502 research outputs found

    Towards System Agnostic Calibration of Optical See-Through Head-Mounted Displays for Augmented Reality

    Get PDF
    This dissertation examines the developments and progress of spatial calibration procedures for Optical See-Through (OST) Head-Mounted Display (HMD) devices for visual Augmented Reality (AR) applications. Rapid developments in commercial AR systems have created an explosion of OST device options for not only research and industrial purposes, but also the consumer market as well. This expansion in hardware availability is equally matched by a need for intuitive standardized calibration procedures that are not only easily completed by novice users, but which are also readily applicable across the largest range of hardware options. This demand for robust uniform calibration schemes is the driving motive behind the original contributions offered within this work. A review of prior surveys and canonical description for AR and OST display developments is provided before narrowing the contextual scope to the research questions evolving within the calibration domain. Both established and state of the art calibration techniques and their general implementations are explored, along with prior user study assessments and the prevailing evaluation metrics and practices employed within. The original contributions begin with a user study evaluation comparing and contrasting the accuracy and precision of an established manual calibration method against a state of the art semi-automatic technique. This is the first formal evaluation of any non-manual approach and provides insight into the current usability limitations of present techniques and the complexities of next generation methods yet to be solved. The second study investigates the viability of a user-centric approach to OST HMD calibration through novel adaptation of manual calibration to consumer level hardware. Additional contributions describe the development of a complete demonstration application incorporating user-centric methods, a novel strategy for visualizing both calibration results and registration error from the user’s perspective, as well as a robust intuitive presentation style for binocular manual calibration. The final study provides further investigation into the accuracy differences observed between user-centric and environment-centric methodologies. The dissertation concludes with a summarization of the contribution outcomes and their impact on existing AR systems and research endeavors, as well as a short look ahead into future extensions and paths that continued calibration research should explore

    A Virtual Testbed for Fish-Tank Virtual Reality: Improving Calibration with a Virtual-in-Virtual Display

    Get PDF
    With the development of novel calibration techniques for multimedia projectors and curved projection surfaces, volumetric 3D displays are becoming easier and more affordable to build. The basic requirements include a display shape that defines the volume (e.g. a sphere, cylinder, or cuboid) and a tracking system to provide each user's location for the perspective corrected rendering. When coupled with modern graphics cards, these displays are capable of high resolution, low latency, high frame rate, and even stereoscopic rendering; however, like many previous studies have shown, every component must be precisely calibrated for a compelling 3D effect. While human perceptual requirements have been extensively studied for head-tracked displays, most studies featured seated users in front of a flat display. It remains unclear if results from these flat display studies are applicable to newer, walk-around displays with enclosed or curved shapes. To investigate these issues, we developed a virtual testbed for volumetric head-tracked displays that can measure calibration accuracy of the entire system in real-time. We used this testbed to investigate visual distortions of prototype curved displays, improve existing calibration techniques, study the importance of stereo to performance and perception, and validate perceptual calibration with novice users. Our experiments show that stereo is important for task performance, but requires more accurate calibration, and that novice users can make effective use of perceptual calibration tools. We also propose a novel, real-time calibration method that can be used to fine-tune an existing calibration using perceptual feedback. The findings from this work can be used to build better head-tracked volumetric displays with an unprecedented amount of 3D realism and intuitive calibration tools for novice users

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    Perceived location of virtual content measurement method in optical see through augmented reality

    Get PDF
    An important research question for optical see through AR is, “how accurately and precisely can a virtual object’s perceived location be measured in three dimensional space?” Previously, a method was developed for measuring the perceived 3D location of virtual objects using Microsoft HoloLens1 display. This study found an unexplained rightward perceptual bias on horizontal plane; most participants were right eye dominant, and consistent with the hypothesis that perceived location is biased in eye dominance direction. In this thesis, a replication study is reported, which includes binocular and monocular viewing conditions, recruits an equal number of left and right eye dominant participants, uses Microsoft HoloLens2 display. This replication study examined whether the perceived location of virtual objects is biased in the direction of dominant eye. Results suggest that perceived location is not biased in the direction of dominant eye. Compared to previous study’s findings, overall perceptual accuracy increased, and precision was similar

    How can Extended Reality Help Individuals with Depth Misperception?

    Get PDF
    Despite the recent actual uses of Extended Reality (XR) in treatment of patients, some areas are less explored. One gap in research is how XR can improve depth perception for patients. Accordingly, the depth perception process in XR settings and in human vision are explored and trackers, visual sensors, and displays as assistive tools of XR settings are scrutinized to extract their potentials in influencing users’ depth perception experience. Depth perception enhancement is relying not only on depth perception algorithms, but also on visualization algorithms, display new technologies, computation power enhancements, and vision apparatus neural mechanism knowledge advancements. Finally, it is discussed that XR holds assistive features not only for the improvement of vision impairments but also for the diagnosis part. Although, each specific patient requires a specific set of XR setting due to different neural or cognition reactions in different individuals with same the disease

    VOLUMETRIC AND VARIFOCAL-OCCLUSION AUGMENTED REALITY DISPLAYS

    Get PDF
    Augmented Reality displays are a next-generation computing platform that offer unprecedented user experience by seamlessly combining physical and digital content, and could revolutionize the way we communicate, visualize, and interact with digital information. However, providing a seamless and perceptually realistic experience requires displays capable of presenting photorealistic imagery, and especially, perceptually realistic depth cues, resulting in virtual imagery being presented at any depth and of any opacity. Today's commercial augmented reality displays are far from perceptually realistic because they do not support important depth cues such as mutual occlusion and accommodation, resulting in a transparent image overlaid onto the real-world at a fixed depth. Previous research prototypes fall short by presenting occlusion only for a fixed depth, and by presenting accommodation and defocus-blur only for a narrow depth-range, or with poor depth or spatial resolution. To address these challenges, this thesis explores a computational display approach, where the display’s optics, electronics, and algorithms are co-designed to improve performance or enable new capabilities. In one design, a Volumetric Near-eye Augmented Reality Display was developed to simultaneously present many virtual objects at different depths across a large depth range (15 - 400 cm) without sacrificing spatial resolution, frame rate, or bitdepth. This was accomplished by (1) synchronizing a high-speed Digital Micromirror Device (DMD) projector and a focus-tunable lens to periodically sweep out a volume composed of 280 single-color binary images in front of the user's eye, (2) a new voxel-oriented decomposition algorithm, and (3) per-depth-plane illumination control. In a separate design, for the first time, we demonstrate depth-correct occlusion in optical see-through augmented reality displays. This was accomplished by an optical system composed of two fixed-focus lenses and two focus-tunable lenses to dynamically move the occlusion and virtual image planes in depth, and designing the optics to ensure unit magnification of the see-through real world irrespective of the occlusion or virtual image plane distance. Contributions of this thesis include new optical designs, new rendering algorithms, and prototype displays that demonstrate accommodation, defocus blur, and occlusion depth cues over an extended depth-range.Doctor of Philosoph

    Optimization of Computer generated holography rendering and optical design for a compact and large eyebox Augmented Reality glass

    Get PDF
    Thesis (Master of Science in Informatics)--University of Tsukuba, no. 41288, 2019.3.2
    corecore