634 research outputs found

    Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators

    Get PDF
    The aim of this paper is to describe the design of a soft, wearable splint for wrist joint rehabilitation, based on pneumatic soft actuators. The extensor bending and the contraction types of pneumatic soft actuators have been adopted in this study. These actuators are shown to be appropriate by examining their characteristics. The main contributions of this study are developing a safe, lightweight, soft and small actuator for direct human interaction, designing a novel single portable wearable soft robot capable of performing all wrist rehabilitation movements, and using low-cost materials to create the device. Three modes of rehabilitation exercises in the exoskeleton are involved: Flexion/Extension, Radial/Ulnar deviation, and circular movements

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Rehabilitation Technologies: Biomechatronics Point of View

    Get PDF

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Design Criteria of Soft Exogloves for Hand Rehabilitation- Assistance Tasks

    Get PDF
    This paper establishes design criteria for soft exogloves (SEG) to be used as rehabilitation or assistance devices. This research consists in identifying, selecting, and grouping SEG features based on the analysis of 91 systems that have been proposed during the last decade. Thus, function, mobility, and usability criteria are defined and explicitly discussed to highlight SEG design guidelines. Additionally, this study provides a detailed description of each system that was analysed including application, functional task, palm design, actuation type, assistance mode, degrees of freedom (DOF), target fingers, motions, material, weight, force, pressure (only for fluids), control strategy, and assessment. Such characteristics have been reported according to specific design methodologies and operating principles. Technological trends are contemplated in this contribution with emphasis on SEG design opportunity areas. In this review, suggestions, limitations, and implications are also discussed in order to enhance future SEG developments aimed at stroke survivors or people with hand disabilities

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications
    corecore