454 research outputs found

    Design, Control, and Evaluation of a Human-Inspired Robotic Eye

    Get PDF
    Schulz S. Design, Control, and Evaluation of a Human-Inspired Robotic Eye. Bielefeld: Universität Bielefeld; 2020.The field of human-robot interaction deals with robotic systems that involve humans and robots closely interacting with each other. With these systems getting more complex, users can be easily overburdened by the operation and can fail to infer the internal state of the system or its ”intentions”. A social robot, replicating the human eye region with its familiar features and movement patterns, that are the result of years of evolution, can counter this. However, the replication of these patterns requires hard- and software that is able to compete with the human characteristics and performance. Comparing previous systems found in literature with the human capabili- ties reveal a mismatch in this regard. Even though individual systems solve single aspects, the successful combination into a complete system remains an open challenge. In contrast to previous work, this thesis targets to close this gap by viewing the system as a whole — optimizing the hard- and software, while focusing on the replication of the human model right from the beginning. This work ultimately provides a set of interlocking building blocks that, taken together, form a complete end-to-end solution for the de- sign, control, and evaluation of a human-inspired robotic eye. Based on the study of the human eye, the key driving factors are identified as the success- ful combination of aesthetic appeal, sensory capabilities, performance, and functionality. Two hardware prototypes, each based on a different actua- tion scheme, have been developed in this context. Furthermore, both hard- ware prototypes are evaluated against each other, a previous prototype, and the human by comparing objective numbers obtained by real-world mea- surements of the real hardware. In addition, a human-inspired and model- driven control framework is developed out, again, following the predefined criteria and requirements. The quality and human-likeness of the motion, generated by this model, is evaluated by means of a user study. This frame- work not only allows the replication of human-like motion on the specific eye prototype presented in this thesis, but also promotes the porting and adaption to less equipped humanoid robotic heads. Unlike previous systems found in literature, the presented approach provides a scaling and limiting function that allows intuitive adjustments of the control model, which can be used to reduce the requirements set on the target platform. Even though a reduction of the overall velocities and accelerations will result in a slower motion execution, the human characteristics and the overall composition of the interlocked motion patterns remain unchanged

    Human Machine Interfaces for Teleoperators and Virtual Environments

    Get PDF
    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models

    Machine Performers: Agents in a Multiple Ontological State

    Get PDF
    In this thesis, the author explores and develops new attributes for machine performers and merges the trans-disciplinary fields of the performing arts and artificial intelligence. The main aim is to redefine the term “embodiment” for robots on the stage and to demonstrate that this term requires broadening in various fields of research. This redefining has required a multifaceted theoretical analysis of embodiment in the field of artificial intelligence (e.g. the uncanny valley), as well as the construction of new robots for the stage by the author. It is hoped that these practical experimental examples will generate more research by others in similar fields. Even though the historical lineage of robotics is engraved with theatrical strategies and dramaturgy, further application of constructive principles from the performing arts and evidence from psychology and neurology can shift the perception of robotic agents both on stage and in other cultural environments. In this light, the relation between representation, movement and behaviour of bodies has been further explored to establish links between constructed bodies (as in artificial intelligence) and perceived bodies (as performers on the theatrical stage). In the course of this research, several practical works have been designed and built, and subsequently presented to live audiences and research communities. Audience reactions have been analysed with surveys and discussions. Interviews have also been conducted with choreographers, curators and scientists about the value of machine performers. The main conclusions from this study are that fakery and mystification can be used as persuasive elements to enhance agency. Morphologies can also be applied that tightly couple brain and sensorimotor actions and lead to a stronger stage presence. In fact, if this lack of presence is left out of human replicants, it causes an “uncanny” lack of agency. Furthermore, the addition of stage presence leads to stronger identification from audiences, even for bodies dissimilar to their own. The author demonstrates that audience reactions are enhanced by building these effects into machine body structures: rather than identification through mimicry, this causes them to have more unambiguously biological associations. Alongside these traits, atmospheres such as those created by a cast of machine performers tend to cause even more intensely visceral responses. In this thesis, “embodiment” has emerged as a paradigm shift – as well as within this shift – and morphological computing has been explored as a method to deepen this visceral immersion. Therefore, this dissertation considers and builds machine performers as “true” performers for the stage, rather than mere objects with an aura. Their singular and customized embodiment can enable the development of non-anthropocentric performances that encompass the abstract and conceptual patterns in motion and generate – as from human performers – empathy, identification and experiential reactions in live audiences

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Attention-controlled acquisition of a qualitative scene model for mobile robots

    Get PDF
    Haasch A. Attention-controlled acquisition of a qualitative scene model for mobile robots. Bielefeld (Germany): Bielefeld University; 2007.Robots that are used to support humans in dangerous environments, e.g., in manufacture facilities, are established for decades. Now, a new generation of service robots is focus of current research and about to be introduced. These intelligent service robots are intended to support humans in everyday life. To achieve a most comfortable human-robot interaction with non-expert users it is, thus, imperative for the acceptance of such robots to provide interaction interfaces that we humans are accustomed to in comparison to human-human communication. Consequently, intuitive modalities like gestures or spontaneous speech are needed to teach the robot previously unknown objects and locations. Then, the robot can be entrusted with tasks like fetch-and-carry orders even without an extensive training of the user. In this context, this dissertation introduces the multimodal Object Attention System which offers a flexible integration of common interaction modalities in combination with state-of-the-art image and speech processing techniques from other research projects. To prove the feasibility of the approach the presented Object Attention System has successfully been integrated in different robotic hardware. In particular, the mobile robot BIRON and the anthropomorphic robot BARTHOC of the Applied Computer Science Group at Bielefeld University. Concluding, the aim of this work, to acquire a qualitative Scene Model by a modular component offering object attention mechanisms, has been successfully achieved as demonstrated on numerous occasions like reviews for the EU-integrated Project COGNIRON or demos

    Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction

    Get PDF
    Meyer zu Borgsen S. Nonverbal Communication During Human-Robot Object Handover. Improving Predictability of Humanoid Robots by Gaze and Gestures in Close Interaction. Bielefeld: Universität Bielefeld; 2020.This doctoral thesis investigates the influence of nonverbal communication on human-robot object handover. Handing objects to one another is an everyday activity where two individuals cooperatively interact. Such close interactions incorporate a lot of nonverbal communication in order to create alignment in space and time. Understanding and transferring communication cues to robots becomes more and more important as e.g. service robots are expected to closely interact with humans in the near future. Their tasks often include delivering and taking objects. Thus, handover scenarios play an important role in human-robot interaction. A lot of work in this field of research focuses on speed, accuracy, and predictability of the robot’s movement during object handover. Still, robots need to be enabled to closely interact with naive users and not only experts. In this work I present how nonverbal communication can be implemented in robots to facilitate smooth handovers. I conducted a study on people with different levels of experience exchanging objects with a humanoid robot. It became clear that especially users with only little experience in regard to interaction with robots rely heavily on the communication cues they are used to on the basis of former interactions with humans. I added different gestures with the second arm, not directly involved in the transfer, to analyze the influence on synchronization, predictability, and human acceptance. Handing an object has a special movement trajectory itself which has not only the purpose of bringing the object or hand to the position of exchange but also of socially signalizing the intention to exchange an object. Another common type of nonverbal communication is gaze. It allows guessing the focus of attention of an interaction partner and thus helps to predict the next action. In order to evaluate handover interaction performance between human and robot, I applied the developed concepts to the humanoid robot Meka M1. By adding the humanoid robot head named Floka Head to the system, I created the Floka humanoid, to implement gaze strategies that aim to increase predictability and user comfort. This thesis contributes to the field of human-robot object handover by presenting study outcomes and concepts along with an implementation of improved software modules resulting in a fully functional object handing humanoid robot from perception and prediction capabilities to behaviors enhanced and improved by features of nonverbal communication

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    New approaches to the emerging social neuroscience of human-robot interaction

    Get PDF
    Prehistoric art, like the Venus of Willendorf sculpture, shows that we have always looked for ways to distil fundamental human characteristics and capture them in physically embodied representations of the self. Recently, this undertaking has gained new momentum through the introduction of robots that resemble humans in their shape and their behaviour. These social robots are envisioned to take on important roles: alleviate loneliness, support vulnerable children and serve as helpful companions for the elderly. However, to date, few commercially available social robots are living up to these expectations. Given their importance for an ever older and more socially isolated society, rigorous research at the intersection of psychology, social neuroscience and human-robot interaction is needed to determine to which extent mechanisms active during human-human interaction can be co-opted when we encounter social robots. This thesis takes an anthropocentric approach to answering the question how socially motivated we are to interact with humanoid robots. Across three empirical and one theoretical chapter, I use self-report, behavioural and neural measures relevant to the study of interactions with robots to address this question. With the Social Motivation Theory of Autism as a point of departure, the first empirical chapter (Chapter 3) investigates the relevance of interpersonal synchrony for human-robot interaction. This chapter reports a null effect: participants did not find a robot that synchronised its movement with them on a drawing task more likeable, nor were they more motivated to ask it more questions in a semi-structured interaction scenario. As this chapter heavily relies on self-report as a main outcome measure, Chapter 4 addresses this limitation by adapting an established behavioural paradigm for the study of human-robot interaction. This chapter shows that a failure to conceptually extend an effect in the field of social attentional capture calls for a different approach when seeking to adapt paradigms for HRI. Chapter 5 serves as a moment of reflection on the current state-of-the-art research at the intersection of neuroscience and human-robot interaction. Here, I argue that the future of HRI research will rely on interaction studies with mobile brain imaging systems (like functional near-infrared spectroscopy) that allow data collection during embodied encounters with social robots. However, going forward, the field should slowly and carefully move outside of the lab and into real situations with robots. As the previous chapters have established, well-known effects have to be replicated before they are implemented for robots, and before they are taken out of the lab, into real life. The final empirical chapter (Chapter 6), takes the first step of this proposed slow approach: in addition to establishing the detection rate of a mobile fNIRS system in comparison to fMRI, this chapter contributes a novel way to digitising optode positions by means of photogrammetry. In the final chapter of this thesis, I highlight the main lessons learned conducting studies with social robots. I propose an updated roadmap which takes into account the problems raised in this thesis and emphasise the importance of incorporating more open science practices going forward. Various tools that emerged out of the open science movement will be invaluable for researchers working on this exciting, interdisciplinary endeavour
    • …
    corecore