an absorbent object.

The three context regions were still chosen based on potential uses. X1, for example,

was the bedside table, for which the method could be used to determine when the target

is ready for bed or has gotten up in the morning. X2 was the area outside of the bathroom

and could be used to monitor bathroom habits. X3 was once again the area near the light

switch and could be used to activate the voice assistant for when the target heads out of

the room, ready to start their day.

Based on the locations of the nodes with respect to the regions, the calibration signa-

tures should be more distinct for the different regions. For example, N1 and N2 should

both be affected by X1 while N3-N5 would be largely unaffected. Also, N3-N5 should all

be affected by X3. Some potential confusions would be X2 and X3 as well as X0 and X2.
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Figure 34. Diagram of Room C showing regions (X#) for context-based localization

Table 32. Summary statistics from context calibration of Room C
Node

N1 N2 N3 N4 N5
ne Re σe ne Re σe ne Re σe ne Re σe ne Re σe

R
eg

io
n X1 349 59.0 2.0 349 57.1 5.9 360 58.6 5.4 362 52.9 7.7 356 61.2 1.7

X2 335 59.7 1.3 382 58.2 6.0 392 58.9 5.3 349 47.2 6.0 360 58.6 8.8
X3 313 59.5 2.0 346 56.7 7.1 373 58.4 5.7 376 47.8 7.2 385 56.4 11.3

Calibration.

Calibration for Room C was exactly the same as that of Room A. Fifteen minutes

were allocated and divided evenly for all three regions. In each trial, the target was po-

sitioned and oriented randomly in the region. Collections were each five minutes long

with pauses every minute to change position and orientation. The resulting offline data

map signatures are shown in Table 32.

Interestingly, there was a lot more variation in this room among the three regions

and a lot of the expected behaviors were observed. N1 and N3 both observed similar Re

across all three regions. N1 noted a minimum for X1, which was expected since N1 was
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in X1. N3 observed a lot of variation in all three cases, which is most likely due to the

absorption from the bed and reflections elsewhere.

N2, N4, and N5 all recorded the primary behavior of high Re during X1. N4 and N5

also recorded lower values for both X2 and X3. N4 observed large variation in all cases,

most likely because it is in an area that would receive a lot of reflections. However, the

important observation was that for X2, this variation was smaller as the target focused

on attenuation signals in the area that would reach N4. For X3, variation in N4 increased

again, but Re was still smaller than that of X1. Similarly, N2 and N5 both observed small-

est values with high variations for X3. This high variation is most likely due to their

distance from the transmitting Hub and how, despite the small size of the region, the

target’s orientation caused great fluctuations in the recorded values from these nodes.

Therefore, these calibration results were more descriptive than expected from pre-

vious scenarios. However, the high fluctuations detected by the system may still pro-

duce performance results that are no better than previously seen. The absorbent mate-

rials seemed to also be a cause for high fluctuations in the system as some signals were

slightly attenuated and paired with reflected signals.

Observation Results.

Twenty trials were conducted in Room C to observe the localization performance in

this room. Five trials of one minute each were allocated for each of the four possible

regions. The interval for events was still τ= 20 s. Therefore, there was a total of 60 events

again. The results from each trial are shown in Table 44 in Appendix B. In this section,

the confusion matrices in Table 33 summarize these results.

X1 was never mistakenly selected as the location of a target in X2, which supports

how different the signatures at X1 and X2 were. However, X2 was mistakenly selected as

the location of a target in X1 several times, most likely because in both cases only one
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Table 33. Confusion matrices with varying g for context-based localization in Room
C

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 5 0 4 1 10

X2 4 8 7 6 25
X3 6 7 4 8 25
X0 0 0 0 0 0

(a) g = 0

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 5 0 4 1 10

X2 4 8 7 6 25
X3 6 7 4 8 25
X0 0 0 0 0 0

(b) g = 1

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 5 0 3 1 9

X2 4 8 8 6 26
X3 6 7 4 8 25
X0 0 0 0 0 0

(c) g = 2

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 5 0 3 1 9

X2 4 7 8 6 25
X3 6 7 4 8 25
X0 0 1 0 0 1

(d) g = 3

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 4 0 2 2 8

X2 5 7 5 5 22
X3 5 7 5 7 24
X0 1 1 3 1 6

(e) g = 4

Actual Region
X1 X2 X3 X0

P
re

d
ic

te
d X1 0 0 0 0 0

X2 3 5 4 4 16
X3 4 1 2 4 11
X0 8 9 9 7 33

(f) g = 5

node was greatly affected so RSS fluctuations confused these regions.

It appeared, however, that xp = 2 and xp = 3 were both very frequent and that these

regions were often confused with each other. As g increased, the frequency of xp = 1 was

relatively the same and often successfully localized a target in that region. This supports

how unique X1’s signature was to the other two regions. However, when g = 5, this region

was never selected, which suggests that fluctuations in the system made it difficult to

select X1 when all nodes had to achieve P (1,n) >α.

The empty case selection was again non-existent with lower g but was dominant at

33 times when g = 5. This was 55.0% of the total selections though, and X2 and X3 were

still both frequently selected.

Table 34 displays the individual region performance metrics from these results. The

trends depicted in Figures 35 and 36 were expected with increasing g , but PD (x) re-

mained high with similar PF (x). The most probable selections of x 6= 0 performed fairly

well and evenly so. The ratio of PD (1) to PF (1) was impressive when g ≤ 4. On the other

hand, X2 and X3 both saw high PF (x). While X2 was also able to achieve high PD (2) up
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Table 34. Performance by region (PD (x),PF (x)) for context-based localization in
Room C using threshold requirements (g )

g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
Region PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x) PD (x) PF (x)

X1 33.3% 11.1% 33.3% 11.1% 33.3% 8.9% 33.3% 5.3% 26.7% 3.8% 0.0% 0.0%
X2 53.3% 37.8% 53.3% 37.8% 53.3% 40.0% 46.7% 40.0% 46.7% 33.3% 33.3% 24.4%
X3 26.7% 46.7% 26.7% 46.7% 26.7% 46.7% 26.7% 46.7% 33.3% 42.2% 13.3% 20.0%
X0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.2% 6.7% 11.1% 46.7% 57.8%

Average 28.3% 23.9% 28.3% 23.9% 28.3% 23.9% 26.7% 23.6% 28.3% 22.6% 23.3% 25.6%

(a) PD (x) by Region (b) PF (x) by Region

Figure 35. Effect of varying g on region performance (PD (x),PF (x)) in Room C

Figure 36. ROC graph for context-based region performance (PD (x),PF (x)) with varying
g in Room C (for X1-3, left to right is decreasing g ; for X0, left to right is increasing g )
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to 53.3%, X3 achieved PD (3) ≤ 33.3%. Therefore, these results indicate that confusion of

other regions for xtr ue = 3 was frequent despite xp = 3 being so prevalent.

On average, performance was relatively the same in all cases, but the best perfor-

mance was again when g = 4 when the average true and false positives were average

PD (x) = 28.3% and average PF (x) = 22.6%. While average PD (x) for g ≤ 4 were better

than the 25.0% of random guessing, they were not much greater. When g = 5 though,

the average PD (x) = 23.3% was less than 23.3% as more false positives were reported

and no X1 targets were accurately localized. This suggests that the absorbent materials

in the room made localization using this system difficult due to high fluctuations.

Interestingly, PF (x) remained low compared to results seen in the other scenarios; it

never went above 46.7% (for X3). The increase of xp = 0 frequency due to increasing g

was also high, but it completely reduced PD (1) to 0.0%. This is most likely because X1

depended largely on just one node and so requiring g = 5 when so much variation could

occur in the room made it difficult for xp = 1. In fact, according to the confusion matrix,

all other regions were preferred over X1.

Table 35 displays the accuracy and overall performance metrics. PD and P A were

low when g = N and while PF did decrease from 100.0%, it only decreased to 53.3%.

This decrease though was largely due to the surge in xp = 0 that eliminated xp = 1. Low

P A was due to a large part because of the fluctuations seen in the room. These results

suggest that a room with absorbent materials may benefit from more receiver nodes or

a method that weighted different nodes for different regions.

5.4.3 Comparison of Results.

All three scenarios of deploying the context-based method were met with greater

P A and lower PF than the cell-based method. Additionally, calibration time was much

lower, which allowed for more time to calibrate each region for a better offline data map.
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Table 35. Accuracy (P A) and overall localization performance (PD ,PF ) for context-
based localization in Room C using threshold requirements (g )

g PD PF P A

0 37.8% 100.0% 28.3%
1 37.8% 100.0% 28.3%
2 37.8% 100.0% 28.3%
3 35.6% 100.0% 26.7%
4 35.6% 93.3% 28.3%
5 15.6% 53.3% 23.3%

In all three scenarios, P A achieved was greater than random guessing (except when g = 5

for Room C). However, results were still not ideal.

Figure 37 depicts the P A trend in each room with respect to changing the threshold

parameter g . When g = N , low PF (x) was found in all cases as xp = 0 became more

frequent. While Room B was higher for all g , this was largely due to the fact that there

were only three possible regions to select from as opposed to the four in Rooms A and

C. In all three rooms, P A remained the same when g ≤ 2. In fact, individual localization

results (PD (x),PF (x)) did not change in this interval of g . This suggests that g more

greatly affects results when g was closer to N .

In all scenarios, P A decreased as g increased from 4 to 5. This was largely due to

xp = 0 being more frequent and raising the true negatives but often at the expense of true

positives for non-X0 regions. Interesting behavior occurred in Rooms B and C, where

P A at g = 4 was highest across all g . This occurred during a sort of compromise area

where all possible selections were observed instead of that observed when g = 5. Room

A did not observe this compromise area, possibly because the setup of the regions in

this scenario better affected calibration of the nodes.

Despite the fact that Rooms A and C both had three regions, Room A outperformed

Room C in P A. This suggests that the fluctuations of RSS due to absorbent materials

confused regions in Room C with metal furniture as opposed to the empty Room A.
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Figure 37. Comparison of accuracy performance (P A) in Rooms A, B, & C with varying g

If Room B were calibrated for three scenarios instead of two and then tested similarly

to Rooms A and C, its P A might be slightly worse than that of either other scenario at low

g , but with higher g , the lack of absorbent materials and the presence of metal objects

that help reflect signals might produce better results.

Other confounding variables include the position of the nodes with respect to the

context regions. For example, nodes in corners may receive more fluctuation than nodes

along wall edges or in the open. Nodes not in regions or not in a position for its LOS to

be blocked by a target in the region would not be able to produce differing results from

other regions and so would be unhelpful in localization. The exception would be when

the target was not in any region and so the empty case would have been reported should

this node have been activated when it was never activated for other regions.

Figure 38 is a ROC graph that depicts the overall performance metrics for PD and PF

in the three different scenarios. Room B was able to record both ends of the PF range,

and PD decreased the least in this scenario over the range of g . This only confirms that

the system using many fewer regions would of course perform better. The scenarios with
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Figure 38. ROC graph comparing the overall performance (PD ,PF ) in Rooms A, B, & C
with varying g (left to right, g decreases)

three regions were more interesting, but the results were often worse. Room A was only

able to achieve PF as low as 40.0% but also observed a lowered PD from 46.7% to 17.8%,

which was worse than random guessing. For Room C, in order to lower PF to 53.3%, PD

went from 37.8% to just 15.6%.

A large factor was that the method did not allow the empty case to be reported unless

certain parameters were met. What was not expected was that most, if not all, non-X0

regions actually were able to produce valid P (x,n) for selection. Therefore, X0 was not

more frequently selected, especially with lower g . This would be a future investigation

of the system to reduce PF while also not sacrificing PD as heavily.

In conclusion, deploying this method across all three scenarios resulted in relatively

similar results. This supports the idea that fingerprinting can be deployed in many sit-

uations indiscriminately. However, a smaller number of context regions would improve

P A. Also, a room with a lot of absorbent materials may also fail to achieve lower PF as a

result of large fluctuations.
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5.5 Summary

This chapter deployed and evaluated the RSS DfP system for both detection and lo-

calization. Detection using a simple setup was highly favorable. Signal attenuation at

the midpoint of the empty test room was 4.0±0.8 dB. At six other points along the line of

sight, signal attenuation at different distances ranged from 2.2 to 4.4 dB. Theoretically,

the target should have attenuated signals more as it approached either node, but the

inverse was observed; Ra(d) was unexpectedly smaller near either node. This could be

explained by a high fs that was calibrated using the average maximum Rs . Despite this

unexpected behavior, detection using the chosen method could work.

Detection experiments were conducted at seven points along the LOS. PD was high

in all cases; at every distance except d = 1.0 ft, PD ≥ 99.6%. At d = 1.0 ft, PD was at

its lowest, but was still 81.8%. However, as Ra was smaller at distances closer to either

node, PF was also higher. PF reached up to 53.2% at d = 1.0 ft and was 51.0% and 49.6%,

respectively at d = 7.5 and 9.0 ft. This was a huge difference from the low values observed

near the center of the room (1.6% ≤ PF ≤ 6.4%). Again, this could be due to the high fs

that did not allow the system to collect smaller RSS.

Localization was tested to expand the scope of the detection problem. However, cell-

based localization performed poorly. In fact, P A ≤ 5.4% and PF ≥ 88.3%, both of which

came from two different sets of orientation data. As a result, two ideas were investigated

to improve upon this method.

To lower PF , g was introduced to force a candidate location to have a certain number

of nodes that returned a p-value >α= 0.05. In the cell-based experiment, this was able

to lower PF = 96.3% to just 42.3%. To raise the low P A, the criterion for a correct selection

was expanded to adjacent cells. As a result, the P A of all the data sets used went from

just 4.0% to 22.2%, so limiting the number of possible locations could improve P A. The

context-based method adapted the cell-based method with these two ideas.
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The context-based method was first deployed in the same room as the previous ex-

periments and only calibrated three locations of interest. As a result,when g = 5, the

accuracy was P A = 28.3% with only PF = 40.0%. Therefore, this method improved upon

the cell-based method. Additionally, whereas the cell-based method was calibrated in

almost two hours, the new method only used fifteen minutes.

To test the robustness of the system for localization, experiments were conducted

in two more typical rooms: a computer room and a bedroom. The results were fairly

comparable in all cases. At g = 5, Room B achieved P A = 42.2% and PF = 0.0%, and

Room C achieved P A = 23.3% and PF = 53.3%. The greater success of Room B how-

ever, could be attributed to having only two regions instead of three like Rooms A and C

had. Also, Room C’s poorer performance could be attributed to the absorbent materials

in that room causing large fluctuations that made it difficult to achieve discriminating

calibration data for the different regions.

This chapter showed high success of the detection system. The cell-based localiza-

tion method was found to have serious flaws, and so a new method was developed to

improve upon it. As expected, this context-based method improved the localization per-

formance. Despite not achieving optimal localization performance, the results showed

promise for future DfP system deployment on top of home automation RF devices.
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VI. Summary and Conclusions

The research presented in this thesis aimed to develop a proof of concept for a DfP

system capable of detection and localization that exploits the RF signals transmitted in

a home automation network.

Chapter II presented background information and a literature review of this topic.

Various techniques for human detection and localization were discussed. Ultimately, a

radio-based, device-free, and passive technique was determined to be ideal for indoor

localization because of its low cost, covert performance, and ability to be installed on

top of home automation networks. Such a technique can exploit signals used in a home

automation network and detect changes in the environment to passively detect the tar-

get without requiring the target to carry any devices.

Several methods for detection and localization were also presented. RSS was pre-

ferred over ToA or AoA for DfP techniques because the measurement was easy to mea-

sure and the signals already existed in wireless home automation networks, which low-

ered costs. For one-receiver, DfP detection, the baseline signal comparison approach

was chosen for its simplicity. For multiple-receiver, RSS-based DfP localization, the

probabilistic fingerprinting method was chosen since it outperformed deterministic meth-

ods and could, unlike RTI, be used in networks with fewer nodes. The centralized ap-

proach was also chosen to allow all receiving nodes to share information and thus in-

crease accuracy.

Related works were reviewed to further inform the selection of different techniques

and methods. The focus of current indoor localization research was observed to mostly

improve upon existing methods and to choose a best method. However, none of the re-

viewed works deployed their system on devices specifically intended for home automa-

tion. Doing so, however, could generalize the DfP method for farther reach.
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Insteon devices were chosen among the home automation technologies because of

their simulcasting feature, because they operate on the less-crowded 915 MHz band,

and because of the availability of papers detailing its technology. However, an investi-

gation of the technology revealed that Insteon devices did not record RSS. Therefore, a

cheap alternative was sought for the proof of concept.

Chapters III and IV presented various topics that contributed to the development

of the DfP detection and localization system. SDR receivers were used as the alterna-

tive for recording RSS. The Insteon network was constructed using a Hub and Keypads.

Since dual-band Insteon devices sent out RF messages only on the powerline zero cross-

ing, scripts were developed to generate Insteon messages for collection by exploiting the

Hub’s Internet connectivity and to incorporate into the algorithm a filter threshold of the

silent periods when the next messages were waiting for the next zero crossing.

Chapter V then deployed this system to test its capabilities and limitations for detec-

tion and localization. Detection was performed using a simple setup tripwire consisting

of one Insteon Hub and one receiver node. Localization was tested first using a cell-

based method. After the poor results, a context-based method was developed and then

tested in the same room as well as two other rooms.

6.1 Conclusions of Research

The proof-of-concept system was developed as an RSS-based DfP system capable of

detection and localization. The system in this research used Insteon home automation

devices and attempted to exploit the RF signals transmitted between these devices on

the 915 MHz frequency band.

When deployed, the system performed very well in detection. Ra(d) was observed to

range from 2.2 to 4.4 dB depending on the LOS distance from the Insteon Hub. Detec-

tion experiments were conducted at seven LOS distances. A detection event occurred if
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an observed RSS value in a one-second interval was between a threshold set during cal-

ibration. In all cases, PD ≥ 81.8%, and even PD = 100.0% was observed. Some distances

suffered from high PF (up to 53.2%). This was largely because of the smaller thresholds

as a result of smaller Ra . However, when Ra was higher, PF was as low as 1.6%.

The cell-based localization method did not perform as well. In fact, P A was only as

high as 5.4%, and the lowest PF = 88.3%. When the method was adapted to include a

threshold parameter requiring a certain number of nodes for a selected cell return a p-

value greater than 0.05, PF was able to lower to just 42.3%. To improve P A, a proximity

argument for true positives was added and was able to raise the average P A from just

4.0% to 22.2%.

As a result of these improvements, the context-based method was developed with a

threshold parameter and a limit to the number of possible locations. These locations

were a few context regions instead of many single cells that spanned the entire room.

When deployed with this new method to look for just three context regions, the system

was able to achieve P A = 28.3% and just PF = 40.0%. In addition, calibration time went

from two hours to just fifteen minutes. Therefore, significant improvements were devel-

oped on the localization system for the proof of concept.

To test the robustness of the system in other rooms that better represented poten-

tial areas of deployment, the system was deployed in a computer room and a bedroom.

The results were comparable in all three rooms. Room B, with just two context re-

gions, achieved P A = 42.2% and perfect PF = 0.0%. Room C achieved P A = 23.3% and

PF = 53.3%, the worst of the three results, but this suggested that absorbent materi-

als like beds and pillows could cause large fluctuations that made it difficult to achieve

distinct calibration data for the different regions. Despite not achieving optimal perfor-

mance in any case, the results showed promise for future DfP system deployment on top

of home automation RF devices.
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6.2 Significance of Research

This research sought to provide a proof of concept for a device-free passive system

capable of detection and localization of a target through the exploitation of a home au-

tomation network’s radio frequency signals. The proof of concept was developed using

Insteon devices and the associated IoT home automation network. Although using In-

steon technology had a few limitations for DfP detection and localization, investigations

resulted in creating tools that allowed for a proof-of-concept system that limited costs

and performed covertly. Ultimately, this research demonstrated the feasibility of exploit-

ing a home automation network for DfP indoor detection and localization.

During deployment and testing, the system performed very well in detection, but lo-

calization provided less-than-desirable results, even with an improvement in the meth-

ods. Nevertheless, the research was able to demonstrate that a cell-based fingerprint-

ing method performs worse than a context-based fingerprinting method. Thresholds

for fingerprinting were also demonstrated to reduce PF . Furthermore, similar results in

three different scenarios demonstrated the robustness of the system, while differences

demonstrated potential effects of different rooms.

6.3 Recommendations for Future Research

Despite these achievements and advancements, this research would like to suggest

future avenues of research and development for a better proof-of-concept system.

Development with Insteon.

Several limitations were encountered during the development of the proof of con-

cept using Insteon devices. Chief among these were no intrinsic ability to compute RSS

using just Insteon devices and the inconvenience of waiting for the zero crossing be-

tween transmissions. These limitations required the proof of concept in this research
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to use separate devices to collect RSS and to incorporate an unreliable silent period fil-

ter threshold into the collection algorithms. An ideal proof of concept would use only

Insteon devices for collection of RSS and could do so without having to mind silent pe-

riods.

The system should be deployable on top of existing devices and thus eliminate the

current DCPS unit, reducing monetary and installation costs further. The Insteon de-

vices could individually collect RSS from other devices and send them to a central In-

steon node like the Hub. When prompted from the user, this central node could run the

DfP program and report to the user the results via the mobile app or even automatically

control appliances and other pre-programmed settings.

One avenue towards achieving such a system would be to develop this system as an

Insteon developer. Becoming an Insteon developer requires applying to the company,

a process which could take weeks. However, doing so could allow modifications to the

Insteon devices and API, and additions to the Insteon protocol to overcome these lim-

itations for DfP purposes. For example, a command may be added that sends discrete

messages for DfP purposes only from dual-band devices without needing to synchronize

with the powerline zero crossing. These messages could contain RSS from the nodes.

Localization performance could improve greatly as a result.

Number of Devices.

While Section 2.3 discussed related works that used up to sixteen nodes to achieve

their high performance results, this research attempted to perform accurate localization

using only three or five nodes. The reasoning behind this choice was to simulate a typ-

ical home automation network, but with increased home automation prevalence, the

number of nodes in a room could be higher. Therefore, future research may increase the

number of nodes to achieve better results.
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Silent Period Filter Threshold.

A silent period filter threshold was calibrated to minimize the RSS captured when the

Insteon signal was not transmitting. But, in calculating the signal attenuation levels for

detection, a behavior inverse to what was expected was observed. Although the effect

of the filter threshold should not have mattered using the detection method, a possible

explanation was the high fs calibrated. Thus, investigating a method to eliminate the

silent period could greatly improve the system.

Weighting Algorithm.

Another future recommendation for research based on experiment results is a weight-

ing algorithm to improve P A. Currently, the method described in the proof of concept

only enforced a requirement on a number of nodes that must produce P (c,n) > 0.05.

However, this does not discriminate which nodes for a particular region and can accept

a maximum probability from any group of nodes. For example, a target in X2 of Room

C may be better localized if just P (2,4) and P (1,4) were high as opposed to the current

method that would accept P (3,4) and P (5,4) for meeting the requirement. In general,

the RSS DfP localization method could be improved.

Real-Time Analysis & Other Script Improvements.

A limitation of this system was that collection and location selection occurred sepa-

rately. Ideally, these two processes would be performed in real time such that a location

would be reported as collection was occurring. This was acceptable for purposes of the

proof of concept, but with improved methods and better incorporation of the system

into devices, this would be a definite consideration. This location selection should be

done at the central hub or on some cloud server since individual Insteon devices may

not be equipped to handle such computations.

145



Scripts were also largely experiment-specific. For applications, live collection should

loop for as long as the user wishes to perform detection or localization and would con-

tinuously print out results. Also, since the DCPS would already be connected to the

Internet for message generation, the script could alternatively print the output in other

places, including social media like in ref. [23]. In detection, the script should also be able

to detect along the LOS without inputting d .

Power Consumption.

Another consideration for future development is power consumption, especially due

to message generation. If the system were deployed on only plug-in or wall devices, this

would not be as big of an issue. But for devices that are remote or are for example LED

bulbs, having additional functions for DfP detection and localization may decrease the

life expectancy of these devices or cause large increases in electricity billing. Message

generation should only be used when detection and localization is prompted, but to

have message generation also send messages that perform another important function

like checking the statuses of devices, perhaps this would not be an issue.

Other Home Automation Protocols.

As discussed in the background section, a popular frequency band for indoor local-

ization is the 2.4 GHz band. A DfP system that exploits this band may not have to worry

about silent periods or message generation since the band is often highly congested

from various devices. Thus, exploiting these RF signals for RSS DfP detection and local-

ization would not necessarily require message generation scripts. In addition, some of

the other home automation protocols may have a field for RSS, or their devices may be

programmable to include these recordings. A consideration, however, is that there is a

lot of interference in this band, which could cause fluctuations that affect the RSS.
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Appendix A. Python Script for On-Demand Insteon RF Message Field

The following Python 2.7 code generates a field of 915 MHz signals containing In-

steon command messages to an unlinked device. It requires a connection to the In-

ternet and for the network to be the same as that of the Insteon Hub. Authentication

credentials are required the first time this script is initiated.
1 import sys
2 import argparse
3 import u r l l i b 2
4 from bs4 import BeautifulSoup
5 import base64
6 import socket
7 import time
8 import pathlib2 as pathlib
9

10 def i n i t ( ) :
11 global hub_address
12 global repeat_send
13 global auth_creds
14 global delay
15

16 parser = argparse . ArgumentParser ( add_help=True ,
17 epilog= ’ example : \ n\ t # . / InsteonMsgGeneration . py −s 1234AB −c 100 ’ ,
18 description= ’ send Insteon command to Hub over HTTP ’ )
19

20 parser . add_argument ( ’−s ’ , ’−−src ’ , dest= ’ src ’ ,
21 default=None,
22 help= ’ Insteon hub address ( IP : port ) ; i f empty , program w i l l check network for hub ’ )
23

24 parser . add_argument ( ’−a ’ , ’−−auth ’ , dest= ’ auth ’ ,
25 help= ’hub authentication credentials of form user : pass ’ )
26

27 parser . add_argument ( ’−c ’ , ’−−count ’ , dest= ’ count ’ ,
28 type=int ,
29 help= ’number of times to send packet ( can cancel with C t r l +C) ’ )
30

31 parser . add_argument ( ’−t ’ , ’−−time ’ , dest= ’ time ’ ,
32 type= f loat , default =0.5 ,
33 help= ’ delay in seconds between sending messages ’ )
34

35 args , unknown_args = parser . parse_known_args ( )
36

37 i f args . src :
38 hub_address = args . src
39

40 i f args . auth :
41 auth_creds = args . auth
42

43 i f args . count :
44 repeat_send = args . count
45

46 i f args . time :
47 delay = args . time
48

49

50 def grab_hub_info ( ) :
51 resp = u r l l i b 2 . urlopen ( ’ https : / / connect . insteon .com/ getinfo . asp ’ )
52 page = resp . read ( )
53 soup = BeautifulSoup ( page , ’ lxml ’ )
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54 tables = soup . f i n d A l l ( ’ table ’ , a t t r s ={ ’ bgcolor ’ : ’ #FFFFFF ’ } )
55 count_hubs = len ( tables )
56 i f count_hubs == 0 :
57 print ’No Hubs have been connected to t h i s network ’
58 sys . e x i t ( )
59 rows = [ ]
60 for table in tables :
61 rows . append( table . f i n d A l l ( ’ t r ’ ) )
62 a l l _ g e t _ i n f o = [ ]
63 for i in range ( count_hubs ) :
64 get_info_header = [ ] #
65 get_info_value = [ ] # a l l values f o r s i n g l e Hub
66 for row in rows [ i ] :
67 j = 1 # counter
68 for td in row . f i n d _ a l l ( ’ td ’ ) :
69 # get t e x t
70 # table has three columns ; c1 i s heading , c2 i s space , c3 i s value
71 i f j % 3 == 1 :
72 get_info_header . append( td . g e t _ t e x t ( ) . encode ( ’ a s c i i ’ ) . s t r i p ( ’ \n ’ ) )
73 e l i f j % 3 == 0 :
74 get_info_value . append( td . g e t _ t e x t ( ) . encode ( ’ a s c i i ’ ) . s t r i p ( ’ \n ’ ) )
75 j += 1
76 get_info_dict = zip ( get_info_header , get_info_value ) # tuple of s i n g l e Hub ’ s additional info
77 a l l _ g e t _ i n f o . append( get_info_dict ) # append to a l l info l i s t
78 a l l _ i n t e r n a l _ i p s = [ ]
79 for l i n k in soup . f i n d _ a l l ( ’ a ’ ) :
80 a l l _ i n t e r n a l _ i p s . append( l i n k . get ( ’ href ’ ) )
81 all_hubs_info = zip ( a l l _ i n t e r n a l _ i p s , a l l _ g e t _ i n f o ) # tuple l i s t i n g each hub ’ s IP and info
82 good_hubs = [ ]
83 for i in range ( len ( all_hubs_info ) ) :
84 is_configured_connected = all_hubs_info [ i ] [ 1 ] [ 0 ] [ 1 ]
85 i f is_configured_connected == ’TRUE ’ :
86 good_hubs . append( all_hubs_info [ i ] )
87 i f len ( good_hubs ) == 0 :
88 print ’No Hubs connected to an account ’
89 sys . e x i t ( )
90 good_hubs_info = good_hubs
91 all_ips_and_ids = [ ]
92 for i in range ( len ( good_hubs_info ) ) :
93 ip_and_id = [ good_hubs_info [ i ] [ 0 ] , good_hubs_info [ i ] [ 1 ] [ 1 2 ] [ 1 ] ]
94 all_ips_and_ids . append( ip_and_id )
95 return all_ips_and_ids
96

97

98 def send_message ( hub_ip , hub_port , hub_id , msg, nmsg ) :
99 s = socket . socket ( socket . AF_INET , socket .SOCK_STREAM)

100 s . connect ( ( hub_ip , hub_port ) )
101 s . send (msg)
102 while 1 :
103 response = s . recv (1024)
104 i f ’ 200 ’ in response : # OK
105 break
106 else : # Failed
107 sys . e x i t ( response )
108 s . close ( )
109

110 return ’Hub ’ + hub_id + ’ sent ’ + s t r (nmsg) + ’ message ( s ) \n ’
111

112

113 def scrape_getinfo ( ) :
114 info_good_hubs = grab_hub_info ( ) # scrape Insteon s i t e f o r Hubs connected and configured on l o c a l network
115 [ hub_url , hub_id ] = [ info_good_hubs [ 0 ] [ 0 ] , info_good_hubs [ 0 ] [ 1 ] ] # j u s t the f i r s t hub
116 good_hub_info = [ hub_url , hub_id ]
117 return good_hub_info
118

119
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120 def save_info ( destination_set , auth_set , hub_ip , hub_port , hub_id , credentials ) :
121 i f destination_set == False :
122 new_hubs_file = open( ’prevHubConnect ’ , ’w’ )
123 new_hubs_file . write ( hub_ip + ’ : ’ + s t r ( hub_port ) + ’ ’ + hub_id )
124 new_hubs_file . close ( )
125 i f auth_set == False :
126 new_hubs_file = open( ’ prevCreds ’ , ’w’ )
127 new_hubs_file . write ( credentials )
128 new_hubs_file . close ( )
129

130

131 def main ( ) :
132 i n i t ( ) # i n i t i a l i z e global variables
133

134 # s e t source
135 destination_set = False
136 try :
137 hub_address
138 except NameError : # no user−inputted hub address , check f i l e
139 previous_hubs_file = pathlib . Path ( ’prevHubConnect ’ )
140 i f previous_hubs_file . i s _ f i l e ( ) :
141 previous_hubs = open( ’prevHubConnect ’ , ’ r ’ ) . readline ( ) # parse f i l e f o r f i r s t previous hub
142 i f previous_hubs == ’ ’ : # empty f i l e
143 [ hub_url , hub_id ] = scrape_getinfo ( )
144 else : # s p l i t the l i n e f o r the url and id
145 destination_set = True
146 [ hub_url , hub_id ] = previous_hubs . s p l i t ( ’ ’ , 1 )
147 else : # not valid f i l e , scrape web page
148 [ hub_url , hub_id ] = scrape_getinfo ( )
149 else :
150 hub_url = hub_address
151 hub_id = ’ Your Hub ’
152 [ hub_ip , hub_port ] = hub_url . s t r i p ( ’ http : / / ’ ) . s p l i t ( ’ : ’ ) # s p l i t Hub URL into IP and port
153

154 # encode c r e d e n t i a l s
155 auth_set = False
156 try :
157 auth_creds
158 except NameError :
159 previous_hubs_file = pathlib . Path ( ’ prevCreds ’ )
160 i f previous_hubs_file . i s _ f i l e ( ) :
161 previous_creds = open( ’ prevCreds ’ , ’ r ’ ) . readline ( ) # parse f i l e f o r f i r s t previous hub
162 i f previous_creds == ’ ’ : # empty f i l e
163 sys . e x i t ( ’No authorization credentials found ’ )
164 else : # s p l i t the l i n e f o r the url and id
165 auth_set = True
166 these_auth_creds = previous_creds
167 else : # not valid f i l e , scrape web page
168 sys . e x i t ( ’No f i l e for authorization credentials found ’ )
169 else :
170 these_auth_creds = auth_creds
171 auth_encode = base64 . b64encode ( these_auth_creds ) # encode basic authentication c r e d e n t i a l s
172 auth = ’ Authorization : Basic ’ + auth_encode + ’ \ r \n ’
173

174 # c r a f t GET message
175 msg = ’GET /3?02620000000F1000= I =3 HTTP/1.1\ r \n ’ \
176 + ’Cache−Control : max−age=0\ r \n ’ \
177 + auth + ’ \ r \n\ r \n ’
178

179 # send message ( s ) and print r e s u l t to screen
180 try :
181 repeat_send
182 except NameError :
183 try :
184 n = 1
185 while True :
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186 print send_message ( hub_ip , int ( hub_port ) , s t r ( hub_id ) , msg, n)
187 time . sleep ( delay )
188 n += 1
189 except KeyboardInterrupt :
190 pass
191 else :
192 try :
193 for nrepeat in range ( repeat_send ) :
194 print send_message ( hub_ip , int ( hub_port ) , s t r ( hub_id ) , msg, nrepeat +1)
195 time . sleep ( delay )
196 except KeyboardInterrupt :
197 pass
198 save_info ( destination_set , auth_set , hub_ip , hub_port , hub_id , these_auth_creds )
199

200 i f __name__ == ’ __main__ ’ :
201 main ( )
202 e x i t ( 0 )
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Appendix B. Additional Data from Experiments

Table 36. Results for event period calibration for LOS detection

Trial ne Re (dB) σs (dB)

1 372 58.3 1.0
2 374 58.3 1.1
3 380 58.4 1.4
4 384 58.4 1.1
5 385 58.4 1.2
6 378 58.5 0.8
7 383 58.6 0.9
8 376 58.6 1.2
9 375 58.7 0.8

10 376 58.8 0.9
11 381 58.9 1.0
12 382 58.9 1.1
13 389 59.1 0.8
14 371 59.1 1.4
15 375 59.5 1.0

Avg 58.7 1.1

(a) d = 1.0 ft

Trial ne Re (dB) σs (dB)

1 354 56.6 0.8
2 363 56.5 0.9
3 360 56.4 0.9
4 364 56.6 1.0
5 372 56.6 0.8
6 362 56.5 1.2
7 369 56.6 0.8
8 365 56.6 0.9
9 371 56.5 1.0

10 378 56.6 1.2
11 389 56.5 1.5
12 373 56.7 0.9
13 387 56.7 0.9
14 361 56.8 1.0
15 370 56.7 1.2

Avg 56.6 1.0

(b) d = 2.5 ft

Trial ne Re (dB) σs (dB)

1 361 57.1 1.3
2 353 56.9 1.2
3 375 57.1 1.1
4 360 57.0 1.2
5 372 56.9 1.4
6 363 57.0 1.1
7 373 57.0 1.0
8 366 57.0 0.8
9 362 57.0 0.9

10 367 56.9 1.1
11 380 57.0 1.1
12 366 57.0 0.9
13 380 57.0 1.3
14 377 57.2 0.9
15 376 57.0 0.9

Avg 57.0 1.1

(c) d = 4.0 ft

Trial ne Re (dB) σs (dB)

1 298 57.2 1.1
2 344 57.1 1.0
3 372 57.3 1.0
4 368 57.3 1.2
5 368 57.3 1.0
6 373 57.3 1.5
7 364 57.3 1.1
8 375 57.4 0.9
9 365 57.3 0.9

10 373 57.4 0.9
11 376 57.3 0.9
12 367 57.3 1.3
13 374 57.4 1.1
14 363 57.3 1.2
15 379 57.2 1.1

Avg 57.3 1.1

(d) d = 6.0 ft

Trial ne Re (dB) σs (dB)

1 367 58.7 0.8
2 365 58.7 0.9
3 377 58.7 1.1
4 360 58.7 0.8
5 359 58.7 0.8
6 374 58.6 1.2
7 370 58.7 0.9
8 374 58.7 1.2
9 372 58.5 1.3

10 355 58.4 1.0
11 363 58.5 0.9
12 377 58.5 1.2
13 377 58.5 1.4
14 378 58.6 1.1
15 383 58.6 1.0

Avg 58.6 1.1

(e) d = 7.5 ft

Trial ne Re (dB) σs (dB)

1 377 59.0 1.1
2 378 59.1 1.1
3 380 59.1 1.0
4 374 59.1 1.1
5 372 59.1 1.1
6 352 58.8 0.9
7 361 58.7 1.4
8 358 58.7 1.0
9 369 58.8 1.1

10 366 58.8 1.2
11 370 58.8 1.3
12 356 58.9 0.9
13 364 58.9 1.2
14 354 58.8 1.5
15 358 59.0 1.4

Avg 59.1 1.2

(f) d = 9.0 ft
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(a) d = 1.0 ft (b) d = 2.5 ft

(c) d = 4.0 ft (d) d = 6.0 ft

(e) d = 7.5 ft (f) d = 9.0 ft

Figure 39. Histograms of RSS distribution from detection collection at different dis-
tances, d
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P
re

d
ic

te
d

C
el

lo
fT

ar
ge

t

1 0 3 2 3 2 0 1 3 3 1 11 1 2 5 2 2 2 3 1 1 0 0 0 0 0 0 48
2 1 2 2 0 1 14 2 2 1 1 0 1 1 0 0 1 0 0 2 0 0 0 3 3 0 0 37
3 1 0 1 0 0 0 1 2 0 0 1 0 0 2 0 0 0 0 0 1 0 0 0 1 2 0 12
4 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 5
5 0 0 0 0 0 3 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 8
6 4 0 0 0 2 9 2 1 0 1 0 0 1 4 0 0 1 0 0 5 0 0 0 2 4 2 38
7 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 1 0 9
8 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 2 1 0 12
9 3 2 1 0 0 2 2 1 1 0 1 1 0 0 0 0 0 0 2 2 2 0 1 2 4 0 27

10 1 0 0 0 1 14 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 21
11 0 2 0 1 1 0 4 1 1 3 9 4 5 1 1 1 3 9 0 0 0 1 3 1 0 1 52
12 1 25 12 22 8 2 10 11 16 8 4 9 10 10 9 3 10 6 6 3 1 0 0 0 1 1 188
13 0 1 4 2 10 0 4 4 3 4 3 2 9 0 4 5 2 8 10 6 1 1 1 3 0 2 89
14 1 0 7 3 3 0 3 3 4 1 6 4 1 7 7 8 11 2 3 1 1 0 1 0 1 2 80
15 0 2 1 0 3 0 1 0 2 2 0 4 1 0 1 1 0 2 1 1 0 0 0 1 0 1 24
16 3 0 0 0 0 0 0 1 0 0 1 4 3 1 1 0 0 2 0 3 1 6 12 5 1 4 48
17 17 7 1 9 3 7 4 1 5 4 5 9 6 9 0 2 6 5 6 5 14 15 14 3 11 14 182
18 1 3 6 4 6 1 11 9 4 3 6 5 1 7 11 10 2 0 7 1 1 0 0 1 3 1 104
19 0 1 1 1 2 0 0 1 0 0 2 1 2 2 0 1 1 2 0 1 3 6 0 4 1 1 33
20 5 0 2 0 0 0 1 3 0 3 0 2 2 1 3 2 0 4 6 8 10 11 14 11 12 6 106
21 10 3 8 6 8 4 3 4 5 12 1 6 6 6 8 5 12 3 5 8 14 6 2 0 13 17 175
22 1 7 11 5 8 0 6 7 10 9 2 3 2 4 5 15 7 2 2 2 4 0 0 3 0 1 116
23 1 0 0 0 0 0 0 1 2 1 3 1 4 1 0 0 1 7 0 0 1 1 3 0 0 2 29
24 1 0 0 1 0 0 2 2 2 2 1 1 2 0 0 0 0 4 2 1 1 3 0 1 0 0 26
25 3 2 1 2 1 0 1 2 0 3 2 0 2 0 6 4 1 1 3 7 3 7 4 6 2 4 67
26 4 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2 1 2 9 2 1 24

Table 37. Confusion matrix for cell-based localization experiment using O1 data set

Actual Cell of Target
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

P
re

d
ic

te
d

C
el

lo
fT

ar
ge

t

1 0 0 6 2 3 0 3 8 6 7 3 2 4 3 7 3 7 4 0 2 8 5 0 0 1 8 92
2 2 0 1 0 1 0 0 1 0 0 0 1 3 0 0 0 0 2 2 3 3 6 5 3 3 4 40
3 0 7 14 11 18 0 10 16 11 4 22 13 15 9 16 20 6 15 15 5 2 0 0 0 0 2 231
4 5 1 1 0 2 0 2 2 0 2 0 0 0 0 3 1 0 1 5 12 5 0 4 5 4 2 57
5 2 3 0 0 1 1 3 2 1 1 0 3 1 2 1 1 2 2 3 7 2 4 2 3 0 2 49
6 2 0 4 0 1 2 0 1 1 0 0 0 0 0 2 0 0 0 1 3 0 1 1 14 4 1 38
7 2 18 13 19 15 1 17 8 14 12 9 12 19 8 9 10 8 14 5 4 3 2 2 0 1 6 231
8 3 2 2 2 3 0 4 5 4 1 8 4 5 8 5 4 11 5 6 6 5 4 1 2 2 3 105
9 2 2 2 1 3 1 2 3 0 2 0 1 0 0 2 3 3 0 0 2 2 3 2 1 1 2 40

10 6 3 3 5 4 2 1 1 0 2 6 2 2 4 1 2 1 1 4 4 4 3 2 2 9 8 82
11 5 0 0 0 1 1 3 0 1 1 3 3 0 1 0 0 2 1 0 2 4 3 18 1 1 1 52
12 16 14 6 16 2 12 5 4 8 15 0 12 5 15 1 3 13 8 5 1 13 16 16 3 7 16 232
13 0 0 0 1 0 1 0 0 0 3 0 0 2 0 3 5 0 0 1 2 1 1 2 1 2 1 26
14 2 4 0 1 2 0 1 1 3 4 2 2 3 4 3 2 4 7 4 2 1 6 0 0 0 0 58
15 8 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 2 1 4 3 0 8 21 3 56
16 1 1 0 0 0 11 1 0 1 1 1 1 0 0 0 3 0 0 1 0 1 0 1 1 0 0 25
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2
18 0 0 0 0 0 4 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 2 0 0 11
19 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 6
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2
22 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4
23 0 3 7 2 1 18 3 1 9 1 0 1 0 3 4 2 1 0 2 2 0 1 1 1 2 1 66
24 0 0 0 0 1 0 1 2 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 3 0 0 13
25 1 0 0 0 1 2 1 4 1 1 2 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 16
26 2 0 1 0 1 1 1 0 0 1 1 0 0 1 2 1 1 0 2 0 0 0 1 8 1 0 25

Table 38. Confusion matrix for cell-based localization experiment using O2 data set
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Actual Cell of Target
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

P
re

d
ic

te
d

C
el

lo
fT

ar
ge

t

1 1 13 19 8 12 0 17 19 21 16 23 6 13 11 19 19 12 12 8 3 2 6 3 1 0 1 265
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 2 0 6
3 8 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 2 1 3 2 5 0 27
4 0 1 5 0 2 9 2 1 4 3 2 5 2 0 1 4 1 0 3 2 9 4 3 5 1 1 70
5 2 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 1 0 2 6 0 14
6 0 3 0 2 1 0 1 0 0 0 4 0 0 0 1 1 0 1 1 2 1 0 0 1 1 0 20
7 14 1 1 1 0 0 0 0 0 2 1 1 0 1 0 0 0 1 5 6 8 11 21 6 12 12 104
8 0 0 0 0 1 3 0 0 0 1 0 0 0 1 0 0 0 0 2 1 0 0 0 0 1 0 10
9 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 6

10 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 5
11 14 27 17 36 12 2 18 12 23 23 15 40 40 40 18 20 37 41 11 4 18 29 5 1 3 24 530
12 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 13
13 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 1 1 0 1 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 9
15 1 1 3 3 2 1 0 4 0 0 0 2 0 0 2 0 0 0 4 4 1 0 0 1 0 0 29
16 0 0 0 0 0 3 2 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 8
17 4 7 3 0 19 1 9 10 6 4 0 3 3 1 9 10 2 0 6 14 8 0 0 7 8 9 143
18 3 5 8 4 5 9 4 1 1 5 0 1 1 1 4 4 2 0 10 11 4 1 0 6 4 2 96
19 0 0 0 1 0 3 1 0 1 0 0 1 0 0 1 0 0 0 1 2 0 0 0 0 0 1 12
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2
21 3 0 0 0 1 4 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 1 0 13
22 1 0 1 1 1 3 1 5 1 0 1 0 0 2 2 0 0 0 4 4 0 0 0 2 2 1 32
23 1 1 0 0 2 1 2 0 1 1 6 1 0 1 0 0 2 4 0 0 1 4 21 1 2 1 53
24 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
25 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2
26 6 0 3 1 2 0 2 6 1 5 2 0 1 0 1 1 1 0 4 4 5 1 2 20 10 7 85

Table 39. Confusion matrix for cell-based localization experiment using O3 data set

Actual Cell of Target
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

P
re

d
ic

te
d

C
el

lo
fT

ar
ge

t

1 2 14 19 21 22 0 13 15 18 7 33 24 22 16 19 26 18 28 17 6 3 0 1 3 1 7 355
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 2 0 6
3 6 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 4 5 2 15 5 9 2 53
4 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 3 0 0 8
5 0 0 0 0 0 8 0 0 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 13
6 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 9
7 7 1 2 7 10 0 6 4 4 8 4 5 22 6 7 6 6 13 6 4 4 19 7 1 0 8 167
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
11 10 11 1 10 2 9 5 1 6 13 0 11 5 18 3 2 15 7 1 1 10 7 0 0 4 10 162
12 13 12 9 11 4 1 7 8 1 9 7 7 7 6 8 4 4 5 16 24 18 25 20 18 17 19 280
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 8 12 20 7 9 9 8 13 19 15 0 6 1 5 13 7 10 1 7 7 14 2 2 4 9 10 218
18 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
19 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
20 0 0 1 0 0 1 2 1 0 1 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 10
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 6 10 7 4 10 18 14 13 8 4 0 3 1 7 10 14 3 0 9 10 3 0 0 4 9 2 169
23 1 0 0 0 2 2 3 0 3 1 7 2 1 1 0 0 2 4 0 0 0 3 11 1 1 0 45
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 5 0 1 0 1 0 1 5 1 1 3 0 0 0 0 0 0 0 2 3 1 0 1 20 8 1 54

Table 40. Confusion matrix for cell-based localization experiment using O4 data set
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Actual Cell of Target
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

P
re

d
ic

te
d

C
el

lo
fT

ar
ge

t
1 3 17 26 31 17 0 25 20 32 25 22 33 39 34 29 32 36 32 16 11 8 12 1 0 0 12 513
2 0 0 0 1 0 2 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 3 0 0 10
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 1 1 6 1 3 2 0 0 0 0 3 1 0 1 0 0 2 0 1 1 0 0 0 23
7 13 2 4 2 3 0 2 3 0 6 2 8 8 5 4 1 5 10 4 8 16 22 21 14 12 13 188
8 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4
9 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3

10 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
11 0 1 0 1 1 4 2 1 1 1 18 0 1 2 0 0 1 10 0 0 0 2 8 1 1 1 57
12 22 14 7 9 14 0 8 13 6 10 2 11 6 7 12 8 4 4 23 23 18 16 14 19 29 17 316
13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 3 2 1 0 1 1 0 2 0 4 1 1 0 1 1 1 2 0 1 2 1 2 2 3 2 4 38
15 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 6
16 1 0 0 0 0 4 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 8
17 4 20 16 11 18 14 16 10 14 7 0 1 3 6 8 9 7 0 8 6 8 0 0 0 8 8 202
18 1 1 1 1 0 1 1 2 1 1 0 0 0 0 2 2 0 0 2 0 0 0 0 2 0 0 18
19 0 0 0 0 0 3 0 0 1 0 0 2 1 0 0 1 1 0 0 0 1 2 0 2 0 0 14
20 0 0 0 1 0 3 0 1 1 0 0 1 0 0 0 1 0 0 1 1 2 0 0 0 0 0 12
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 3
22 1 1 4 1 2 1 1 1 1 0 0 0 0 0 2 3 1 0 2 3 1 0 0 0 0 1 26
23 0 1 0 0 2 4 3 1 1 0 14 2 2 1 1 0 2 4 0 1 2 3 11 0 1 0 56
24 2 0 0 0 1 6 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 12
25 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5
26 8 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 3 0 1 14 7 2 39

Table 41. Confusion matrix for cell-based localization experiment using OAvg data set

Table 42. Context-based localization results using threshold requirements (g )

g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
Trial True X 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2
2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0
3 1 1 1 3 1 1 3 1 1 3 1 1 3 0 1 3 0 1 0
4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 1
5 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 2 0 0 0
6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 0 0 1
7 2 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 0 0
8 2 3 2 1 3 2 1 3 2 1 3 1 1 3 1 1 0 0 0
9 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 0 1 1

10 2 1 2 1 1 2 1 1 2 1 1 2 1 0 2 1 0 2 0
11 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 2 3 0
12 3 2 2 3 2 2 3 2 2 3 2 2 3 0 0 3 0 0 0
13 3 3 3 3 3 3 3 3 3 3 3 3 3 0 3 3 0 3 0
14 3 2 3 2 2 3 2 2 3 2 2 3 2 2 0 1 0 0 0
15 3 3 0 3 3 0 3 3 0 3 3 0 0 3 0 0 3 0 0
16 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
17 0 3 2 3 3 2 3 3 2 3 3 2 1 0 2 0 0 0 0
18 0 1 1 2 1 1 2 1 1 2 1 1 2 1 0 2 0 0 0
19 0 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 1 1
20 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1
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Table 43. Context-based localization results using threshold requirements (g ) in
Room B

g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
Trial True X 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1 1 2 2 1 2 2 1 2 2 1 2 2 1 0 0 0 0 0
2 1 2 1 2 2 1 2 2 1 2 2 1 2 1 1 2 0 0 0
3 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 0 0
4 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 0
5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 0 1 1
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 1 0 0
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 0 0
8 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 0 0 2
9 2 2 2 1 2 2 1 2 2 1 2 2 1 0 2 1 0 0 0

10 2 1 1 2 1 1 2 1 1 2 0 0 0 0 0 0 0 0 0
11 0 2 1 2 2 1 2 2 1 2 2 1 2 0 1 2 0 0 0
12 0 1 1 2 1 1 2 1 1 2 1 2 2 0 0 0 0 0 0
13 0 1 1 2 1 1 2 1 1 2 1 1 2 1 0 0 0 0 0
14 0 1 1 2 1 1 2 1 1 2 2 0 2 2 0 0 0 0 0
15 0 1 2 1 1 2 1 1 2 1 1 2 2 0 2 0 0 0 0

Table 44. Context-based localization results using threshold requirements (g ) in
Room C

g = 0 g = 1 g = 2 g = 3 g = 4 g = 5
Trial True X 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 0 3
2 1 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2
3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 2 0
4 1 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 0 0 0
5 1 3 1 3 3 1 3 3 1 3 3 1 3 3 0 2 0 0 0
6 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 0 0 0
7 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 2 0 0
8 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 2 2
9 2 2 2 3 2 2 3 2 2 3 2 0 3 2 0 3 0 0 0

10 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 0 2 3
11 3 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 0 2 2
12 3 1 3 2 1 3 2 1 3 2 1 3 2 0 0 3 0 0 0
13 3 2 1 2 2 1 2 2 2 2 2 2 2 2 0 3 0 0 0
14 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 0
15 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 0
16 0 3 3 2 3 3 2 3 3 2 3 3 2 3 3 1 0 0 0
17 0 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 2 2 3
18 0 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 0 0
19 0 2 3 3 2 3 3 2 3 3 2 3 3 2 0 3 3 0 3
20 0 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 0 3 2

156



Bibliography

1. N. Pirzada, M. Y. Nayan, F. S. M. F. Hassan, and M. A. Khan, “Device-free Localiza-
tion Technique for Indoor Detection and Tracking of Human Body: A Survey,” in
Procedia - Social and Behavioral Sciences, vol. 129, May 2014, pp. 422–429.

2. A. Paul and T. Sato, “Localization in Wireless Sensor Networks: A Survey on Algo-
rithms, Measurement Techniques, Applications and Challenges,” Journal of Sensor
and Actuator Networks, vol. 6, no. 4, p. 24, Oct 2017.

3. J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni, “A Survey on Wireless Indoor Localization from
the Device Perspective,” ACM Computing Surveys, vol. 49, no. 2, Nov 2016.

4. W. Ruan, Q. Z. Sheng, L. Yao, T. Gu, M. Ruta, and L. Shangguan, “Device-free in-
door localization and tracking through Human-Object Interactions,” in 17th Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Networks, Jun
2016.

5. N. Patwari and J. Wilson, “RF Sensor Networks for Device-Free Localization: Mea-
surements, Models, and Algorithms,” in Proceedings of the IEEE, vol. 98, no. 11, Jul
2010, pp. 1961–1973.

6. L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple, “A survey of localization in
wireless sensor network,” International Journal of Distributed Sensor Networks, vol.
2012, Dec 2012.

7. F. Viani, F. Robol, A. Polo, P. Rocca, G. Oliveri, and A. Massa, “Wireless architectures
for heterogeneous sensing in smart home applications: Concepts and real imple-
mentation,” in Proceedings of the IEEE, vol. 101, no. 11, Jul 2013, pp. 2381–2396.

8. G. Deak, K. Curran, J. Condell, and D. Deak, “Motion Detection using Device-free
Passive Localisation (DfPL),” in International Signals and Systems Conference, Jun
2012.

9. C. Xu, B. Firner, Y. Zhang, and R. E. Howard, “The Case for Efficient and Robust RF-
Based Device-Free Localization,” IEEE Transactions on Mobile Computing, vol. 15,
no. 9, pp. 2362–2375, Oct 2016.

10. M. Youssef, M. Mah, and A. Agrawala, “Challenges: Device-free Passive Localization
for Wireless Environments,” in Proceedings of the 13th Annual ACM International
Conference on Mobile Computing and Networking, Jan 2007, p. 222.

11. S. Shukri, L. M. Kamarudin, G. C. Cheik, R. Gunasagaran, A. Zakaria, K. Kamarudin,
S. M. Zakaria, A. Harun, and S. N. Azemi, “Analysis of RSSI-based DFL for Human
Detection in Indoor Environment using IRIS mote,” in 3rd International Conference
on Electronic Design, Aug 2016, pp. 216–221.

157



12. S. Hara and D. Anzai, “Experimental Performance Comparison of RSSI- and TDOA-
Based Location Estimation Methods,” in IEEE Vehicular Technology Conference, May
2008, pp. 2651–2655.

13. P. Vorst, J. Sommer, C. Hoene, P. Schneider, C. Weiss, T. Schairer, W. Rosenstiel,
A. Zell, and G. Carle, “Indoor Positioning via Three Different RF Technologies,” in
4th European Workshop on RFID Systems and Technologies, Jun 2008.

14. N. Kuxdorf-Alkirata and D. Brückmann, “Reliable and Low-cost Indoor Localization
Based on Bluetooth Low Energy,” in The 3rd IEEE International Symposium on Wire-
less Systems within the Conferences on Intelligent Data Acquisition and Advanced
Computing Systems, Sep 2016, pp. 92–96.

15. J. Kemper and H. Linde, “Challenges of passive infrared indoor localization,” in 5th
Workshop on Positioning, Navigation and Communication, Mar 2008, pp. 63–70.

16. S. Sen, J. Lee, K.-h. Kim, and P. Congdon, “Avoiding multipath to revive inbuilding
WiFi localization,” in Proceeding of the 11th Annual International Conference on Mo-
bile Systems, Applications, and Services, Jun 2013, p. 249.

17. A. T. Parameswaran, M. I. Husain, and S. Upadhyaya, “Is RSSI a reliable parameter
in sensor localization algorithms - an experimental study,” in IEEE International
Symposium on Reliable Distributed Systems, Jan 2009.

18. A. E. Kosba, A. Abdelkader, and M. Youssef, “Analysis of a Device-Free Passive Track-
ing System in Typical Wireless Environments,” in 3rd International Conference on
New Technologies, Mobility and Security, Dec 2009.

19. G. Deak, K. Curran, J. Condell, E. Asimakopoulou, and N. Bessis, “IoTs (Internet of
Things) and DfPL (Device-free Passive Localisation) in a disaster management sce-
nario,” Simulation Modelling Practice and Theory, vol. 35, pp. 86–96, Jun 2013.

20. A. Narzullaev, Y. Park, and H. Jung, “Accurate signal strength prediction based posi-
tioning for indoor WLAN systems,” in Record - IEEE PLANS, Position Location and
Navigation Symposium, May 2008, pp. 685–688.

21. C. Xu, “Device-Free People Counting and Localization,” in Proceedings of the 2013
ACM Conference on Pervasive and Ubiquitous Computing adjunct publication, Sep
2013, pp. 367–372.

22. M. Seifeldin and M. Youssef, “A Deterministic Large-Scale Device-Free Passive Lo-
calization System for Wireless Environments,” in Proceedings of the 3rd Interna-
tional Conference on PErvasive Technologies Related to Assistive Environments, Jun
2010.

23. O. Kaltiokallio, M. Bocca, and N. Patwari, “Follow @grandma: Long-term device-
free localization for residential monitoring,” in Proceedings - Conference on Local
Computer Networks, Oct 2012, pp. 991–998.

158



24. P. Cassarà, F. Potortì, P. Barsocchi, and M. Girolami, “Choosing an RSS device-free
localization algorithm for Ambient Assisted Living,” in International Conference on
Indoor Positioning and Indoor Navigation, Oct 2015.

25. H. Clougherty, A. Brown, M. Stonerock, M. Trepte, M. Whitesell, and R. Bailey,
“Home automation and personalization through individual location determina-
tion,” in Systems and Information Engineering Design Symposium, Apr 2017, pp.
300–305.

26. R. Elbakly and M. Youssef, “A Calibration-free RF Localization System,” in Proceed-
ings of the 23rd SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems, Nov 2015, pp. 63:1—-63:2.

27. I. Oksar, “A Bluetooth Signal Strength Based Indoor Localization Method,” in Inter-
national Conference on Systems, Signals and Image Processing, no. May, May 2014,
pp. 251 – 4.

28. C. M. Angelopoulos, G. Filios, M. Karagiannis, S. Nikoletseas, and J. Rolim, “Fine-
grained in-door localisation with wireless sensor networks,” in Proceedings of the
10th ACM International Symposium on Mobility Management and Wireless Access,
Oct 2012, pp. 159–162.

29. J. Yang and Y. Chen, “Indoor Localization Using Improved RSS-Based Lateration
Methods,” in Global Telecommunications Conference, 2009.

30. X. Kuang and H. Shao, “Maximum Likelihood Localization Algorithm Using Wire-
less Sensor Networks,” in First International Conference on Innovative Computing,
Information and Control, vol. I, Aug-Sep 2006, pp. 263–266.

31. A. E. Waadt, C. Kocks, S. Wang, G. H. Bruck, and P. Jung, “Maximum likelihood lo-
calization estimation based on received signal strength,” in 3rd International Sym-
posium on Applied Sciences in Biomedical and Communication Technologies, Nov
2010, pp. 1–5.

32. R. Priwgharm and P. Chemtanomwong, “A Comparative Study on Indoor Localiza-
tion based on RSSI Measurement in Wireless Sensor Network,” in Eighth Interna-
tional Joint Conference on Computer Science and Software Engineering, May 2011.

33. G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimental comparison of RSSI-
based localization algorithms for indoor wireless sensor networks,” in Proceedings
of the workshop on Real-world wireless sensor networks, Apr 2008.

34. P. Cherntanomwong and D. J. Suroso, “Indoor localization system using wireless
sensor networks for stationary and moving target,” in 8th International Conference
on Information, Communications & Signal Processing, Dec 2011.

159



35. M. Alkandari, D. Basu, and S. F. Hasan, “A Wi-Fi based passive technique for speed
estimation in indoor environments,” in Proceedings of the 2017 2nd Workshop on
Recent Trends in Telecommunications Research, Feb 2017, pp. 10–12.

36. J. S. Turner, M. F. Ramli, L. M. Kamarudin, A. Zakaria, A. Y. Shakaff, D. L. Ndzi, C. M.
Nor, N. Hassan, and S. M. Mamduh, “The Study of Human Movement Effect on Sig-
nal Strength for Indoor WSN Deployment,” in IEEE Conference on Wireless Sensor,
Dec 2013, pp. 30–35.

37. S. H. Ahmed, S. H. Bouk, N. Javaid, and I. Sasase, “Combined Human, Antenna Ori-
entation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Net-
works,” in Proceedings - 10th International Conference on Frontiers of Information
Technology, Dec 2012, pp. 46–49.

38. H. Aly and M. Youssef, “New Insights into Wifi-based Device-free Localization,” in
Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing ad-
junct publication, Sep 2013, pp. 541–548.

39. ——, “An Analysis of Device-Free and Device-Based WiFi-Localization Systems,” In-
ternational Journal of Ambient Computing and Intelligence, vol. 6, no. 1, pp. 1–19,
Jan 2014.

40. J. Wang, X. Zhang, Q. Gao, X. Ma, X. Feng, and H. Wang, “Device-free simultaneous
wireless localization & activity recognition with wavelet feature,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 2, pp. 1659–1669, Apr 2017.

41. M. Seifeldin and M. Youssef, “Nuzzer : A Large-Scale Device-Free Passive Localiza-
tion System for Wireless Environments,” IEEE Transactions on Mobile Computing,
vol. 12, no. 7, pp. 1321–1334, May 2013.

42. Y. Zhao and N. Patwari, “Noise reduction for variance-based device-free localization
and tracking,” in 8th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, Jun 2011, pp. 179–187.

43. M. Wang, Z. Wang, X. Bu, and E. Ding, “An adaptive weighting algorithm for accu-
rate radio tomographic image in the environment with multipath and WiFi interfer-
ence,” International Journal of Distributed Sensor Networks, vol. 13, no. 1, Jan 2017.

44. S. Nannuru, Y. Li, Y. Zeng, M. Coates, and B. Yang, “Radio-frequency tomography
for passive indoor multitarget tracking,” IEEE Transactions on Mobile Computing,
vol. 12, no. 12, pp. 2322–2333, Sep 2013.

45. H. Sharma and S. Sharma, “A review of sensor networks: Technologies and appli-
cations,” in Recent Advances in Engineering and Computational Sciences, Mar 2014,
pp. 6–8.

46. INSTEON, “INSTEON WHITEPAPER: Compared ,” INSTEON, Tech. Rep., 2013.
[Online]. Available: http://cache.insteon.com/pdf/INSTEONCompared.pdf

160



47. C. Gomez and J. Paradells, “Wireless home automation networks: A survey of ar-
chitectures and technologies,” IEEE Communications Magazine, vol. 48, no. 6, pp.
92–101, May 2010.

48. W. Lumpkins, “Home Automation: Insteon (X10 Meets Powerline),” IEEE Consumer
Electronics Magazine, vol. 3, no. October, pp. 140–144, Oct 2015.

49. C. M. Talbot, M. A. Temple, T. J. Carbino, and J. A. Betances, “Detecting rogue at-
tacks on commercial wireless Insteon home automation systems,” Computers and
Security, vol. 2017, 2017.

50. T. S. P. See, X. Qing, Z. N. Chen, C. K. Goh, and T. M. Chiam, “RF transmission in-
/through the human body at 915 MHz,” in IEEE International Symposium on An-
tennas and Propagation and CNC-USNC/URSI Radio Science Meeting - Leading the
Wave, Jul 2010.

51. INSTEON, “INSTEON WHITEPAPER: The Details,” INSTEON, Tech. Rep., 2013.
[Online]. Available: http://cache.insteon.com/pdf/insteondetails.pdf

52. INSTEON Developer’s Guide 2nd Edition, SmartLabs Technology, August 2007. [On-
line]. Available: http://cache.insteon.com/pdf/INSTEON\_Developers\_Guide\
_20070816a.pdf

53. INSTEON Hub: Developer’s Guide, SmartLabs Technology, August 2013. [Online].
Available: http://cache.insteon.com/developer/2242-222dev-062013-en.pdf

54. “NooElec NESDR Mini 2 SDR & DVB-T USB Stick (RTL2832 + R820T2) w/
Antenna and Remote Control,” Accessed: 2017-04-30. [Online]. Available: http:
//www.nooelec.com/store/sdr/sdr-receivers/nesdr-mini2-rtl2832u-r820t2.html

55. “Products: ECCOSORB® AN.” [Online]. Available: http://www.eccosorb.com/
products-eccosorb-an.htm

56. Insteon, “Insteon API,” Dec 2016, Accessed: 2017-09-24. [Online]. Available:
https://insteon.docs.apiary.io/

57. INSTEON, “Insteon for Hub APK 1.9.8,” Sep 2017, Accessed: 2017-10-28. [Online].
Available: https://apkpure.com/insteon-for-hub/com.insteon.insteon3

161



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

22-03-2018 Master's Thesis Jun 2016 - Mar 2018

RSS-based Device-free Passive Detection and Localization Using Home
Automation Network Radio Frequencies

Phan, Tiffany M., 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENG-MS-18-M-054

Intentionally Left Blank

Distribution Statement A. Approved for Public Release; Distribution Unlimited

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This research provided a proof of concept for a device-free passive (DfP) system capable of detecting and localizing a target through
the exploitation of the Insteon home automation network's 915 MHz radio frequency (RF) signals. Software-defined radios
simulated Insteon devices capable of collecting and reporting RSS. A message generation script was created and a calibrated filter
was implemented to reduce silent periods. Baseline threshold detection was conducted using a tripwire setup and performed well.
Multi-node, cell-based localization was tested and received poor results. A context-based method was developed and tested in the
same room as well as two other rooms and observed improved localization performance. Feasibility of exploiting RF of a home
automation network for DfP indoor detection and localization was demonstrated. Despite not achieving optimal localization
performance, the results from system deployment showed promise for future DfP system deployment on top of home automation RF
devices.

Internet of Things, Home Automation, Device-free Passive, Detection, Localization

U U U UU 179

Dr. Richard K. Martin, (ENG)

(937) 255-3636 x4625 richard.martin@afit.edu


	Air Force Institute of Technology
	AFIT Scholar
	3-23-2018

	RSS-based Device-free Passive Detection and Localization using Home Automation Network Radio Frequencies
	Tiffany M. Phan
	Recommended Citation


	AFIT_Thesis (6)
	Phan - SF 298

