4,221 research outputs found

    Incremental simulation modelling for Internet collaborative design

    Get PDF
    In order to support Web-based collaborative design in terms of transferring or updating models dynamically and efficiently, new incremental modelling and local updating strategies have been developed for simulation modelling application since simulation is more focused on visualisation effects than on geometry details. Based on an assembly connection concept, a drag-and-drop assembly method has also been proposed in simulation assembly. An assembly connection is defined as a group of assembly constraints and it makes assembly easier. A case study example is given to show the content of the proposed research

    Web-based CBR (case-based reasoning) as a tool with the application to tooling selection

    Get PDF
    Over the past few years, manufacturing companies have had to deal with an increasing demand for feature-rich products at low costs. The pressures exerted on their existing manufacturing processes have lead manufacturers to investigate internet-based solutions, in order to cope with growing competition. The decentralisation phenomenon also came up as a reason to implement networked-application, which has been the starting point for internet/intranet–based systems. Today, the availability of powerful and low cost 3D tools, database backend systems, along with web-based technologies, provides interesting opportunities to the manufacturing community, with solutions directly implementable at the core of their businesses and organisations. In this paper a web-based engineering approach is presented to developing a design support system using case-based reasoning (CBR) technology for helping in the decision-making process when choosing cutting tools. The system aims to provide on-line intelligent support for determining the most suitable configuration for turning operations, based on initial parameters and requirements for the cutting operation. The system also features a user-driven 3D turning simulator which allows testing the chosen insert for several turning operations. The system aims to be a useful e-manufacturing tool being able to quickly and responsively provide tooling data in a highly interactive way

    The evaluation of a novel haptic machining VR-based process planning system using an original process planning usability method

    Get PDF
    This thesis provides an original piece of work and contribution to knowledge by creating a new process planning system; Haptic Aided Process Planning (HAPP). This system is based on the combination of haptics and virtual reality (VR). HAPP creates a simulative machining environment where Process plans are automatically generated from the real time logging of a user’s interaction. Further, through the application of a novel usability test methodology, a deeper study of how this approach compares to conventional process planning was undertaken. An abductive research approach was selected and an iterative and incremental development methodology chosen. Three development cycles were undertaken with evaluation studies carried out at the end of each. Each study, the pre-pilot, pilot and industrial, identified progressive refinements to both the usability of HAPP and the usability evaluation method itself. HAPP provided process planners with an environment similar to which they are already familiar. Visual images were used to represent tools and material whilst a haptic interface enabled their movement and positioning by an operator in a manner comparable to their native setting. In this way an intuitive interface was developed that allowed users to plan the machining of parts consisting of features that can be machined on a pillar drill, 21/2D axis milling machine or centre lathe. The planning activities included single or multiple set ups, fixturing and sequencing of cutting operations. The logged information was parsed and output to a process plan including route sheets, operation sheets, tool lists and costing information, in a human readable format. The system evaluation revealed that HAPP, from an expert planners perspective is perceived to be 70% more satisfying to use, 66% more efficient in completing process plans, primarily due to the reduced cognitive load, is more effective producing a higher quality output of information and is 20% more learnable than a traditional process planning approach

    Striking a Balance Between Physical and Digital Resources

    Get PDF
    In various configurations—be they academic, archival, county, juvenile, monastic, national, personal, public, reference, or research, the library has been a fixture in human affairs for a long time. Digital — meaning, content or communication that is delivered through the internet, is 20 years old (but younger in parts). Basically, both approaches to organizing serve to structure information for access. However, digital is multiplying very fast and libraries all-round contemplate an existential crisis; the more hopeful librarians fret about physical and digital space. Yet, the crux of the matter is not about physical vs. digital: without doubt, the digital space of content or communication transmogrifies all walks of life and cannot be wished away; but, the physical space of libraries is time-tested, extremely valuable, and can surely offer more than currently meets the eye. Except for entirely virtual libraries, the symbiotic relationship between the physical and the digital is innately powerful: for superior outcomes, it must be recognized, nurtured, and leveraged; striking a balance between physical and digital resources can be accomplished. This paper examines the subject of delivering digital from macro, meso, and micro perspectives: it looks into complexity theory, digital strategy, and digitization

    A Survey of Automated Process Planning Approaches in Machining

    Get PDF
    Global industrial trend is shifting towards next industrial revolution Industry 4.0. It is becoming increasingly important for modern manufacturing industries to develop a Computer Integrated Manufacturing (CIM) system by integrating the various operational and information processing functions in design and manufacturing. In spite of being active in research for almost four decades, it is clear that new functionalities are needed to integrate and realize a completely optimal process planning which can be fully compliant towards Smart Factory. In order to develop a CIM system, Computer Aided Process Planning (CAPP) plays a key role and therefore it has been the focus of many researchers. In order to gain insight into the current state-of-the-art of CAPP methodologies, 96 research papers have been reviewed. Subsequent sections discuss the different CAPP approaches adopted by researchers to automate different process planning tasks. This paper aims at addressing the key approaches involved and future directions towards Smart Manufacturing

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Capturing and Sharing Human Digital Memories with the Aid of Ubiquitous Peer– to–Peer Mobile Services

    Get PDF
    The explosion of mobile computing and the sharing of content ubiquitously has enabled users to create and share memories instantly. Access to different data sources, such as location, movement, and physiology, has helped to create a data rich society where new and enhanced memories will form part of everyday life. Peer–to–Peer (P2P) systems have also increased in popularity over the years, due to their ad hoc and decentralized nature. Mobile devices are “smarter” and are increasingly becoming part of P2P systems; opening up a whole new dimension for capturing, sharing and interacting with enhanced human digital memories. This will require original and novel platforms that automatically compose data sources from ubiquitous ad-hoc services that are prevalent within the environments we occupy. This is important for a number of reasons. Firstly, it will allow digital memories to be created that include richer information, such as how you felt when the memory was created and how you made others feel. Secondly, it provides a set of core services that can more easily manage and incorporate new sources as and when you are available. In this way memories created in the same location, and time are not necessarily similar – it depends on the data sources that are accessible. This paper presents DigMem, the initial prototype that is being developed to utilize distributed mobile services. DigMem captures and shares human digital memories, in a ubiquitous P2P environment. We present a case study to validate the implementation and evaluate the applicability of the approach
    corecore