15,970 research outputs found

    Device-Free, Radio-based Activity Recognition using Smart Home Wireless Communication Technologies

    Get PDF
    This dissertation demonstrates the use of received signal strength to infer human activities. It has the following contributions: 1) Reference design of a device-free, 2.4GHz IEEE 802.15.4-based sensor system for Activity Recognition; 2) Fundamental description of influences affecting Activity Recognition performance; 3) Software design pattern for device-free, radio-based Inference Systems; 4) Development and characterization of three specialized device-free, radio-based Inference System

    dWatch: a Personal Wrist Watch for Smart Environments

    Get PDF
    Intelligent environments, such as smart homes or domotic systems, have the potential to support people in many of their ordinary activities, by allowing complex control strategies for managing various capabilities of a house or a building: lights, doors, temperature, power and energy, music, etc. Such environments, typically, provide these control strategies by means of computers, touch screen panels, mobile phones, tablets, or In-House Displays. An unobtrusive and typically wearable device, like a bracelet or a wrist watch, that lets users perform various operations in their homes and to receive notifications from the environment, could strenghten the interaction with such systems, in particular for those people not accustomed to computer systems (e.g., elderly) or in contexts where they are not in front of a screen. Moreover, such wearable devices reduce the technological gap introduced in the environment by home automation systems, thus permitting a higher level of acceptance in the daily activities and improving the interaction between the environment and its inhabitants. In this paper, we introduce the dWatch, an off-the-shelf personal wearable notification and control device, integrated in an intelligent platform for domotic systems, designed to optimize the way people use the environment, and built as a wrist watch so that it is easily accessible, worn by people on a regular basis and unobtrusiv

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201
    corecore