9,065 research outputs found

    Generation of a monodispersed aerosol

    Get PDF
    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization

    Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography using Radially Symmetric Expansion Functions

    Full text link
    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise. In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions for iterative image reconstruction in OAT. A closed-form expression for the pressure produced by a Kaiser-Bessel function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of Kaiser-Bessel function-based iterative image reconstruction in OAT

    Examination of High-Torque Sandwich-Type Spherical Ultrasonic Motor Using with High-Power Multimode Annular Vibrating Stator

    Get PDF
    Spherical ultrasonic motors (SUSMs) that can operate with multiple degrees of freedom (MDOF) using only a single stator have high holding torque and high torque at low speed, which makes reduction gearing unnecessary. The simple structure of MDOF-SUSMs makes them useful as compact actuators, but their development is still insufficient for applications such as joints of humanoid robots and other systems that require MDOF and high torque. To increase the torque of a sandwich-type MDOF-SUSM, we have not only made the vibrating stator and spherical rotor larger but also improved the structure using three design concepts: (1) increasing the strength of all three vibration modes using multilayered piezoelectric actuators (MPAs) embedded in the stator, (2) enhancing the rigidity of the friction driving portion of the stator for transmitting more vibration force to the friction-driven rotor surface, and (3) making the support mechanism more stable. An MDOF-SUSM prototype was tested, and the maximum torques of rotation around the X(Y)-axis and Z-axis were measured as 1.48 N?m and 2.05 N?m, respectively. Moreover, the values for torque per unit weight of the stator were obtained as 0.87 N?m/kg for the X(Y)-axis and 1.20 N?m/kg for the Z-axis. These are larger than values reported for any other sandwich-type MDOF-SUSM of which we are aware. Hence, the new design concepts were shown to be effective for increasing torque. In addition, we measured the transient response and calculated the load characteristics of rotation around the rotor’s three orthogonal axes

    Flow tracing fidelity of scattering aerosol in laser Doppler velocimetry

    Get PDF
    An experimental method for determinating the flow tracing fidelity of a scattering aerosol used in laser Doppler velocimeters was developed with particular reference to the subsonic turbulence measurements. The method employs the measurement of the dynamic response of a flow seeding aerosol excited by acoustic waves. The amplitude and frequency of excitation were controlled to simulate the corresponding values of fluid turbulence components. Experimental results are presented on the dynamic response of aerosols over the size range from 0.1 to 2.0 microns in diameter and over the frequency range 100 Hz to 100 kHz. It was observed that unit density spherical scatterers with diameters of 0.2 microns followed subsonic air turbulence frequency components up to 100 kHz with 98 percent fidelity

    A photoacoustic imaging system employing a curved-phased ultrasonic array and parallel electronics

    Get PDF
    Real-time photoacoustic imaging requires ultrasonic array receivers and parallel data acquisition systems for the simultaneous detection of weak photoacoustic signals. In this paper, we introduce a newly completed ultrasonic receiving array system and report preliminary results of our measured point spread function. The system employs a curved ultrasonic phased array consisting of 128-elements, which span a quarter of a complete circle. The center frequency of the array is 5 MHz and the bandwidth is greater than 60%. In order to maximize the signal-to-noise ratio for photoacoustic signal detection, we utilized special designs for the analog front-end electronics. First, the 128 transducer-element signals were routed out using a 50-Ohm impedance matching PCB board to sustain signal integrity. We also utilize 128 low-noise pre-amplifiers, connected directly to the ultrasonic transducer, to amplify the weak photoacoustic signals before they were multiplexed to a variable-gain multi-stage amplifier chain. All front-end circuits were placed close to the transducer array to minimize signal lose due to cables and therefore improve the signal-to-noise ratio. Sixteen analog-to-digital converters were used to sample signals at a rate of 40 mega-samples per second with a resolution of 10-bits per sample. This allows us to perform a complete electronic scan of all 128 elements using just eight laser pulses

    Aspheric geodesic lenses for an integrated optical spectrum analyser

    Get PDF
    Abstract available p. xiii-xi

    Magma Rheology

    Get PDF

    Piezoelectric actuator with traveling wave waveguide

    Get PDF
    A novel design of traveling wave piezoelectric actuator with a special waveguide is investigated in the paper. Actuator consists of cylinder type waveguide and piezo ceramic ring. Waveguide has conical hole inside. Such configuration of the waveguide allows increasing amplitudes of the traveling wave vibrations. Electrodes of piezoceramic ring are divided into four equal sections. Four electric signals with shifted phases by π/2 are used for the excitation. Numerical simulation was carried out to optimize the shape and dimensions of the waveguide and to maximize oscillation amplitudes at the contact surface of the waveguide. Mathematical model of the contact interface between stator and rotor was developed. A prototype piezoelectric actuator was made and experimental investigation was performed. Results of numerical and experimental investigation are discussed

    A method for the measurement of hydrodynamic oil films using ultrasonic reflection

    Get PDF
    The measurement of the thickness of an oil film in a lubricated component is essential information for performance monitoring and control. In this work, a new method for oil film thickness measurement, based on the reflection of ultrasound, is evaluated for use in fluid film journal bearing applications. An ultrasonic wave will be partially reflected when it strikes a thin layer between two solid media. The proportion of the wave reflected depends on the thickness of the layer and its acoustic properties. A simple quasi-static spring model shows how the reflection depends on the stiffness of the layer alone. This method has been first evaluated using flat plates separated by a film of oil, and then used in the measurement of oil films in a hydrodynamic journal bearing. A transducer is mounted on the outside of the journal and a pulse propagated through the shell. The pulse is reflected back at the oil film and received by the same transducer. The amplitude of the reflected wave is processed in the frequency domain. The spring model is then used to determine the oil film stiffness that can be readily converted to film thickness. Whilst the reflected amplitude of the wave is dependent on the frequency component, the measured film thickness is not; this indicates that the quasi-static assumption holds. Measurements of the lubricant film generated in a simple journal bearing have been taken over a range of loads and speeds. The results are compared with predictions from classical hydrodynamic lubrication theory. The technique has also been used to measure oil film thickness during transient loading events. The response time is rapid and film thickness variation due to step changes in load and oil feed pressure can be clearly observed
    corecore