3,968 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Survey on Wireless Indoor Positioning Systems

    Get PDF
    Indoor positioning has finally testified a rise in interest, thanks to the big selection of services it is provided, and ubiquitous connectivity. There are currently many systems that can locate a person, be it wireless or by mobile phone and the most common systems in outdoor environments is the GPS, the most common in indoor environments is Wi-Fi positioning technique positioning. The improvement of positioning systems in indoor environments is desirable in many areas as it provides important facilities and services, such as airports, universities, factories, hospitals, and shopping malls. This paper provides an overview of the existing methods based on wireless indoor positioning technique. We focus in this survey on the strengths of these systems mentioned in the literature discordant with the present surveys; we also assess to additionally measure various systems from the scene of energy efficiency, price, and following accuracy instead of comparing the technologies, we also to additionally discuss residual challenges to correct indoor positioning

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Device-Free Localization for Human Activity Monitoring

    Get PDF
    Over the past few decades, human activity monitoring has grabbed considerable research attentions due to greater demand for human-centric applications in healthcare and assisted living. For instance, human activity monitoring can be adopted in smart building system to improve the building management as well as the quality of life, especially for the elderly people who are facing health deterioration due to aging factor, without neglecting the important aspects such as safety and energy consumption. The existing human monitoring technology requires additional sensors, such as GPS, PIR sensors, video camera, etc., which incur cost and have several drawbacks. There exist various solutions of using other technologies for human activity monitoring in a smartly controlled environment, either device-assisted or device-free. A radio frequency (RF)-based device-free indoor localization, known as device-free localization (DFL), has attracted a lot of research effort in recent years due its simplicity, low cost, and compatibility with the existing hardware equipped with RF interface. This chapter introduces the potential of RF signals, commonly adopted for wireless communications, as sensing tools for DFL system in human activity monitoring. DFL is based on the concept of radio irregularity where human existence in wireless communication field may interfere and change the wireless characteristics

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Design of advanced benchmarks and analytical methods for RF-based indoor localization solutions

    Get PDF
    corecore