
DESIGN SYNCHRONIZATION IN DISTRIBUTED 

COLLABORATIVE DESIGN – DESIGN CHANGE IN 

PRODUCT-PROCESS DESIGN ACROSS GLOBAL 

ENTERPRISES 

 

 

 

 

 

Bok Shung Hwee 

(B. ENG (HONS), M. Eng) 

 

 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

2007 



 ii

 

 

 

 

 

 

 

 

The Water Is Wide 

 

 

 

 

 

 

 

 

 

 



 ii

ACKNOWLEDGEMENTS 

 

 

I would like to sincerely thank my advisors for their support and guidance. I am 

grateful to Professor Andrew Nee for his mentorship since 1987, personal words of 

significance and encouragement, and professional research leadership and advice. To 

Professor Wong Yoke San, I am appreciative of his support in accepting me into LCEL 

and facilitating research activities.  To Associate Professor Senthil Kumar, thank you 

for your support too.  

 

My journey in pursuing this PhD may at last end with but a small contribution in 

knowledge, and may there be a new hope and chapter ahead.  

 

To God Be the Glory. 



 iii 

 

TABLE OF CONTENTS 

 

Acknowledgements         ii 

Table of Contents         iii 

List of Figures          vii 

List of Tables          xi 

Summary          xii 

 

CHAPTER 1 INTRODUCTION       1 

1.1 Background         1 

1.2 Motivation and Purpose        3 

1.3 Organisation of the Thesis       6 

 

CHAPTER 2 LITERATURE REVIEW      8 

2.1 CIM, CE, CAPP and GLOBAL MANUFACTURING    8 

2.2 Digital Enterprise Technology (DET) Cornerstones    12 

2.3 Digital Enterprise Technology (DET) Functionality Issues   17 

2.4 Related Work         19 

2.5 Problem Statement and Research Objectives     31 

 

CHAPTER 3 MIDDLEWARE FRAMEWORK AND APPLICATION  38 

ARCHITECTURE FOR DISTRIBUTED  

COLLABORATIVE DESIGN 

3.1 Conventional CAD Systems       39 



 iv 

3.2 Middleware Framework and Architectural Elements    44 

3.2.1 Classification and Distribution of Functionality and Data   45 

3.3 Applications Architecture and Computing Environment    48 

   3.3.1 Distributed Client-Server Architecture     49 

   3.3.2 Geometric Modelling Server       55 

   3.3.3 Product Model and Data Representation     56 

   3.3.4 Application View        57 

   3.3.5 Reusable client classes for application views     58 

3.4 Distributed Collaborative Design and Design Synchronization   59 

3.5 Discussion and Summary        65 

 

CHAPTER 4 FRAMEWORK DEVELOPMENT AND INTERACTIVE  68 

FIXTURE DESIGN  APPLICATION IN DISTRIBUTED 

COLLABORATIVE DESIGN  

4.1 System Architecture and Overview      68 

4.2 Application View         70 

   4.2.1 Visualization          71 

   4.2.2 Client Infrastructure        74 

   4.2.3 Application View Visualization Functionality    76 

4.3 Server Infrastructure and Geometric Modelling Services   78 

   4.3.1 Server Infrastructure        79 

   4.3.2 Geometric Modelling Services      80 

  4.3.3 Modelling Interface and Functions      83 

  4.3.4 Product Modelling Server Architecture     86 

4.4 Product Modelling With XML       89 



 v 

4.5 Interactive Fixture Design Application      93 

  4.5.1 Fixture Design Methodology and Application Architecture   93 

  4.5.2 Design Synchronization with Interactive Fixture Design   102 

4.6 Discussion and Summary        103 

 

CHAPTER 5 DESIGN SYNCHRONIZATION MIDDLEWARE   107 

MECHANISMS FOR EFFECTIVE DESIGN CHANGE  

UPDATE 

5.1 Design Synchronization Considerations for Application View Updates  108 

   5.1.1 Interactive Visualization in Distributed Collaborative Design  109 

   5.1.2 Graphics Simplification Techniques      111 

   5.1.3 Graphics Compression Algorithms      114 

5.2 Leveraging Model Compression for Design Synchronization   116 

   5.2.1 Model Compression Algorithm      116 

   5.2.2 Product Modelling Architecture with Integrated Model Compression 120 

   5.2.3 Augmented Product Data Representation     122 

5.3 Experimental Results of Integrated Model Compression    125 

5.4 Design Synchronization for Design Change     128 

5.5 Local Face Model Compression for Design Change Synchronization  129 

5.6 Design Change Detection within Shape Modification    131 

5.7 Boundary Representation Model Changes     133 

5.8 Boundary Representation-Based Design Change Detection   138 

5.9 Design Change Synchronization for Application View Update   142 

5.10 Discussion and Summary       144 

 



 vi 

CHAPTER 6 DESIGN SYNCHRONIZATION FOR COLLABORATIVE  147 

DECISION MAKING 

6.1 Introduction         147 

6.2 Design Change Detection and Update      148 

6.3 Design Change Synchronization Case Study with Fixture Design  151 

6.4 Design Synchronization with Application Relations Management  158 

6.5 Summary          162 

 

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS    164 

 

REFERENCES         168 

 

PUBLICATIONS ARISING FROM THIS THESIS    176 

 

 

 

 

 

 

 

 



 vii 

 

LIST OF FIGURES 

Figure 2.1: DET Theoretical Cornerstones      14 
 
Figure 2.2: Importance of Early Conceptual Design Decisions   14 
 
Figure 2.3: Availability of Design Tools      15 
 
Figure 2.4: Master model architecture with client views    25 
 
Figure 3.1: Distributed Industrial Environments - Vertical to    44 

Horizontal Fragmented Value Chains 
 

Figure 3.2: Distribution of Functionality and Data -     45 
1.) Distributed Design Changes; 2.) Product Model Components;  
& 3.) Requirements and Considerations 

 
Figure 3.3: Proposed Application Architecture based on Master Modellers   51 

and Client Application Views 
 
Figure 3.4: Middleware Framework – A Layered Perspective   53 
 
Figure 3.5: Product Modeling in Distributed Environments - Application   60 

Views & Relationships with Relevant Design Synchronization  
Support for the Example of a Forged Car Rim 

 
Figure 3.6: Product Modeler Architecture      63 
 
Figure 3.7: Workpiece Design and Corresponding Fixture Design   65 
 
Figure 3.8: Design Application View       65 
 
Figure 4.1: System Architecture for Interactive Fixture Design   69 
 
Figure 4.2: A Shape3D Visual Object(s) inside a Java3D Scene Graph  71 
 
Figure 4.3: Symbols Used in Representing Java3D Scene Graph   72 
 
Figure 4.4: A Java3D Scene Graph Integrating Scene Graph’s Object Space  72 

with a View/Screen Canvas 
 
Figure 4.5: Rendering Object Space on Image Plane in a Virtual Universe  72 
 
Figure 4.6: Application View with Java3D Canvas for Interactive Fixture Design 74 
 
Figure 4.7: Class Architecture on Client Side     75 
 
Figure 4.8: Class Architecture on Server End     82 



 viii 

Figure 4.9: Block Represented By Its Boundary     85 
 
Figure 4.10: Example of a Tessellated Model     85 

Figure 4.11: Basic Product Modeling Server Architecture    88 
 
Figure 4.12: DTD Schema of Product data XML file    90 

Figure 4.13: Actual DTD of the XML file of Geometric Data of a Body  90 
 
Figure 4.14: An Illustration of the Product Data XML    92 
 
Figure 4.15: Interactive Fixture Design Sequence     95 
 
Figure 4.16: Workpiece and Corresponding Fixture Design    95 
 
Figure 4.17: Example of a hole-based fixture base plate     96 
 
Figure 4.18 Example information stored in the fixture element database  96 
 
Figure 4.19: Support Rule Implementation and View Interaction   100 
 
Figure 4.20: Locator Rule Implementation and View Interaction   101 
 
Figure 5.1: Classification of 3D Models – Geometric Complexity vs   110 

Combinatorial Complexity 
 
Figure 5.2: CLERS Illustration       118 

Figure 5.3: Model Compression Traversal      119 

Figure 5.4: Model Compression and Decompression Procedures   120 

Figure 5.5: Basic integration and sequence of creating the augmented Product  121 
Data schema 

 
Figure 5.6: Product Modeler Architecture with Model Compression and Design  121 

Change Detection 
 
Figure 5.7: Augmented Product Data schema incorporating compressed   123 

geometry 
 
Figure 5.8: Illustration of Augmented Product Data schema    124 
 
Figure 5.9: A Chuck Workpiece       126 
 
Figure 5.10: A Flange-like Workpiece      126 
 
Figure 5.11: Additional Results of Integrated Model Compression   127 
 



 ix 

Figure 5.12: An interactive demonstration of face selection for compression 130 
 
Figure 5.13: Corresponding face compression results    130 
 
Figure 5.14: Interactive fillet modeling operation with compression of selected  131 

generated face 
 

Figure 5.15: Compression of face mesh corresponding to fillet operation  131 
 
Figure 5.16: Boundary Representation Graph Model     134 
 
Figure 5.17: Illustration of Types of Topological Shape Changes   137 
 
Figure 5.18: Illustration of B-rep face shape entity state changes   137 
 
Figure 5.19: Illustration of B-rep shape entity operations inside design change 138 
 
Figure 5.20: Sequence of steps to carry out shape modification with change  139 

detection 
 
Figure 5.21: Design Change Detection Algorithm for Face Shape Entity  140 

Figure 5.22: Improved Augmented Product data schema to support    143 
design change 

 

Figure 5.23: The filleted block with new and replaced face shape entities  143 

Figure 6.1: An Arm Case Workpiece       149 

Figure 6.2: Highlighted Affected Faces in old B-rep Model before    150 
Design Change 

 
Figure 6.3: Modified/Replaced and New Faces Detected in Design Change  150 

Figure 6.4: Modified/Replaced, New and Mapped Faces in new B-rep Model  151 
after Design Change 

 

Figure 6.5: Workpiece before Design Change in Product Design Application  152 
View 

 
Figure 6.6: Typical Output of Model Compression of Workpiece   153 

Figure 6.7: An Initial Fixture Configuration in Application View before   154 
Design Change 

 
Figure 6.8: Workpiece after Design Change in the Product Design Application  154 

View 
 



 x 

Figure 6.9: Captured Face Shape Entities in Design Change Detection  154 
 

Figure 6.10: Captured Face Shape Entities for Design Change Update   155 
through Compression 

 
Figure 6.11: Fixture Design with Design Change Update on Application View 156 
 
Figure 6.12: Fixture Re-Design Completed on Application View   156 
 
Figure 6.13: Fixture Design Representation with Face Tag Association  157 
 
Figure 6.14: Typical Output of Design Change Detection of Affected Shape  158 

Entities 



 xi 

 

LIST OF TABLES 

Table 4.1: Fixture Element Group Database      97 

Table 5.1: Size reduction tests with model compression    125 

Table 5.2: Timing tests for visualization      126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii 

SUMMARY 

Distributed Collaborative Design is an area within the collection of systems and 

methods for the digital modeling of the global product development and realization 

process. Global enterprises face tremendous challenges in collaborating together to 

design and develop products across geographically dispersed locations known as 

distributed environments. As design is seldom right the first time and requires design 

changes, global enterprises need to be able to synchronize information with one 

another. This thesis advocates that design synchronization involving design change is a 

key challenge to effective product-process interactions and early collaborative decision-

making.  

 

Successful distributed collaborative design involving design synchronization is not 

easily achieved with conventional design and manufacturing applications given that: 

1. It is difficult to collaborate by exchanging entire product models in a seamless, 

integrated and flexible manner with these applications and yet avoid data 

proliferation and inconsistencies, especially when frequent design changes 

occur and timely, accurate and consistent updates with collaborating companies 

are needed. 

2. The nature of geometric modelling or CAD systems is such that boundary 

representations provide important references to shape entities of the product 

model but it is not easy to share and manage these references consistently 

during design changes across collaborating users. 

3. The lack of robust methods to detect design changes.  

 



 xiii 

The research conducted in this thesis presents solutions to the above difficulties. A 

distributed collaborative design computing environment is needed as a key technical 

approach. Its foundation comprises a proposed middleware framework and an 

application architecture to support distributed product and process modeling in a 

seamless flexible manner. The middleware framework defines flexible services and 

mechanisms to product modeling capabilities and data for distributed environments. 

The application architecture is the definition and arrangement of architectural elements 

due to an appropriate distribution of functionality and data involved in distributed 

product design and development. This distribution conceptually helps to define the 

design synchronization mechanisms needed as middleware mechanisms to manage 

functionality and data issues to realize timely, accurate and consistent updates.  

 

This approach allows suitable applications belonging to users and companies to be 

developed as application views integrated into the distributed collaborative design 

environment. Applications as such can access, develop and collaborate on product 

models based on a product modeler server providing necessary services related to 

product modeling and product data representations. An interactive fixture design 

application view illustrates this without having to have a full-fledged resident CAD 

system. 

 

Given that design changes in product-process design interactions in distributed 

environments affect collaborative decision-making, it is crucial to deal with how they 

can be properly detected and updated to application views. Such capabilities are 

necessary to ensure product models and their changes are shared and referenced 

consistently and accurately. Otherwise collaborative decision making will be difficult 



 xiv 

even as useful application relations may be logically set up to enable application views 

to relate to one another. Therefore design synchronization capabilities must manage 

application view integrity to support application relations. These capabilities have to 

deal with two major aspects of application views in distributed environments:  

1. Providing updates to the 3D product model view and  

2. Ensuring that product data representations referencing the product model are 

accurate during design change. 

 

Accordingly, an evaluation of 3D graphics simplification techniques is needed. From 

the product design perspective, the integrated use of an enabling technology in 3D 

graphics compression is featured. This ensures that complex faceted data or models 

resulting from a product modeller can be compacted and updated to application views 

without compromising product model interpretation. 

 

The most challenging aspect of design change deals with shape modifications which 

result in boundary representation changes that must be explicitly captured at the 

product modeller. Boundary representations comprise shape entities that are 

topologically and geometrically defined to enable robust product modelling. All vital 

information related to shape entity changes need to be captured and appropriately 

updated to application views. This is more effective compared to having to deal with 

the entire product model. Thus design change detection and update to application views 

driven from the product modeller is a vital aspect of design synchronization. This will 

ensure that all application views have the opportunity to carry out early collaboration 

consistently and accurately whilst avoiding unnecessary additional problem solving. 



 1 

Chapter 1 
 
 

INTRODUCTION 
 
 

 

 

1.1 Background 

It is rare nowadays for a single enterprise or company to design, manufacture and 

supply an entire product in a single location. The dominant situation today is that each 

enterprise or company concentrates on their core competencies and needs to 

dynamically collaborate with other companies in virtual value chains so as to meet 

today’s challenges of product development. In this context, the abilities to design 

dynamically in a responsive manner, drive product development through the supply 

chains and manage costs are increasingly demanded.  Consequently, this is technically 

challenging as appropriate support tools, resources and approaches are needed to 

address issues that impede the distribution, integration and support of various design 

and process activities to enable collaboration in distributed environments. 

 

When a product is designed through the joint and collective efforts of many designers, 

the design process may be called collaborative design [Wang et al 02]. This may 

include functions as disparate as design, manufacturing, assembly, test, quality and 

even purchasing from suppliers and customers. Since a collaborative design team often 

works in parallel and across distributed heterogeneous environments in both 

asynchronous and synchronous modes, the resulting process may even be called a 

distributed collaborative design process.  



 2 

Traditional approaches of sharing design information among collaborators and tools 

have included the development of integrated sets of tools and the establishment of data 

standards and formats for product exchange.  These are, however, becoming 

insufficient to support collaborative design practices due to factors such as highly 

distributed design and process teams that need to be appropriately connected and 

synchronized; diverse heterogeneous engineering tools that continue to pose problems 

to integrated collaboration; fundamental shortcomings of present conventional systems 

even in  supporting early design changes (as a design is seldom right the first time and 

customer satisfaction requires alternative innovations); and evaluation associated with 

frequent ad-hoc collaborations in an increasingly ‘outsourced’ and fragmented global 

environment. Such design changes are more likely to take place at the stages of 

conceptual design before detailed design. Overall, conventional CAD tools do not 

quite address the challenges of conceptual or early design especially in a distributed 

collaborative environment.   

 

Technically, collaborative systems can be defined as distributed multiple user systems 

that are both concurrent and synchronized [Bidarra et al 01]. Concurrency involves 

management of different processes trying to simultaneously access and manipulate the 

same data. Synchronization involves timely updates through propagating evolving data 

among users of a distributed application, in order to keep their data consistent and 

improve responsiveness.  

 

Concurrency and synchronization are generally demanding concepts. Their difficulty 

becomes particularly apparent within a distributed collaborative design context where 

large amounts of model data and design changes and flows have to be consistently 



 3 

handled so that users can carry out their activities and collaboration in design and 

related processes. 

 

1.2 Motivation & Purpose 

Distributed environments are generally heterogeneous given different or diverse 

practices and systems environments. It is one major reason hampering the seamless 

integration of compatible product and process design capabilities, information and 

methods. A suitable approach is thus needed to conceptualize and develop an 

appropriate application architecture supported by a middleware framework to develop 

a suitable distributed collaborative design computing environment. To do so, there are 

also specific needs for various middleware to provide the relevant mechanisms and 

capabilities that appropriately distribute and synchronize functionality and data across 

the network [Bidarra et al 01] [Wang et al 02][Huang and Mak 03][Wu and Sarma 04]. 

 

This thesis attempts to address the following important issues  

1. Development of a distributed collaborative design computing environment with 

the appropriate application architecture and middleware framework, and  

2. Development of design synchronization mechanisms supporting timely, 

accurate and consistent updates to applications so that collaborative decision 

making can be based on handling design change.  

 

In this approach, specific capabilities to demonstrate such a framework include the 

realization of interactive fixture design and product data representation as part of an 

application view in a distributed collaborative design environment. Capabilities for 

design synchronization across distributed environments are required to accurately and 



 4 

consistently enable distributed product-process interactions and collaborative decision-

making. It is crucial that these capabilities must be reliably driven by the product 

model’s boundary representation so that design synchronization with updates is 

directly and generally possible. In reality, the nature of product model definition, as in 

its boundary representation and the accessibility and persistency of shapes and features 

within, has to be apprehended for successful collaboration between applications in 

product-process, and indeed product-product, interactions. The research approach has 

to overcome the weaknesses or shortcomings of conventional systems by exploiting 

Open Source technologies in order to facilitate seamless meaningful integration as a 

middleware framework would require. 

 

Related to this thesis, distributed collaborative design is a key technical area within the 

research trends and perspectives grouped as Digital Enterprise Technology (DET) - 

‘the collection of systems and methods for the digital modeling of the global product 

development and realization process, in the context of lifecycle management’ 

[Maropoulos 03]. 

 

It is also about conceptual or early design, crucial in the product development cycle in 

which the impact of early design decisions on manufacturing costs is initially very 

high, and declines steeply as the design matures. Thus the opportunity cost is very high 

at the preliminary design stage since subsequently, it is extremely difficult to 

compensate for a poor design. Conceptual design, guiding design definition and 

editing, in traditional Computer-Aided Design (CAD) is hard to accomplish, attested 

by the fact that most conventional CAD systems primarily focus on detailed design. 

The basic problem is that conceptual design requires knowledge of design 



 5 

requirements and constraints which are usually imprecise and unavailable early on. 

There is considerable research on semantic feature modeling to enable better design 

intent and shape generation capabilities in CAD systems.  Notwithstanding this, the 

key impact of conceptual design is surely in arriving at better product designs or 

design alternatives, through changes to the product shape definition and specifications, 

which would subsequently also affect detailed design processes. So in essence, design 

change involving shape editing is a key driver activity. In today’s distributed 

environment context, conceptual design needs to adopt a more pragmatic and 

aggressive approach - through collaboration - supported by information technologies 

and the appropriate integration methodology with design [Wang et al 02].   

 

Ultimately, as more advanced utilization is sought of the Internet as in twinning 

respective application and infrastructure areas respectively such as distributed 

collaborative design and Grid computing, middleware capabilities increasingly become 

more specialized and are driven by domain and context requirements at the top of the 

‘network stack’. Once such specialized capability is that of design streaming wherein 

likely, design changes can be streamed and shared incrementally without dependence 

on a priori complete or filed product models. A plausible approach to design streaming 

is to capture Boundary Representation-related topological operations underlying the 

design change for transmission and reconstruction in order to share and collaborate.  

Handling design change for synchronization that can also include design streaming is 

thus an important area of research pursuit. These specific capabilities require domain-

specific approaches to enable and support scientists and engineers to transparently use 

and share distributed resources such as computers, data, networks, and remote 

instruments (or equipment) [Blatecky et al 02].  



 6 

  

1.3 Organization of the Thesis 

Chapter 2 reviews the background and industry developments in manufacturing and 

the resulting need for Digital Enterprise Technology cornerstones to meet the emerging 

challenges of product development and manufacturing known as Distributed 

Collaborative Design. It also reviews the relevant literature of related work reporting 

on propositions and developments of methods, techniques, applications and systems to 

satisfy the need to provide for collaboration and synchronization. Design change is 

highlighted as an important issue. Based on this, a problem definition is identified 

accompanied by specific objectives of this thesis. 

 

In Chapter 3, a critique of conventional CAD systems is elaborated to highlight salient 

issues involving persistency of reference tags to geometry elements in the product 

model. Coupled with a set of insights, the framework design and its application 

architecture’s elements are proposed so that middleware and integration issues can be 

resolved to enable domain users such as designers and engineers to collaborate 

independent of or decoupled from proprietary architectural and systems interfacing and 

integration issues. Resulting from this, application development and interactions can 

be supported such as in interactive fixture design. This approach can also allow further 

application development such as extensions to be possible. Chapter 3 presents the 

application architecture and systems environment for Distributed Collaborative 

Design.  

 

Chapter 4 presents an implementation of the system environment with a demonstration 

of interactive fixture design capability based on it. A relevant comment is that 



 7 

interactive fixture design may be treated as an assembly design activity guided by 

knowledge such as rules without necessitating design change involving shape editing.  

 

Chapter 5 evolves the framework further with integrated model compression as an 

enabling technology to provide a key middleware mechanism for application view 

updating. This is supported by the importance of being able to drive local compression 

of faces from the boundary representation due to design changes. This leads to the 

need to investigate design change detection to update of all affected shape entities in a 

boundary representation. This is important to the maintaining the integrity of product 

data representations in application views.  Several examples are included to 

demonstrate these design synchronization mechanisms to improve the middleware 

framework and make the application architecture appropriate to design change.  

 

Chapter 6 provides further illustrations of design change detection and updates to 

application views. A case study involving fixture design and re-design due to design 

change is used to collectively cover the developments in this thesis. A critique of 

application relations management is made with design change detection and update to 

describe why design synchronization has to be design change-driven from the product 

modeler, such that application relations management and early collaborative decision-

making would be more effective. In particular, the importance of persistency and 

consistency of referencing the product model’s boundary representation during design 

change is emphasized. 

 

Chapter 7 concludes this thesis with the main contributions made and the 

recommendations for future research.   



8 

Chapter 2 
 
 

LITERATURE REVIEW 
 

 

 

This chapter discusses the relevant literature. Section 2.1 reviews the historical 

background of design and manufacturing applications to highlight today’s challenges. 

Section 2.2 provides theoretical cornerstones of an emerging perspective of Digital 

Enterprise Technology (DET). Section 2.3 describes DET functionality issues.  

Section 2.4 reviews related work relevant to distributed collaborative design 

identifying challenges and drawbacks of current approaches. Section 2.5 provides the 

problem statement and objectives. Based on efforts led by the author to develop a 

distributed computing environment with an applications architecture and a 

middleware framework, the focus of design synchronization is highlighted with 

regards to the context of design change affecting collaborative decision-making.  

 

2.1 CIM, CE, CAPP and GLOBAL MANUFACTURING 

Traditional research efforts in computer-based methods for design and manufacture 

largely relate to applications in CAD, whilst research in Computer-Automated 

Process Planning (CAPP) has substantially enriched design knowledge with concepts 

from the manufacturing domain. It is well recognized that applications developed in 

isolation would not promote the concept of Computer Integrated Manufacturing 

(CIM).  The goal of CIM was to achieve the local network integration of systems 

[Maropoulos 99]. However, CIM did not enter the mainstream due to its high level of 



9 

complexity, costly infrastructure and poor support. Crucially during this period, 

competing standards in communication protocols also prevented flexible integration.   

 

The complexities of product development and manufacturing practices also brought 

on the concept of Concurrent Engineering (CE). CE systems aimed to reduce ‘time to 

market’ through a simultaneous approach to product and process design 

[Sohlenius92]. This is facilitated through using Design for X (DFX—where X stands 

for any product life cycle phase) [Ulrich 00]. A key CE requirement has been for 

CAPP to enable production method selection, based on process capability and 

production economics, through automatic interpretation of design data.  

 

However, a key issue is that highly detailed designs are needed before CAPP systems 

can perform their ‘micro planning’. This makes CAPP rather unsuitable in today’s 

context of rapidly evolving product designs and agile deployment of manufacturing 

resources.  The global trend of reduced product lifecycles, increased product variety 

and cost competition has also placed strain on the integration of design with 

distributed manufacturing operations. Indeed, the concept of CAD itself has evolved 

to be tightly integrated with Computer-Aided Manufacturing (CAM) and Computer-

Aided Engineering (CAE).  

 

Notably the emergence of the Internet is due to the standardization and open adoption 

of primary data communication protocols. This is essential to supporting various 

specialized middleware capabilities and services. Standardized data protocols have 

also spawned new industrial segments in computers and networking.  

Notwithstanding this, the sense of isolated applications unable to work together is a 



10 

challenge to enterprises with dispersed activities in engineering design, fabrication, 

production and final assembly. Such enterprises are said to require or have structures 

or frameworks with the notions of design anywhere, fabricate anywhere, and produce 

and deliver anywhere. It is an expressed global vision to optimize available resources 

and deliver quality products, in a timely manner while maximizing profits [Reiter 03].  

 

To support such a vision, a renewed understanding is that globalization forces have 

dispersed economic activities and outsourcing where components and intermediate 

goods are even shuttled between plants and countries for comparative advantage. 

With intense global competition, such activities can be conceptualized as transient 

horizontally fragmented value chains of interacting product design, planning and 

management and realization phases.  

 

To trace this, Japanese car manufacturers had to achieve cost and quality 

competitiveness through highly efficient in-house production processes in the 1980s. 

The efficiency was due to factors such as vehicle platform sharing, parts modularity 

and interchangeability, and stringent quality controls in tolerance for parts assembly 

to contribute toward customer satisfaction. Subsequent to this, the leading 

manufacturer, Toyota strategically initiated its own parts supply chains of subsidiary 

companies, “kereitsu”, to lower costs of production resources and activities. This took 

place across lower tiers of supplier companies and later encouraged greater design and 

development autonomy for continual improvement. Such chains were however 

vertically integrated and dedicated to Toyota for it to concentrate on core product 

innovation, design and development in the key areas of engine efficiency, noise, 

vibration and harshness contributed by vehicle chassis design, build and overall 



11 

assembly. Other companies then quickly learnt from this strategy. However, customer 

demands continued to drive greater product sophistication and complexity adding 

pressure to manufacturing costs. This affected companies down the dedicated 

“kereitsu” chains. They could not easily remain cost-competitive and had to compete 

in other markets and overseas. In general, contract manufacturing came into being; the 

“kereitsu” chains did not last.  Contract manufacturing nowadays is characterized by 

sizeable engineering teams, production capacities and with even more competitive 

downstream supply chains. This is to capture businesses worldwide from brand name 

owners or customers on higher tiers of the value chain focusing as well on a product’s 

assembly and critical parts, rather than just more ordinary parts.  

 

Horizontally fragmented value chains would become the next phase as products now 

have very short life-cycles and even greater complexity. Brand name owners have 

become prepared to require contract manufacturers to become original design 

manufacturers with product development and final assembly capabilities. This frees 

brand name owners to compete with agile product design innovation and marketing 

strategies and efforts reinforced by intellectual property protection in order to survive 

in global markets. With all of this, highly fragmented, dynamic and fiercely 

competitive horizontal value chains now prevail. 

 

The above elaborated trends highlight a new competitive environment in which 

product design and development activities are highly demand chain-driven priorities, 

i.e. customer-based, and time- and cost-sensitive, versus just supply-chain oriented, 

i.e. parts and components supplier sourcing and logistics efficiencies. Two key 

characteristics of these activities are: 



12 

 
a) Activities are to stay ‘connected’ across geographically dispersed locations, 

technically called ‘distributed environments’. 

 

b) Activities are now even more change-driven, especially in what is called 

‘design change’. A design is seldom initially right and with product variety 

and innovation, frequent design change occurs which requires capabilities in 

design synchronization and collaborative decision-making.    

 

Synchronization is more than just the storing, retrieval and sharing of design 

data; it is the coordinated requirement of having timely updates propagated 

‘across the systems’ to handle system and application inter-dependencies.  

 

Finally, concepts such as Distributed Collaborative Design and Integrated Product-

Process Development (IPPD) are increasingly vital as synchronizing distributed 

product-process models with frequent design change become a challenge. This 

effectively calls for seamless integration methods and mechanisms to distribute and 

support ‘connected’ applications. With complex relationships and requirements 

between customers and suppliers in the value chain, the lack of such approaches and 

architectures would always incur considerable costs. There is thus a call for new 

approaches and architectures in the underlying modeling and information 

management systems to support conceptual design, and manage early design changes 

across distributed enterprises [Lutters et al 01].  

 

2.2 Digital Enterprise Technology (DET) Cornerstones 

DET is defined as ‘the collection of systems and methods for the digital modeling of 



13 

the global product development and realization process [Maropoulos 03].  DET 

perspectives and research priorities call for the fundamental development of methods 

and systems focused on five theoretical cornerstones or technical areas (Figure 2.1):  

1. Distributed and collaborative design 

2. Process modeling and process planning 

3. Advanced factory equipment and layout design and modeling 

4. Physical-to-digital environment integrators  

5. Enterprises integration technologies  

 

DET requires synthesis of these five technical areas, of which the first three are in the 

digital domain and the next two in physical deployment. They interact with one 

another requiring feedback to distributed product development and realization teams.   

 

Product design within a collaborative and distributed network is the first technical 

digital domain cornerstone utilizing the enhanced graphics and computer processing 

technologies as well as the communication infrastructure of the Internet. Of this, 

relevant (sub) issues include Distributed co-design, Design knowledge management 

and representation, Integration of design with manufacturing planning and Product 

lifecycle management.   

 

Arguably, these issues are also related to the increasingly important role of conceptual 

design in product development even though design requirements and constraints are 

still usually imprecise [Wang et al 02]. At this early phase, conceptual design issues 

are also highly inter-disciplinary and involve collaboration from customers, designers 

and engineers in practice. These issues have significant impact on manufacturing 



14 

productivity and quality affecting downstream processes and tools such as machining, 

fixture planning, mould design and casting (Figure 2.2). 

Figure 2.1: DET Theoretical Cornerstones [Maropoulos03] 

Figure 2.2: Importance of Early Conceptual Design Decisions [Wang et al 02] 



15 

Furthermore, [Wang et al 02] conducted an extensive survey of state-of-the-art 

research, projects and applications in the collaborative conceptual design domain, 

based on Internet and Web technologies, to identify future research trends. Commonly 

noted has been the realization of early design opportunity and its associated 

opportunity cost in terms of its manufacturing costs, notwithstanding the emergent 

distributed collaborative design research context. 

 

Wang also observed that there exist many commercial CAD systems that support 

detailed design and if at all, few commercial tools support conceptual design at the 

boundary with detailed design (Figure 2.3).  This can also reflect the paucity of 

general feature modeling and semantics in such conventional systems. They and/or 

their underlying technologies are not completely available today especially in the 

early stages of design and collaboration in distributed environments [Wang et al 02b].  

Similarly, [Huang and Mak 03] evaluated topics and works related to product design 

and manufacturing given the importance of the Internet and WWW technologies to 

Figure 2.3: Availability of Design Tools [Wang et al 02]



16 

manufacturing. They highlighted evolving interests from electronic commerce and 

business toward product development and shop floor processes, as the beginning of 

the digital manufacturing enterprise era. Many gaps are however found in the 

development and application processes due to domain and technological complexities. 

A simple example is the difference in graphical user interfaces between Web and 

traditional applications. 

 

[Huang and Mak 03] also highlighted challenges to the operation, development and 

deployment of web applications. In particular, good consideration is needed to break 

down frequent user-system interactions into 2 phases: between the user and the client 

side system; and between the client and remote server. When interactions between 

server and client machines are kept at minimal levels with careful allocation of 

computation among them, high interactivity can be achieved through client side 

processing. This is a key consideration in the distribution of data and functionality 

amongst applications deployed as clients and servers.  

 

[Li and Qiu 06] surveyed state of the art technologies and methodologies in 

collaborative product development systems classifying the levels of interactions and 

system infrastructures and complexity of enabling information technologies. 

Classifications ranged from purely visualization-based collaboration to facilitate 

product preview/review, to collaborative design capabilities in concurrent 

engineering-based collaboration requiring integration with manufacturability 

evaluation and simulation capabilities for lifecycle consideration.  In future trends, 

they identified a major need to overcome system weakness in interactivity for real 

time effective collaboration. This requires effective distribution/collaboration 



17 

techniques through new methodologies to improve communication and cooperation. 

 

DET deployment is characterized by a flat, ‘heterarchical structure’, with 

functionality configured by flexible integration of data repositories, distributed 

systems and user sites. The unique Internet infrastructure is also ‘heterarchical’ as the 

effective backbone for DET deployment, with key data communication and exchange 

standards such as STEP and XML (eXtended Markup Language). It is noted that 

XML is far more pervasive, expressive and open than STEP with its own limitations. 

Notably in the area of process modeling, the NIST Process Specification Language 

(PSL) Project proposes to standardize an XML framework [Schlenoff 00].   

 

2.3 Digital Enterprise Technology (DET) Functionality Issues 

Although the Internet provides the medium for data transmission and exchange, there 

are significant challenges facing the digital enterprise [Reiter 03]. The relevant ones 

include: Applications Compatibility; Data Management; and New Releases and 

Proliferation of Software Technology and Implementation.   

 

These challenges recur with each new technology implementation. An example is the 

implementation of solid modeling. Initially (late 1980s) this technology was very 

expensive and considered a risk that was hard to use and justify. As solid modeling 

technology matured and received widespread acceptance, its negative aspects initially 

impeding its proliferation largely vanished. Justification for hardware and software 

for each solid modeling seat then also became a minor issue.  

 

On the challenge of compatibility, it is in the nature of manufacturing and software 



18 

industry practice that systems integrators and application software providers have to 

rely on external programming interfaces to produce dedicated but costly solutions 

between pairs of systems. Further it is also time consuming to carry out effective 

exchange of information between new partners.   

 

The manufacturing software industry thus became traditionally characterized by 

dedicated, integrated product design and manufacturing applications. These heavily 

integrated systems, more recently branded as Product Lifecycle Management (PLM) 

solutions, provide a suite of design and manufacturing applications and the necessary 

mechanisms for information exchange. However, the applications are mainly 

standalone applications from legacy. Examples include those by UGS [UGS PLM 

Solutions, 2004] and PTC [PTC PLM Solutions, 2004]. Based on these systems, there 

is no need to employ the services of systems integrators to develop customized 

mechanisms. However, the drawback is that companies are often required to use 

applications from the same PLM vendor before they can exchange information. This 

becomes a problem in a heterogeneous environment when companies collaborate with 

new partners who do not use applications from the same vendor. Further, it is unlikely 

a PLM vendor will supply all the different product and process design applications 

needed by different enterprises. In addition, sometimes even the same applications 

from a vendor may not integrate well the models from these applications to ensure 

consistency. For example, PTC provides Pro/CONCEPT to carry out conceptual 

design, in addition to Pro/ENGINEER, but maintain the consistency between the 

model for conceptual design phase and the models for other design phases. 

 

Similarly today, distributed collaboration, cooperative and distributed design, and the 



19 

related synchronization of Internet-centric design and planning systems are 

highlighted as new research challenges [Maropoulos03].  The lack of DET 

functionality for the early rapid evaluation of planning options is a key constraint, 

severely limiting synchronization with design and support for sourcing decisions 

during early product development. An intrinsic problem is the over-reliance on 

traditional feature-based CAPP/CAM methods that are more effective during re-

design and detailed design. Vice-versa, the paucity of information during early design 

may not allow feature-based planning methods to function in a reliable manner, a 

point reflected by [Wang et al 02].  

 

DET deployment goal is the scalable and re-configurable integration of distributed 

functions/data, and coordination of design/development teams in any enterprise.  

 

2.4 Related Work 

Manufacturing application development is carried out mainly in two ways. One is 

based on a standalone CAD system’s application programming Interface (API) 

exposed to users. A multitude of dedicated and proprietary functionality is included in 

such systems and familiarity is required with each system’s design. The availability of 

a CAD system API is more motivated by users’ specific needs to exploit the system. 

Notably, agents were used but the interaction could only be based on sharing and 

communicating codified knowledge across disciplines in order to integrate systems 

[Cutkosky et al, 93]. 

 

For better integration and other key reasons, another approach is to basically build 

applications directly with solid or geometric modeling kernels. A notable approach 



20 

was reported in [Han and Requicha, 98] in using a kernel as a geometric modelling 

server. Most conventional CAD systems have had this approach and have become 

known or evolved as standalone monolithic and complex modeling systems [Hoffman 

et al 98].   

 

Based on such standalone systems, basic approaches to an integrated environment for 

product and process design can include rudimentary use of standard file formats such 

as STEP and IGES for CAD models located at central databases. [Roy et al 99] 

proposed a World-Wide Web (WWW)-based collaborative design framework but it 

requires a translator to convert CAD models into neutral VRML models stored in a 

remote product data repository for remote viewing. The translator resides on a central 

server to be accessed remotely by a designer.  

 

A number of information-oriented frameworks [Pahng et al 98] [Huang et al 99] have 

also been proposed and are regarded as under proof-of-concept development stage 

purposed on an application [Wang et al 02].  [Xie et al 01] proposed a WWW-based 

integrated sheet metal product development platform based on an information 

integration framework to link part design with process planning, simulation and 

manufacturing systems. But the part geometry has to be represented in STEP files. 

 

Additionally, [Huang and Mak 03] investigated how a web application itself can be 

developed for managing engineering changes. Accordingly, engineering changes are a 

kind of modification in forms, fits, functions, materials, dimensions etc of products 

and constituent components. Indeed, the agility of an enterprise today depends on its 

ability to manage changes efficiently and effectively. Engineering change 



21 

management therefore has a direct impact on the enterprise's product development 

process. However, engineering changes involve tremendous complexity affecting 

systems such as in CAD, CAPP, Product Data Management (PDM) and Enterprise 

Resource Planning (ERP). Although sophisticated computer aided systems with 

comprehensive functionality are available, such systems have not been utilized to 

facilitate engineering change management activities. [Huang and Mak 03] also 

pointed out that standalone computer aided systems are limited in supporting the 

multi-disciplinary teamwork in engineering change management, especially when 

they are geographically dispersed.  

 

[Huang and Mak 03] thus proposed a web-based engineering change management 

framework to facilitate information sharing via web forms among various parties at 

disparate locations and also to achieve simultaneous data access and processing. It has 

basic functions such as request, evaluation, notification and logging of engineering 

change, to support management over distributed environments though relevant 

enterprise information is not incorporated and nor product design configuration or 

structure is not dealt with. It is part of the development of an engineering change 

management platform. They reported that the system scope can be extended to 

incorporate the facilities of conventional product data management systems that 

provide vault-like design file check in and check out capabilities. It has also been 

indicated that interfaces with systems such as CAD, CAPP, etc, need to be addressed.  

 

In addition, [Huang and Mak 03] reported work on collaborative concept design to aid 

product definition, before design review and release management. It is a design tool to 

support collaboration on functional requirement analysis, concept generation and 



22 

concept evaluation. Morphological generation charts are used to choose combinations 

of concepts with evaluation based on selected criteria, quality function deployment 

and morphological analysis. The outcome is a preliminary layout design reflecting the 

product’s working principles and features. Interfaces with CAD, CAPP etc systems 

are presumably also required to support design review and release management. 

 

When collaborative functionality is designed as a plug-in or tied to separate 

standalone systems such as in CollIDE [Nam et al 98], ARCADE [Stork et al 97] and 

CSM [Chan et al 99] and the above, the resulting architecture requires users to have 

local private use and workspaces, and necessarily invokes onerous tasks of copying 

model data as files from local into common shared workspace for synchronization 

[Bidarra et al 01].  

 

In such architectures, model data files would proliferate restricting the scope for 

collaborative design as design changes would occur when designers and engineers 

interact. A root cause is the problem of association and persistency of names (tags) to 

reference geometric entities. These references are internally generated by the CAD 

system or a geometric modeling kernel during runtime and are not automatically kept 

persistent and consistent. As such this problem is not resolved by translating standard 

file formats or copying model data files about. Each translation or copy effectively 

results in new model with different tags during runtime.  Such issues also raise 

questions about the suitability of CAPP systems as process planning itself cannot 

easily evolve with design change. Another drawback in such architectures is that 

conventional standalone CAD systems used are already complex and monolithic, 

requiring much computational power [Bidarra et al 00].  



23 

Model data file proliferation involves frequent transfers of large amounts of model 

data across distributed environments. Despite tremendous improvements in its 

bandwidths, the Internet is a shared infrastructure connecting computers with a 

growing spectrum of new uses and applications. Indiscriminately transferring 

complex models and assemblies could always take much an inordinate and 

unpredictable time, an issue described as latency. 

 

In addition, there is more relevant and related work with at least one distinctive, i.e. 

attempts at distributed computing and architecture either conceptually or with 

implementation efforts of developing distributed applications incorporating a 

geometric modeling server.  Several observations will be indicated in association with 

architectural considerations such as conventional systems and geometric modeling 

servers; product model and data representation; as well as the construction of 

application views. 

 

Several researchers have proposed the use of a central geometric modeling server for 

developing these distributed applications. [Han et al 98] discussed an approach that 

provides transparent access to diverse solid modelers for applications in a distributed 

environment. Solid modelers were augmented with software wrappers to provide a 

uniform API. Their system encompasses a feature-based design system, a central 

geometric modeling server supporting an automatic feature recognizer and a client-

based graphics renderer. The geometric modeling server stores the B-rep model of a 

designed part. When a design change occurs, the design system communicates the 

change to the feature recognition system. One drawback of this approach is its 

dependence on form feature recognition. There is no product data representation on 



24 

the client side to support application views and processes; updates to the graphics 

renderer are only wireframe information extracted from the B-rep model. 

 

[Martino et al 98] proposed the integrated use of design-by-features and feature 

recognition capabilities suggesting the definition of a homogeneous multiple view 

feature-based representation of the part model. This is called an intermediate model 

shared among various applications. However, while there has been research on feature 

definition for different domains, not all applications carry out reasoning based only on 

feature representation using geometric forms. The difficulty of feature mapping or 

conversion is thus highly context dependent and delicate in the wider context of 

distributive collaborative design involving early frequent design changes and limited 

detailed design information.  

 

[Shyamsundar et al 01, 02] proposed a client-server architecture for collaborative 

virtual prototyping of product assemblies over the Internet. A polygon-based 

representation of the part was used for visualization and a compact assembly 

representation was also developed. A solid modeling kernel was employed as an 

application server to remove the complexity of installation and maintenance of the 

solid modeler on clients. Design changes are not automatically transmitted to users 

working on the model. However, assembly features are tagged and if a designer 

attempts to modify that face, the designer receives a warning. 

 

[Hoffman et al 98, 00] proposed another approach for a product master model to unite 

CAD systems with downstream application processes for different views in the design 

process. They presented an approach to handling design change to synchronize 



25 

applications through the creation of associations across clients.  Proposed is the 

Master Model concept with mechanisms for maintaining the integrity and consistency 

of the deposited information structures of these associations. It has several clients, 

with their own CAD systems, one of which is for a designer to changing the net shape 

(Figure 2.4). Net shape is one of the information structures in the master model. The 

other clients are domain-specific applications on CAD systems, dealing for instance 

with manufacturing process planning, geometric dimensioning and tolerancing 

(GD&T), cost estimation, performance evaluation, etc.  

Hoffman noted that current approaches handle the consistency and association 

problem by organizing conventional systems as a limited one-way architecture. The 

features in an application view are derived from the features of the privileged view, 

usually the design view. The designer defines this view and conversion modules 

generate application-dependent feature models. If a modification is required by a 

downstream application, a privileged view must be entered after which new 

application dependent views can be derived from conversion. It is left open as to how 

to respond to design changes especially amongst heterogeneous CAD systems, 

Figure 2.4: Master model architecture with client views 

Master Model Server 

CAD 
System 

GD&T 
View 

Manuf PP
View

Other 
Downstream

MM 
Repository



26 

implying downstream information must be explicitly re-associated. To handle and 

coordinate consistent views has been noted to be a synchronization challenge.  

 

It is noted that Hoffman did not provide the means and details to developing such 

systems [Bronsvoort et al 04]. Hoffman focused on existing CAD systems as the 

client and means to support process-centric views. This is despite the fact that the 

Master Model repository concept can be easily treated as a separate concern from a 

central geometric modeling server, perhaps due to the preservation of privacy and 

proprietary information associated with standalone CAD systems. Feature conversion 

inside CAD systems as design changes was not detailed, so too the means to detect 

and transfer these changes to synchronize with distributed application views. Hence, 

middleware concerns such as an appropriate middleware framework and 

synchronization mechanisms in a heterogeneous distributed design environment were 

not addressed. In using conventional standalone CAD systems, application 

development will have to depend on each system’s proprietary API.  

 

[Bidarra et al 01] developed WebSPIFF, a web-based collaborative feature modeling 

system. It is a client-server architecture where the server coordinates collaborative 

session, maintains a shared model based on a multiple-view feature modeling kernel 

[de Kraker et al 97]. All views are synchronized by feature conversion through the 

ACIS kernel-specific cellular model mechanism (CM) to support feature semantics 

[Spatial 02] [Bidarra et al 00]. The CM models the net shape by a refined cell 

complex. This permits editing from any feature view and eases consistency across all 

such views. But this requires complex shapes to be decomposed into numerous cells 

and is applicable only to the ACIS kernel. Feature conversion may be computationally 



27 

expensive requiring better server architectures [Hoffman et al 98] [Bidarra et al 02]. 

 

Related to the above, a framework for integrated part and assembly modeling has 

been reported [Bidarra et al 02]. But it incorporates a cumbersome ‘selection model’ -  

3D objects representing canonical shapes of features in a given view. It is to support 

interactive selection of feature faces on a geometry image associated with modeling 

and an accompanying neutral VRML visualization.  The drawback is that VRML is 

not editable resulting in an application is not truly interactive and integrated. From a 

product model and data representation perspective, VRML as a neutral representation 

gives the notion that it is a representation of the geometric model. Strictly speaking, 

this is not true as VRML was proposed as a static file format dedicated to 3D scene 

visualization or ‘publishing’ rather than ‘editing’ [Wang et al 02]. It has no provisions 

for dynamic integration to applications to support interactive collaboration with 

augmented data representations. No associative relationships amongst application 

views were reported to support collaboration. Despite the use of 3D faceted data sets 

in VRML, no synchronization support in terms of updates for view accuracy and 

consistency during design change was reported. 

 

In the context of faceted/meshed models, [Wu and Sarma 04] reported on the 

importance of dealing with them in integrated design environments. They indicated 

that product models go through extensive shape modifications in various CAX 

applications before manufacturing. They identified the problem of repeatedly 

rebuilding the entire faceted model due to design changes to a solid model as 

involving costly computation to re-evaluate the B-rep model and re-generate the 

facets. It is even more so in distributed environments where typical transmission of 



28 

entire faceted models or product models could take up much bandwidth. They have 

not proposed a method to handle the problem of faceted model transmission given in 

their view that compression and progressive transmission techniques are amendable 

only to entire faceted datasets or models. Rather, they proposed an approach known as 

incremental facet editing for data exchange involving editing and evaluating the 

underlying B-rep model is adopted. This approach however requires dealing with 3 

pairs of models for monitoring changes (that is pre and post states) to the underlying 

B-rep and faceted models on the application server-side and application client-side. 

These models have the cumbersome role of ensuring that only ‘changed’ facet models 

are transmitted for updating at other applications.  

 

In comparison with the related works above, the basic aim of this thesis has been to 

propose and develop the appropriate middleware framework and application 

architecture to support distributed collaborative design in heterogeneous 

environments.  A core understanding has been the distribution of functionality and 

treatment of data which may address the drawbacks highlighted above, such as 

proliferation of product models due to static file formats, reliance on cumbersome 

standalone CAD systems, reliance on feature recognition and conversion, insufficient 

approaches to address heterogeneous environments, insufficient or inflexible product 

data representations for application views to interact with product modelers.    

 

Given the presence of B-rep solid modelers and mesh generation providing faceted 

models, this approach basically comprises (augmented) product data representations 

with XML with integration to a geometric modeling server to enable access and 

modeling from application clients.  Faceted models are leveraged to provide for 



29 

interactive visualization and flexible manipulation of product models with their 

topological information. They are the means to maintain the product model similar to 

the master model server approach except clients do not need to have a standalone 

CAD system and the corresponding B-rep model. Unlike features, it is proposed here 

that the geometric elements of the design model in themselves are really primary to 

the needs of synchronization and design change handling for process domain-specific 

requirements. For example, a fixture design application often carries out reasoning 

based on the geometry of a part. Fixture elements are often associated with the faces 

of a part to access and carry out fixturing [Senthil kumar et al 01].  Through 

integration, a finalized fixture assembly can be formalized as the CAD model.  This is 

a good approach given its independence of the geometric modeling kernel and static 

CAD file formats, and the ability to augment via XML.   

 

Neither [Hoffman et al 00] nor [Bidarra et al 02] focus on augmented product data 

representations to support local interactive application view updates due to shape 

modifications. Hoffman’s proposal is mainly an architectural proposal that relies on 

existing CAD systems to arrive at distributed product model management and Bidarra 

relies on semantic features tightly bound to a feature modeler server with specific 

cellular model topology support from the ACIS kernel. Moreover, the augmented 

product data representations are extensible to cope with product architectures or 

assemblies – a fixture design may be considered as an assembly configuration.  

 

As such, the middleware framework and application architecture developed earlier 

have been extended to include design change management based on application 

relations between an application view’s functionality as in fixture design, and the 



30 

product model data as in the faces for fixture element selection [Mervyn et al 03b]. 

Specifically, when design change occurs, it is relevant to the fixture design 

application to be notified. Application relations provide the means to monitor this and 

then activate independent problem solving on an application view for collaborative 

decision making. Generally, design changes can be said to be propagated supporting 

design synchronization at the application problem solving level.  

 

Although [Mervyn et al 03] uses design change propagation propagated via 

application relationships with face shape entities, the underlying middleware does not 

have synchronization mechanisms appropriate to design change handling within the 

product modeler server to support shape modifications and application view updates. 

Notably, the product workpiece has to be re-imported into the product modeler server. 

Consider when dealing with the relationship of a face in a product model to fixture 

design, as in for example, locating face, during distributed collaborative design. When 

there is a design change, as in introducing a step or slot, there would be a need to 

automatically detect the geometric entities that have been generated, 

modified/replaced, removed or even re-mapped, and update the application views. 

This requires evaluating the B-rep rather than resorting to a re-import. 

 

Further when addressing faceted models used for application views, and that are 

subsequently repeatedly rebuilt due to design change, simplification or compression 

techniques need to be considered. Compared to [Wu and Sarma 04], the model 

compression technique is leveraged into the middleware framework for design 

synchronization for timely accurate application view updates in relation to the 

augmented product data representation. Basically [Wu and Sarma 04] does not take 



31 

advantage of or rely on interactive design commands or shape editing procedures 

available to the modeling kernel and which are the means of creating and modifying 

product designs. Nor does it realize that ‘captured’ facet change models due to design 

change are amendable to model compression and could be used to update application 

views. In this context, the augmented Product data representation is used to 

incorporate the role of compression in design synchronization supporting 

collaborative decision-making across distributed environments.  

 

In summary, the design change challenge requires synchronization mechanisms to 

enable a product modeler server to deal with shape modifications as deltas within an 

emitted B-rep representation and provide the corresponding faceted model updates in 

augmented product data representations for an application view to proceed with its 

albeit private problem solving methods.  

 

2.5 Problem Statement and Objectives 

A major research goal has been the development of a middleware framework and 

application architecture to address distributed collaborative design with a view 

towards design synchronization. On top of defining and developing appropriate 

architecture elements relevant to geographically dispersed settings, such a framework 

requires middleware mechanisms to support design synchronization in view of the 

domain and technical complexity of distributed collaborative design. 

 

To be able to achieve distributed collaborative design, a middleware framework as 

motivated earlier, is required considering the following major problems today: 

1. Compatibility problem: In today’s context, various different companies 



32 

collaborate to realize a product. The use of different software products often 

results in practical compatibility problems resulting in poor inter-operability. 

Such compatibility problems had cost companies about US$1 billion per 

annum in the automotive industry alone [NIST 99]. This is exacerbated in 

today’s context of distributed collaborative design demanding seamless 

integration and continuous collaboration. 

2. Distributed information model and exchange problem: Information exchange 

is a critical component of a computing environment for distributed 

collaborative design. In IPPD, downstream applications of the product 

development process require the right information to carry out their tasks, 

while upstream applications require feedback information. In distributed 

collaborative design, these activities may entirely be ad-hoc collaborations 

reflected by the need for early engagements in dynamic fragmented value 

chains. Although a large amount of research has traditionally been conducted 

on developing information models for different applications, present day 

commercial applications often do not provide the required information. 

3. Efficiency problem: Various design changes take place during product-process 

interactions in order to reconcile many requirements of other domains. Each 

time a design change or ‘churn’ occurs, applications need to retrieve the 

updated incremental information. For instance, if it is traditionally about 

retrieving large data sets, such as conventional CAD files, then this would be 

problematic, time consuming and unproductive as will be seen later on in 

addressing the effectiveness of conventional CAD systems. Several categories 

of design changes may be considered: 1) Shape changes; 2) Changes of 

parameters, dimensions, and constraints; and 3) Changes in attributes. Of 



33 

these, shape changes are the most difficult ones to respond since the rest may 

be considered more informational by nature. 

4. Complexity problem: The creation of a monolithic system from the ground up 

is not only difficult, but also leads to difficult software maintenance problems. 

This is a complexity that can only be overcome if capabilities are flexible and 

properly distributed and collaborative.  

5. Synchronization problem: In total, the above leads to the design 

synchronization problem in distributed collaborative design. In the expression 

of dynamic concurrent product design and associated processes in distributed 

environments, it is necessary that all applications are accessing and using the 

correct and coordinated forms of updated data. Emerging distributed 

collaborative design systems could provide remote collaborative viewing of 

parts and assemblies on thin clients albeit with proprietary formats for 

instance, compared to conventional standalone systems. However, the 

provision of middleware synchronization mechanisms for timely updates and 

design change handling across distributed environments has not been 

adequately addressed, especially to drive application relations and support 

collaborative decision-making. Today’s design and manufacturing 

applications however work in isolation and a proper middleware framework is 

desired with specific mechanisms for effective integration and propagation of 

design changes due to the product model itself. 

 

Synchronization here involves timely updates to maintain the consistency of all 

application views and information relating to the master product model as a result of 

design changes. This comprises two main integral considerations to ultimately 



34 

expedite early collaborative decision-making across distributed environments 

especially when design change involves shape modification occurs. In view of the 

latency and bandwidth constraints, one consideration is to provide middleware 

mechanism(s) that appropriately provide for accurate timely updates to support 

interactivity and view consistency. The other is to provide the accompanying support 

for design change handling at the shape modification level to expedite collaborative 

decision-making and problem solving. This is with reference to the associative 

relationship management capability in an Integrated Product Process Development 

(IPPD) context [Mervyn et al 03b].   

 

A middleware layer perspective has been adopted with the concept of understanding 

the distribution of data and functionality in product design and manufacturing to 

conceptualize and develop an application architecture and computing environment. 

Next, synchronization across distributed environments requires the timely update of 

primary and generally complex 3D design and dataset information to be efficiently 

transmitted or transferred and updated as design (change) itself happens remotely 

[Bok et al 04]. This should be non-destructive in order to ensure the integrity and 

accuracy of presenting the design and design changes for collaboration. This is also 

primary to the need to support collaborative decision-making and problem solving in 

response to design change. 

 

For example, in a change-driven collaborative design environment, a design engineer 

needs to dynamically carry out design changes to a product part or component whilst 

possibly and concurrently requiring the engagement of a ‘downstream’ supplier of 

tooling, e.g. fixture design, to carry out some form of processing to derive a new 



35 

consistent application view of the product data. The processing is therefore 

application-bound, domain-specific and may employ different methods preferred by, 

peculiar to, or even proprietary to the practices of say, fixture design, in a company. 

In addition, one area of concern is to develop and integrate simulation capabilities in 

order to interact with fixture design and analysis for a more complete collaborative 

product development. In other words, such interactions would become further 

extensions of the framework supporting product-process and process-process 

collaboration. This then allows for a more concurrent engineering-based type of 

collaboration as highlighted by [Li and Qiu 06]. 

 

The conceptual development of the middleware framework and application 

architecture has been led by the author. This provides the groundwork for research 

into design synchronization issues affecting product modeling and product-process 

interactions. This required original conceptual and technical contributions by the 

author including: 

1. Development of geometric modeling server through a solid modeling interface 

to demonstrate distributed interactive and portable access into geometry using 

Java Native Interface, Java Remote Method Interface, Java3D and Parasolid 

(as opposed to a conventional standalone CAD system). 

2. Development of product model data representation to demonstrate the 

feasibility of application views through XML modeling of B-rep information 

(at the levels of face, edge, vertex and point for selection) and the associated 

3D facet data for interrogation and manipulation (as opposed to relying on 

VRML).  

3. Further development on the application view of interactive fixture design 



36 

methods through reusable client classes to demonstrate the feasibility of 

reusability and distributed design (to allow for modular and independent 

integration of different process methods to respond to design information).  

4. Development of modeling classes to demonstrate interactive design 

capabilities affecting the B-rep model (to show that interactive remote shape 

generation is possible). 

5. Demonstration of integrated model compression as an enabling technology for 

complete design or solid models for the handling of large complex datasets in 

association with product model data representation (to handle bandwidth 

limitations across distributed environments in general). 

 

In summary, for design synchronization to take place integrally, firstly, a product 

model and its design and the subsequent changes should be appropriately supported 

by a distributed application architecture and its elements especially a geometry 

modeling kernel and an application view; secondly, mechanism(s) for transmitting 

and propagating updates to remote applications views should be provided to expedite 

collaboration; and thirdly, as a result, application-bound or dependent algorithms may 

deal with these updates for problem solving.   

 

This thesis aims to solve these problems by developing a distributed collaborative 

design system with middleware mechanisms to support collaboration during product-

process interactions involving design change. The thesis has the following objectives: 

• Conceptualise and develop a middleware framework with appropriate basis of 

distributed functionality and data for architectural elements to support 

distributed collaborative design.  



37 

• Develop the computing environment involving these architectural elements 

with the appropriate functionality and data. 

• Demonstrate how an application such as interactive fixture design across 

distributed environment can be supported based on the appropriate distribution 

and representation of product modelling data and information support and 

functionality amongst these architectural elements.  

• Develop design synchronization mechanisms appropriate to distributed 

environments to enhance the framework to efficiently support timely accurate 

updates to application views and provide design consistency in relation to 

design change and early collaborative decision-making across application 

views. This can facilitate process application views in responding early to 

design changes during product-process interactions and so avoid unnecessary 

additional problem solving.  

 



38 

Chapter 3 

 
MIDDLEWARE FRAMEWORK AND 

APPLICATION ARCHITECTURE FOR 

DISTRIBUTED COLLABORATIVE DESIGN 
 

 

 

The issues and requirements defined earlier have necessitated the design of a 

middleware framework and application architecture for the development of a 

computing environment for distributed collaborative design. This chapter has the 

objective of addressing this need. As a backdrop, a critique of conventional CAD 

systems in relation to distributed product-process interactions in the distributed 

collaborative design and design synchronization context is provided. This is 

accompanied by insights into the importance of distributing functionality and data 

from the perspectives of integrating product-process interactions and supporting 

design synchronization in distributed environments. This importance reinforces the 

need for middleware mechanisms to support design synchronization in collaborative 

decision-making. The framework accompanied by its architectural elements and the 

corresponding distributed computing environment is then proposed. To add design 

synchronization to the framework, the distributed product-process modelling context 

is illustrated highlighting two essential mechanisms in the research efforts so far: the 

leveraging of the model compression technique to synchronize application views for 

more timely and consistent updates due to the nature of distributed application 

view(s); and handling distributed design changes in the context of shape 



39 

modifications. These mechanisms are fundamental to a product modelling server in 

order to carry out collaborative decision-making based on application relationships 

driving problem-solving to assess design change impact on an application view such 

as fixture (re-)design.  

 

3.1 Conventional CAD Systems 

Almost all current feature modeling systems are based on parametric, history-based 

modeling systems, requiring a boundary representation (B-rep) as the main geometric 

model. Traditionally, the boundary representation can be used for several 

applications, e.g. process planning and computer-aided manufacturing or to even 

derive finite element models. Such systems include most if not all the existing 

commercial systems.  

 

The basic entity in a feature model is the feature, defined as a representation of shape 

aspects of a product that can be mapped to a generic shape and functionally 

significant for some product life-cycle phases. Features should additionally support 

well-defined meanings, or semantics, for a particular life-cycle activity. However, 

beyond the default reliance on generic shapes, two important aspects of this are not 

well covered by most commercial systems. First, feature semantics as a form of useful 

knowledge for product design and development are poorly defined, limiting the 

capability of capturing design intent in the model in conceptual design. Second, 

feature semantics are poorly maintained, permitting previous design intent to be 

inadvertently overruled. Such systems are said to lack validity maintenance facilities 

[Bidarra et al 00]. 

 



40 

History-based modeling systems are procedural systems which, together with an 

constantly evaluated B-rep, keep track of information about each modeling operation 

performed, e.g. the type of feature created, its parameter values, and its model 

references for positioning. The stored sequence of modeling operations, called the 

model history, completely determines the B-rep. Each new feature is positioned 

relative to boundary entities of the evaluated model, obtained from previously created 

features. Creation of a feature produces in the evaluated boundary model its 

characteristic shape imprint.  

 

Feature instances can be modified by specifying new values for their parameters, or 

be deleted from the model. This is done by modifying, or deleting, the respective 

feature creation operation in the model history, after which a newly evaluated 

boundary model is created by sequentially re-executing the operations in the modified 

history. With this scheme, variants of a feature model can easily be created, for 

example, variational constraints-based geometry. 

 

However, most current feature modeling CAD systems have six major shortcomings 

[Bidarra et al 00]: 

1. Computational Cost, 

2. Non-Associative Set Operations, 

3. Entity References, 

4. Constraint Solving Limitations, 

5. Persistency, and 

6. Feature Semantics 



41 

The first three shortcomings are fundamentally due to the strict dependency on the 

historical order of feature creation. The fourth is due, in particular, to non-

bidirectional dimensional constraints, causing the model to be rigid. The fifth is 

notably due to the historical evolution of entities in the evaluated boundary model 

adversely affecting the persistence and definition of feature semantics resulting in the 

poor tracking of changing references to topological entities.   The last shortcoming is 

that of feature semantics support and maintenance, which is non-existent in 

conventional systems. The built in procedural validation schemes during conventional 

feature creation are limited and highly localized to a subset of the boundary model. 

Such non-global schemes easily cause previously created features to be invalid.  

Systematically analyzing the entire boundary model after each operation is also not 

feasible as there are little (or insufficient) traces of entities involved in preceding 

features.  Current approaches prefer a more powerful declarative approach for 

modeling and validation of semantic features. 

 

Intrinsically, the manifold B-rep does not allow storing of all feature information. 

This naturally excludes the possibility of analyzing the topology of the boundary of 

features, an essential requirement for detection of validity violations – called feature 

interactions. Feature interaction phenomena are regarded as a major problem 

affecting feature semantics [Regli et al 96], but are not at any rate dealt with in 

current systems.  Thus, the design intent – the goal of feature semantics - expressed in 

user-defined feature semantics gets compromised. Therefore it can be said that current 

systems offer more of a geometric modeling approach comprising high-level 

primitives (form features) to create a boundary representation, rather than a genuine 

feature modeling approach.  



42 

Other than the abovementioned, supporting distributed collaborative design requiring 

design synchronization support involving design change or even exchange with 

conventional systems presents another related major shortcoming. To review, in a 

heterogeneous distributed environment comprising networked standalone systems, 

onerous static CAD file transfers and data translations/exchanges (‘copying model 

data’) would be typically required for sharing design information.  

 

Traditionally, once a CAD system emits a standard B-rep of a design for translation 

into, for instance, IGES or STEP, the connection of the shape elements with the CAD 

model is lost – a major reason why data exchange such as STEP/PDES and file 

translation cannot adequately support the needs of distributed collaborative design 

involving continuous design changes. There are no links or associations ‘across’ 

provided for in such files to connect vital design details between users once such a 

transfer takes place, making it practically impossible to have persistency or 

consistency support. 

 

The STEP/PDES standard may also falter, given that firstly, it focuses on describing 

and exchanging finished whole designs rather than on capturing and supporting early 

design changes (a condition similar to the role of CAPP highlighted in Chapter 2); and 

secondly, the nature of design and the corresponding issue of design feature semantics 

is rapidly changing due to an increasingly competitive industrial environment which 

increasingly imposes the need to be open, flexible and agile. 

 

Matters are also exacerbated in today’s context of rapid early design and changes 

since data transfers involving time consuming exchange and translation are onerous 



43 

and the resulting static CAD files have to be re-opened or re-instantiated in a design 

session as a standard evaluated B-rep model. This also means that only the 

conventional CAD model, stored in the native system’s proprietary format, and not 

the standard B-rep model, can be edited conveniently [Hoffman et al 98]. However, 

such proprietary systems and their formats were also the reason behind the earlier 

development of exchange standards. Notwithstanding this, the problem of distributed 

collaborative design is compounded as typically, there is no built in support in such 

systems for persistency in names or tags of geometric entities. Perhaps this is also one 

key reason for many applications to be tightly integrated to a geometric kernel 

modeler. However, the resulting systems are still standalone. 

 

In summary, where conventional CAD systems are concerned, distributed 

collaborative design involving comprehensive design synchronization support for 

managing design change is difficult to achieve. Even though advanced facilities are 

now available in high-end commercial CAD systems due to faster and more powerful 

hardware, this also results in larger and more complex standalone systems which 

impose a premier design view and a resulting one-way architecture [de Kraker et al 

97; Hoffmann et al 98].   

 

The fundamental problem of managing consistent core topological data identity 

involving naming and addressing tags to dynamically support and reference design 

entities is furthermore difficult to resolve. Next, with the reality of heterogeneous 

distributed industrial environments that have also resulted from outsourcing and 

fragmentation of value chains (Figure 3.1), requiring flexible collaboration and 

synchronization, it becomes necessary to consider a distributed product-process model 



44 

perspective and appropriate distribution of functionality and data to remotely handle 

design and design change as a CAD-CAPP-CAM perspective is also inappropriate 

nowadays. A distributed application architectural based on a middleware framework 

perspective thus needs to be conceptualized and designed with underlying seamless 

integration of product-process development capabilities is necessary. 

 

3.2 Middleware Framework and Architectural Elements  

A common need in a distributed collaborative design framework is to resolve the 

recurrent conflict of and the need for an appropriate distribution of functionality and 

data [Bidarra et al 01][Huang and Mak 03][Li and Qiu 06]. It would thus be helpful to 

draw out some domain insights and principles from classifying these functionality and 

data to help improve understanding of the architectural framework and the important 

context of addressing middleware concerns relevant to achieving distributed 

collaborative design capabilities. Figure 3.2 is referred.  

Figure 3.1: Distributed Industrial Environments - Vertical to Horizontal Fragmented Value 
Chains. 

Third Tier 
Supplier 

First Tier Supplier 

Prime 
Manufacturer

Second Tier 
Supplier 

Second Tier 
Supplier 

Third Tier 
Supplier 

Third Tier 
Supplier 

Hierarchical Team 
Limited Communication 

“Up the Chain” 

Prime 
Manufacturer

First Tier 
Supplier 

Second Tier 
Supplier 

Third Tier 
Supplier 

Third Tier 
Supplier 

Third Tier 
Supplier 

Second Tier 
Supplier 

Flat Team 
Parallel Access 



45 

Figure 3.2: Distribution of Functionality and Data - 
1.) Distributed Design Changes; 2.) Product Model Components; & 3.) Requirements 

and Considerations 

It can be argued that the presence of these different types of functionality and data 

brings about the need for middleware capabilities and also increases general and 

flexible interoperability through managing complexity across distributed 

heterogeneous environments.  This would be followed by a description of the 

architectural framework and its various elements focusing on the perspective of 

seamless integration and related considerations of design access and synchronization. 

 

3.2.1 Classification and Distribution of Functionality and Data  

Figure 3.2 represents a proposition involving a classification and distribution of types 

of functionality and data that underpin the importance of product-process modeling 

and distributed collaborative design functionality issues and capabilities. It proposes 

that within distributed environments, design changes today drive several of these 

functionality and data within the realm of product-process modeling and applications, 

require access into the product model for interaction accompanied by geometry 



46 

definition support, and generate a multitude of necessary data for product 

development and decision-making. Figure 3.2 also highlights the general fact that the 

various underlying computing processes are bound to be data, knowledge, compute 

and resource intensive, evidenced by the discussion on conventional CAD systems.  

 

Looking at what would typically constitute a product model, the classified areas may 

suggest the important roles of utilized design knowledge within applications as far as 

the users’ overriding objective of product design and development are concerned.  An 

example of such design knowledge can be semantic feature modeling and yet in a 

more process-driven way, another would be for concept design of product 

configuration, and one more would be interactive fixture design, just as the feature 

and geometric modeling capabilities should also be considered as product design 

capabilities. Next, applications supported with design knowledge also require 

complementary and supporting technologies of interactive and flexible user interfaces 

fulfilled by timely visualization of product models integral to accurate design 

interpretation and manipulation. Product models require the support of boundary 

representation (B-rep) modeling (using geometry and topology) for accurate 

definition, solid model reasoning, and the subsequent generation of 3D facets or facet 

models for interactive visualization and design activity. [Shikhare 01] highlighted that 

engineering (facet) models can be highly complex. Without this, both product 

definition and access would be impossible. Last but not least, repositories refer to the 

persistent storage of pertinent databases and files. 

 

Given the review and nature of conventional CAD systems, these classified 

functionality and data can be understood to be present altogether as a tightly 



47 

integrated standalone system. In this context, for supporting enterprise efforts in 

product development, the resulting product models can only be shared via databases 

and files hosted on dedicated server networks. However, in the first place, these 

repositories are really derived from the need to centralize and secure these databases 

and files from unauthorized access and modification. 

 

Nonetheless, within their own right, the types of functionality and data highlighted are 

really integral to the exemplified application or use, as illustrated. It is also valid to 

emphasize additionally that these types are not only inter-dependent but they can and 

should be mutually exploited where necessary such as in augmenting knowledge-

based and computational capabilities to the visualization of facets per se, given that it 

is firstly, really knowledge of objects that are involved in say, semantic feature 

reasoning, and secondly, say within an assembly/disassembly problem context, 

computationally efficient and accurate algorithms or libraries in collision detection are 

available for integration into facet-based databases to effect problem solving. What 

this perspective suggests is the need to consider fundamentally how these types of 

functionality and data are to be distributed, integrated and flexibly handled in order to 

be appropriate to the needs of distributed collaborative design. 

 

Hence given today’s dynamic nature of geographically dispersed product design and 

development activities, an applications architecture and the underlying middleware 

framework need to be considered. The architecture is not just based on a client-server 

approach; it distributes the functionality and data and highlights considerations 

appropriate to carrying out distributed collaborative design based on Figure 3.2. The 

middleware framework needs to feature seamless integration for inter-operability 



48 

through interfaces and reusability, and incorporate support for design synchronization 

mechanisms to collectively address the needs of distributed collaborative design.   

 

Two design synchronization mechanisms are involved in this thesis in relation to 

carrying out collaborative design in distributed environments and addressing the issue 

of design change. As design synchronization amongst application views is vital to 

timely, accurate and consistent updates amongst all the users, the handling of complex 

3D graphics datasets or facet models in the application architecture has to be 

considered [Bok et al 04]. In addition, when design change has to be considered in 

collaboration, then an appropriate means of handling design change in relation to 

product modeling has also to be considered in attendance with the earlier mechanism. 

Collectively, these two mechanisms are primary to the management of application 

relationships across application views supporting product-process interactions and 

plug-and-play problem solving methods, and thus collaborative decision-making 

[Mervyn et al 03].  

 

This thesis focuses on these mechanisms to enable the product modeler server to 

support application view updates and hence application relations for collaborative 

decision-making. It applies to the context of design changes affecting processes such 

as interactive fixture design in an IPPD context. To be more complete for 

collaborative product development, this can be further extended to simulation-based 

design as fixture re-design should require new simulations to be carried out. 

 

3.3 Applications Architecture and Computing Environment 

The foundation of the computing environment for distributed collaborative design 



49 

comprises an applications architecture that follows a middleware framework. The 

framework is basically a layered perspective that corresponds to the classification and 

distribution of functionality and data. The applications architecture refers to the 

various client-server elements that are associated with these functionality and data, 

introduced and discussed in the following sequence: 

1. Distributed Client-Server Architecture,  

2. Geometric Modeling Server(s), 

3. Product Model and Data Representation, 

4. Applications Views, and  

5. Support Layer of Reusable Application Classes for the Application View 

 

These elements are discussed later in terms of the computing environment 

configuration and general illustrations of their roles in distributed collaborative 

design. These illustrations lead to the issues in design synchronization to be discussed 

in conjunction with present server-based product modeling system architecture using 

the master modeler concept. 

 

3.3.1 Distributed Client-Server Architecture 

A direct implication of using conventional CAD systems in terms of its premier view 

and one-way architecture is that interaction is usually only possible if the user is the 

only one directly working at a CAD workstation. However, requirements in 

distributed collaborative design and DET with regards of the Internet as a ‘flat, 

heterarchical structure’ lead almost inevitably to the adoption of a client-server or 

more generally distributed computing architecture, in which the server provides the 

participants with the indispensable resources for communication, coordination and 



50 

data consistency tools, in addition to the necessary basic modeling facilities.  

 

Distributed collaborative design therefore requires that different participants should 

be appropriately provided with their own, application-specific views on the product 

model according to the activities required, e.g. detailed design, manufacturing or 

assembly planning [de Kraker et al 97; Hoffmann et al 98].  Of [Hoffmann et al 

98,00], [Bronsvoort et al 04] noted that no implementation of the proposed 

architecture has been reported so far, and that only minor design changes can be 

propagated back to clients as they have been proposed as CAX applications or 

standalone conventional systems.  

 

Hence, a recurrent conflict in client-server systems lies in limiting the complexity of 

the client application and minimizing the network load, through special middleware 

measures highlighted earlier. In collaborative design, client complexity is determined 

by the modeling and interactive facilities implemented, whereas network load is a 

function of the kind and size of the model data being transferred to/from the clients.  

 

A whole range of compromise solutions can be devised between the two extremes, so-

called thin clients and fat clients. A pure thin-client architecture typically keeps all 

modeling functionality at the server, sending a passive image of its user interface to 

the client. This approach requires continuous image updates and screen interaction 

information exchange between server and clients, and creates costly network traffic. 

The response time would be intolerably high for many model specification actions. 

Whereas a pure fat client offers full local modeling and interaction facilities and 

maintains its own local model, communication with other clients is then required to 



51 

synchronize locally modified model data. In a collaborative environment where 

clients can concurrently modify local model data, preventing data inconsistencies 

between different clients becomes a crucial problem. In addition, fat clients place on 

the platform running them the heavy computing power requirements of typical CAD 

stations. Fat clients are typically platform dependent applications requiring complex 

installation procedures.  

Following the proposition illustrated in Figure 3.2, Figure 3.3 refines Figure 2.4 in 

that it is  based on the proposed middleware perspective of distributed geometric 

server(s) delivering shape definition and modification services, etc to the application 

views based on ‘thin’ or ‘smart’ clients. In addition, it also refines the role of the 

master modeler as that of supporting product data models or representations. What 

was proposed in [Hoffman et al 98, 00] which as said, relies more on conventional 

CAD systems as clients and does not completely address the geometric problem of 

handling design change and updates in a heterogeneous environment. The approach is 

similar to the intermediate modeler of [Martino et al 98]. In distributed collaborative 

Figure 3.3: Proposed Application Architecture based on Master Modellers and 
Client Application Views

Product (Master) Model Server(s) 

Design 
View 

GD&T 
View 

Manuf PP
View

Other 
Downstream

Views

MM 
Repositories 

Geometric Server(s) 



52 

design, the system should still be interactive based on an appropriate distribution of 

functionality and data in a network context.  

 

In conclusion, a good compromise solution can be a client-server approach, where the 

server coordinates the collaborative session, maintains the shared model, and provides 

all functionality that cannot, or should not, be implemented on the client. The clients 

perform operations locally as much as possible, and only high level semantic 

messages, and compact amounts of information necessary for updating the client data, 

will be sent over the network. Bearing in mind that the Internet comprises shared 

interconnected networks, this approach is a step to network load relatively low to 

allow for client interactivity at acceptable response times. An important advantage of 

such an architecture is that there is only one product model in the system. Clients send 

their modeling operations to the server, and receive feedback after any modeling 

operation has been performed on its central feature model, thus avoiding 

inconsistency between multiple versions of the same model. 

 

Thus, a general approach (Figure 3.4) for the development of distributed collaborative 

applications has been undertaken such that applications can be developed 

independently, but easily integrated, interfaced and synchronized as set out in the 

architectural context of the earlier discussion.  This approach, in developing 

distributed applications that are seamlessly integrated, is based on the perspective of a 

common collaborative design application ‘middleware’ [Schantz et al 00]. Early 

efforts in middleware development dealt mainly with connectivity issues, i.e. how 

programs on different computers can communicate with one another. These 

middleware technologies that deal with connectivity are referred to as distribution 



53 

middleware [Schantz and Schmidt, 2001]. Examples of distribution middleware 

include OMG’s CORBA, Sun’s Java RMI and Microsoft’s DCOM.  

 

Distribution middleware technologies are at a matured stage today. It can also be 

argued that the Internet, as a network of networks, has been made possible through the 

most basic of all middleware, i.e. Transmission Control Protocol/Internet Protocol 

(TCP/IP), the core transport and network protocols for creating connections (such as 

sockets) between IP addresses on computers, moving data packets between these 

connections and ensuring the correct delivery of such data. TCP supports many of the 

Internet's most popular application protocols and resulting applications, including the 

World Wide Web, (WWW), e-mail and Secure Shell. The Web was made possible 

with higher level protocols such as the Hyper Text Transfer Protocol (HTTP) and the 

Uniform Resource Locator (URL), and represents a significant information evolution 

from text-based display and presentation to inter-connected hypertext media-rich 

display and presentation allowing for widespread adoption, without which search 

Figure 3.4: Middleware Framework – A Layered Perspective 

Product 
Modeler 

Application 
Clients 

Solid Modeling Kernel Server 

Modeling Interfaces 

Information Models 

Network Communication 
Infrastructure 

Databases & Repositories 

Remote Methods Interface

Modeling 
Methods 

Visualization

Reusable Application Classes 

App-1 App-2 App-3 App-N…

Product Data XML Parser

M
iddlew

are: D
istributed 

functionality &
 data 



54 

engines, portals and information channeling protocols such as Really Simple 

Syndication (RSS) cannot be built upon, to name a few.  

 

The viewpoint here is that middleware infrastructure technologies have since 

progressed to dealing with other context-based and domain-specific issues in 

developing practical distributed systems requiring specific functionality and data 

issues to be addressed. From such a perspective, this thesis had once started with the 

proposition that not only basic middleware is essential but also context-specific 

domain-driven middleware framework and capabilities would be necessary to the 

development of distributed collaborative product and process design systems 

integrating disparate designers and engineers in a distributed collaborative design 

context spurred by product design activities and driving processes such as in 

interactive fixture design.  Providing direct access to product and process models, 

distributed collaborative design requirements demand more capabilities to accompany 

collaborative product feature reviews that leverage web and Internet constructs to 

carry out team discussions [Huang and Mak 03]. 

 

Basically, in the context of distributed collaborative design, middleware is thus a set 

of layers or multi-tiers of software interfaces and components that sit between solid 

modeling kernels and manufacturing applications (Figure 3.4). The layers are 

distributed between application clients and a central server and can be seen also as a 

set of services. The solid modeler interface and information model layers of the 

middleware are part of the server, while the reusable application classes are part of a 

client. The communications infrastructure interfaces clients and the server. 

 



55 

The solid modeler interface is responsible for interfacing the server end with solid 

modeling kernels. The information model layer contains information from the solid 

modeler in a neutral form. It could also contain other information deposited by 

application clients. The communications infrastructure allows applications to 

technically make remote function calls to the server. The reusable application classes 

are a group of reusable classes that applications use for development.  

 

3.3.2 Geometric Modelling Server 

With the shortcomings of conventional CAD systems as well as the above 

considerations, it is necessary to engage a geometric modeling server to provide 

remote and central access to editable standard B-reps, to maintain persistency in the 

product model, and to support design changes through shape modifications that 

change the B-rep, the detection of which will be salient to design synchronization. 

Another reason for a geometry modeling server instead of a CAD system acting as a 

server is the high computational costs associated with re-executing the whole model 

history in such a system, other than its monolithic and complex state.  Furthermore, 

many conventional applications in CAD/CAPP/CAM/CAE rely on geometric 

modeling kernels. What this can mean is that as long as a geometric modeling kernel 

can be reliably used to address the concerns of the user in product design, 

development and even exchange, the operational knowledge-based and application-

based aspects of product modeling and development become pertinent and feasible.  

 

As long as a geometric modeling server is running, there is no need for ‘geometry 

certificates’ to provide for the associative relations between geometric faces of the 



56 

product model that has to appear on different standalone CAD systems [Hoffman et al 

98, 00].  

 

3.3.3 Product Model and Data Representation 

In general, product databases are an important consideration given that they provide 

the basic repository means of storing information persistently. In the sense that 

geometric or CAD models need to be generated, various design and manufacture 

domains contribute over time, vital engineering information and analysis data which 

need to be stored in databases. Thus, as a result, the term ‘master model’ is frequently 

used to describe the total product model. 

 

In the context of distributed collaborative design involving heterogeneous 

environments and diverse practices, it can be said that a neutral 3D product data 

representation is needed to ensure flexible and integrated access to a product 

modeling server. In particular, the suitable information model implementation as a 

data representation is a concern. These are valid concerns in the context of keeping 

the product or master consistent as various design changes resulting from different 

design/manufacture domains, occur. This is even more valid as the concept of 

application and feature view requires an explicit perspective of the product 

information model coupled with the necessary interaction and manipulation 

capabilities for access to design and editing.  

 

Unlike say, semantic feature modeling with view support on the one hand and the lack 

of middleware representation and development in the context of [Hoffman et al 98, 

00], the approach here proposes a basic product information model comprising basic 



57 

geometric shape elements and entities that could be sufficient for interactive fixture 

design, say, to take place since it can be considered that such process-based domains 

do not inherently need design editing capabilities. The use of geometric elements can 

be extended to create relationships with other applications in order to propagate 

changes for synchronization. Unlike features which are application dependent due to 

its semantics, geometric shape elements are primary and generic to a wide range of 

applications. Many downstream application problem solving can thus be supported 

based on such geometric elements, and hence, providing for relationships with 

geometric elements through this type of product data representation is meaningful in 

the context of handling design change in general. 

    

Such a data representation in principle can thus act at the core of a flexible, multi-

perspective product modeler whereby the perspective is application-specific. A good 

instantiation of this principle is both the dependence of interactive fixture design on 

this data representation and yet, the extension into fixture design configuration as 

augmentations.  

 

3.3.4 Application View 

The presentation and processing of relevant information from the product or master 

model is called a view. The importance of supporting views in the distributed 

collaborative design context of multiple users and domains was noted [de Kraker et al 

95] [Hoffman et al 98, 00].  

 

In particular, the concept of views arises to resolve or circumvent the premier design 

view constraint of conventional systems. The paradigm of a resident premier view 



58 

means the design view must be used to make all net shape changes. From such a 

design view, all other views arise as derivative. Thus, commercial CAD systems 

cannot accommodate such view differences [Hoffman et al 98, 00]. Views are 

dependent on how the information modeling is handled from the product or master 

model in ways pertinent to the application (typically a process method). They thus 

comprise product-process interactions that require accuracy and consistency through 

synchronization. Such interactions may arise from the private or proprietary methods 

of users or companies that handle the view. 

 

The middleware perspective of providing a common geometric modelling service for 

applications to create and access data really brings about the possibility of co-

ordinating multiple users as they manipulate geometric data and information for 

product and process modelling. This has the important ramification that the client 

applications can interact and inter-operate simply because of their application or 

context specific views containing their requisite customisable and extensible 

functionality. This is of course due to the role of object-oriented Java-based classes 

for visualization, manipulation and the respective application functions. 

 

3.3.5 Reusable client classes for application views 

Design and manufacturing planning are highly multi- and inter-disciplinary, and must 

be dealt with in a domain-specific manner. Thus, the fundamental technical 

requirement is that software client classes must be reusable and extensible to include 

domain-specific application-bound functionality without imposing additional 

interfacing burden.  

 



59 

These common classes can be used as the basis for developing applications and hence 

aid to reduce the time and cost of developing applications. In the present system, three 

common classes have been developed: (i) remote interface class (ii) product data 

XML parser class and (iii) Visualization class. Collectively, given the augmented 

Product data representation, these define the present application view that is distinct 

from conventional CAD systems, allowing for integration of specific domain methods 

and support for private and proprietary information. 

 

The client remote interface class has been defined to facilitate interaction with the 

server implementation of the interface. This allows applications to call the modeling 

functions of the modeling kernel as required through the solid modeling interface. In 

principle, this solid modeling interface can be further interfaced with other modeling 

kernels through adaptation such as ACIS and OpenCASCADE.  

 

3.4        Distributed Collaborative Design and Design Synchronization 

In Figure 3.5, five relevant roles and application views can be generally illustrated: 

(a) Part Design capability to currently engage Fixture Design. This can also 

eventually support product design. 

(b) Fixture Design capability to carry out a vital tooling process to plan for 

a manufacturing process, i.e. Numerical Control-aided machining. 

(c) Numerical Control-aided machining planning for tool path generation. 

(d) Simulation-related Modeling to prepare fixture design for 

manufacturability assessment, i.e. fixture analysis. 

(e) Simulation capability to execute and monitor the fixture analysis job(s) 

on a compute server(s). 



60 

(f) Analysis capability to interpret and assess the results of the analysis 

job(s). 

Assuming this is a conventional environment comprising distributed standalone CAD 

systems; it would be valid to highlight several drawbacks with Chapter 2 in mind. 

These include the massive amounts of CAD data exchange taking place between the 

users, proliferation of CAD data models without being able to track a single master 

product model with consistent boundary representations, and inability to  handle 

design changes and hence synchronization toward application updates and 

collaborative decision making. 

 

With Figure 3.3 proposing the application architecture, Figure 3.5 should then depict 

the different roles of design and engineering activities as architectural elements, i.e. 

application views and product modeler characterized as distributed environments. The 

Figure 3.5: Product Modeling in Distributed Environments - Application Views & Relationships 
with Relevant Design Synchronization Support for the Example of a Forged Car Rim 

Application View: 
Simulation (Analysis) Model of 

Workpiece 

Application View: 
Product Design Itself 

Master Modeler Server: 
Product Model of Components and 
Assembly Evaluated as Geometric 

Model Representations with Design 
Change Detection Support 

Collaboration Activity 

Application View: 
Fixture Design of a Specific 

Product Workpiece 

Collaboration Activity 

Access and Loading Activity 
from Repository 

Application View Updates with 
Design Change Activity and 

Model Compression 

Application View Updates with 
Design Change Activity and 

Model Compression 

Design and Manufacturing 
Repository  

Application View Updates with 
Design Change Activity and 

Model Compression 



61 

appropriate support needed to enable this requires a distributed collaborative design 

computing environment with a middleware framework to support seamless integration 

and design synchronization mechanisms.  

 

For this purpose, Figure 3.5 further illustrates the scenario whereby fundamentally 

design change activity is depicted and application view updates need to take place in a 

coordinated manner. In this regard, design synchronization across a distributed 

environment is depicted by the need for model compression and proper design change 

detection at the product modeler supporting relationship management for 

collaboration decision-making in product-to-process and process-to-process 

interactions.  This scenario expresses an instance of the interacting role of the 

repository and the master model with geometric server(s) towards relevant application 

views involving product design, fixture design or planning, and simulation.  

 

Relevant issues concern not just having distributed application views interacting with 

the product modeler and its product data representations. They are also about how 

each application view can perform its tasks across distributed environments with 

appropriate middleware support in view of the nature of heterogeneous environments, 

compatibility issues and the shared bandwidth and expected latency of the Internet. 

Such support extends to the need for design synchronization mechanisms with regards 

to timely, accurate and notification updates due to design changes as the routine 

nature of rapid collaborative product design and development. 

 

The author notes that the Applications Relationship Manager (ARM) is also an 

extension from the system’s reusable client classes to support design synchronization 



62 

in an IPPD context involving design changes affecting fixture planning with the goal 

of seeking adaptive rapid solution responses [Mervyn et al 03b, c].   

 

Basically, the Applications Relationship Manager allows applications to build light 

weight or informational relationships with the product model at the product data 

representation level of geometric shape elements, rather than any feature-based 

scheme. Synchronization of product-process model informational relationships among 

all applications is then carried out through the Applications Relationship Manager. 

Although the current framework and deployment of application architecture proposes 

the use of geometric modelling services driven by application relationship 

management, several important aspects can be highlighted. It is presently a one-way 

(or single directional) architecture for product-to-process interactions excluding say, 

process-to-process interactions, for instance fixture design and simulation.  It does not 

support design editing functions for shape modification using solid modelling 

operations (as the primary cause of design change), other than basic modelling 

functions. It is hence also not integrated together with synchronization mechanism of 

model compression for handling application view updates based on design change 

detection requiring complete capture of B-rep changes during shape modification so 

as to generate the relevant geometric shape entities for driving model compression 

and updating product data.   

 

These considerations require the incorporation of primary design synchronization 

mechanisms into the middleware framework such as integrated and incremental 

model compression with design change detection particularly at the geometry and 

topological levels. In future, an overall multi-way collaboration architecture is 



63 

preferred to exercise bi-directional associations between interacting design and 

domain-specific processes for greater collaboration flexibility amongst application 

views.  

Figure 3.6 hence shows the present product modeler architecture based on the 

middleware framework with the characteristics of inter-operability, modularity and 

reusability. This reveals the primary product modeling capabilities supporting the 

abovementioned architectural elements, enabled with compression and design change 

detection interacting with an augmented product data representation. A number of 

interfaces have been implemented in the present product modeling server architecture: 

Modeling and fixture design functions [Ratnapu01] [Senthil kumar et al 01], ARM 

 
 

RMI Interface 

Internet connection to 
Application Clients 

OpenCASCADE Modelling Kernel 

Modelling and 
Inquiry Functions 
Implementation 

Classes 

 

Java Native Interface 

Apache HTTP 
Server 

Augmented Product 
Data Representation 

in XML

Applications 
Relationship 

Manager 

Modelling 
Functions 

ARM Server 
Implementation 

Classes 

B-Rep Design Change Detection 

Model Compression with EdgeBreaker Algorithm 

Product Model 
Native Files and 

Databases Handled 
by MySQL 

 
 
 
 

Geometric 
Modelling 

Server 

Figure 3.6: Product Modeler Architecture 



64 

implementation [Mervyn et al 03], and the leveraging of the model compression 

technique [Bok et al 04] and design change detection.  The basic modeling function 

interface allows application clients to make remote calls to a solid modeling kernel, 

giving application clients the ability to manipulate and interrogate the product model. 

This allows the development of applications without the installation of a modeling 

kernel on every machine the application is to be run.  

 

When design change occurs to a product or workpiece, a distributed application view 

of an interactive fixture design process should be updated with the appropriate 

incremental view updates together with the relationship management of modified or 

deleted shape elements provided by design change detection. Once this can occur, it is 

correct to indicate that the application view and process should be able to employ its 

problem solving methods to update or re-design changes or variables affected by the 

design change using the augmented product data representation.  

 

In this context, a problem solving methodology or logic, realized in a process 

application view such as interactive fixture design, is used to demonstrate how design 

change updates and fixture re-design work together through the augmented product 

data representation.   The appropriate and careful consideration of view update 

capability has been based on the concept of distributed data and functionality 

expressed in Figure 3.2. It requires an analysis of algorithms for dealing with 3D facet 

datasets or models with an understanding of requirements of view integrity for design 

and design change. The incorporation of relevant algorithms affecting facet datasets 

or facet models, together with an algorithm for design change detection, is presented 

in Chapter 5 in the context of enabling design synchronization mechanisms, evident at 



65 

the bottom more fundamental part of the product modeler architecture. 

Figure 3.7 shows how a single interactive fixture design system has been developed 

and enabled with the architectural framework with a viewing of a workpiece. Figure 

3.8 shows an implementation of a design application view of the workpiece in a 

distributed collaborative system environment. This features the development and 

feasibility of the middleware framework and application architecture, as will be 

presented in the following chapter. 

 

3.5 Discussion and Summary 

An application architecture requires a middleware framework. It comprises 

architectural elements corresponding to the classification and distribution of 

Figure 3.8: Design Application View 

Figure 3.7: Workpiece Design and Corresponding Fixture Design 



66 

functionality and data relevant to the field of distributed collaborative design. These 

elements together with the associated capabilities and techniques in information and 

product modeling form a distributed product modeling architecture that allows clients 

to concentrate on applications whilst the product modeling itself is supported by a 

geometric modeling server. Relevant geometric kernel modeling systems all have 

boundary representation capabilities together with interfaces for most solid modeling 

operations to be undertaken. However, these should not cause interoperability 

problems and in particular, impede the need to collaborate especially during design 

change, given the key issues of distributed collaborative design. 

 

The application view is hence an important client and domain-specific view of the 

product design and development enterprise. It needs to be separate from the geometric 

kernel system which is then best to be an Open Source to mainly free up the concerns 

of users and support design change issues such as face tags and other shape entity 

processing and association with applications.  

 

The application view then can be best supported by the client’s application (domain) 

such as interactive fixture design, and it should also be responsive to design change 

which needs to be detected at the geometric modeler server and handled for 

relationship management, view accuracy and consistency for propagation across 

distributed environments. The following chapter provides the key developments of the 

computing environment demonstrating distributed interactive fixture design. This 

environment shows that the underlying middleware framework and application 

architecture design involving fixture design problem solving logic, i.e. rules and 

product data representation can be harnessed from product modeler to application 



67 

view in a distribute environment. In connection with this, the client remote interface 

has been extended to allow associations to be created between the product model and 

fixture design for managing product-process inter-dependencies [Mervyn et al 03b]. 

The associations further allow different types of relationships to be set up and 

activated at the face tag level by the client application. To support the client, the 

visualization class is responsible for view updates through visualization of the product 

models.  

 

The underlying middleware framework, however, needs to incorporate design 

synchronization to support design change and application relations for collaborative 

decision-making. In particular, it is not helpful if the product or workpiece has to be 

re-imported into the product modeler server when design changes are occurring. Such 

re-importing basically causes a new boundary representation to be re-emitted leading 

to the loss of consistent shape entity identities or tags. As well, such re-importing or 

even handling of design change updates implies complete re-computation of 

visualization information and data such as 3D faceted models with their associated 

complexity. Therefore there is a need to explore techniques to handle 3D faceted 

models to expedite application view update and as well, during design change. In this 

way, the maintenance of application relationships for product-process interactions and 

collaborative decision-making would be more integral. These design synchronization 

capabilities are thus covered in Chapter 5 as necessary middleware mechanisms for 

distributed collaborative design involving design change.  



68 

Chapter 4 

Framework Development and Interactive Fixture 

Design Application in Distributed Collaborative 

Design 
 

 

 

This chapter has the objective of presenting the design and development of the 

computing environment consisting of the framework’s necessary architectural 

elements to support distributed collaborative design in the application context of 

interactive fixture design. A middleware perspective of distributed functionality and 

data appropriate to distributed environments has been necessary. This has led to 

reusable architectural elements that can be appropriately deployed in distributed 

environments. The development of these elements is exemplified by a description of 

how interactive fixture design as an application is integrated and supported. The 

emphasis is on how these architectural elements support distributed collaborative 

design across heterogeneous distributed environments which will later require 

considerations toward the goal of design synchronization support with a view towards 

design change detection, i.e. the mechanisms for timely, accurate and consistent 

updates of product model and application view. 

 

4.1 System Architecture and Overview 

The middleware framework for distributed collaborative design is required within an 

overall distributed computing. It requires a seamless client-server architecture 



69 

computing environment (Figure 4.1) appropriate to how functionality and data can be 

conceptualized for distribution (Figure 3.2) and how such a distribution reflects a 

layered middleware perspective (Figure 3.4). It is elaborated here in terms of its 

architectural elements and their implementation choices, inter-relationships and 

support for distributed collaborative design.  

The proposed approach of distributed client-server computing has been demonstrated 

in the case of an Internet-enabled interactive fixture design system [Senthil kumar et 

al 00] [Mervyn et al 03a, b] for distributed design based on the use of reusable client 

classes in an integrated Internet-enabled design pilot system [Ratnapu 01]. [Mervyn et 

al 03a, b] subsequently introduced the idea of depositing change information based on 

[Hoffman et al 00] to demonstrate adaptive fixture process re-design based on the use 

of genetic algorithms. It has been noted earlier that such design change handling is 

informational or lightweight.. Complementing this, examples of data-oriented or 

‘heavyweight’ design change handling would be the area of semantic feature 

Figure 4.1: System Architecture for Interactive Fixture Design 



70 

modeling supporting improved design intent beyond form features, and the 

proposition of improved design synchronization through use of lossless model 

compression techniques for timely, accurate and consistent application view update. 

 

Briefly, this client-server architecture has a clear fundamental distinction between the 

client's and the server's share of program execution. Typically, the client end has to be 

first downloaded and then installed on the user's machine. The client then sets up the 

Graphical User Interface (GUI), which contains menu items for different functions 

and provides the 3D work area for visualization and manipulation. The server end of 

the system basically contains all the implementation of the modeling functionality, 

which involves creation and manipulation of CAD models. It is made up of a few 

distinct parts. These include the solid modeling interface routines, the solid modeling 

kernel itself and an Apache HTTP server providing a convenient data transfer 

protocol. The server end processes the requests from the client and returns results in 

appropriate forms depending on the kind of functionality requested by the client. It is 

extensible with modeling functionalities implemented using Java routines that call on 

the solid modeling API. Java's Remote Invocation Method (RMI) is used to facilitate 

the interface between client-side and server-side routines. The actual transfer of data 

for design communication is carried out in the form of an Extensible Markup 

Language (XML) schema. 

 

4.2 Application View 

The current framework implementation of the application client view has adopted 

Java and Java3D to fulfil the role of the application view in 2 crucial aspects: 

application development and visualization.  The overall approach is to employ the 



71 

Java programming language for its flexible object-oriented approach to software 

development especially in terms of portability and its API libraries supporting 

distributed computing.  

 

4.2.1 Visualization  

One of these APIs is Java3D which employs 3D scene graph programming techniques 

to spatially organize objects and handle 3D object scene rendering, visual navigation 

and selection of these objects. This is integrated into the development of the 

presentation of user-interactive capabilities (as in the widgets and mouse operations 

behind the Graphical User Interface (GUI)); and the application view-specific 

functionality such as algorithms and rules in the form of reusable application classes.  

Figures 4.2 and 4.3 illustrate Java3D scene graph technology. Figure 4.4 further 

illustrates an instantiated scene graph that must be coupled with a Java3D canvas for 

presentation and visualization of the object space. The Java3D canvas is 

fundamentally an image plane or space, on which a rectangular array of pixel content 

is projected to form the rendered image on the screen for a viewpoint (Figure 4.5).   

Figure 4.2: A Shape3D Visual Object(s) inside a Java3D Scene Graph 

Appearance Geometry 

S 

BG View branch 
graph 

Visual Object 



72 

Figure 4.4: A Java3D Scene Graph Integrating Scene Graph’s Object Space with a View/Screen Canvas 

 

Figure 4.3: Symbols Used in Representing Java3D Scene Graph 

Figure 4.5: Rendering Object Space on Image Plane in a Virtual Universe 



73 

Java3D is designed to provide simple and flexible mechanisms for representing and 

rendering potentially complex 3-D environments. Like Java, it offers advantages of 

application portability, hardware independence and performance scalability. The 

scene graph contains a complete description of the entire scene, or virtual universe. 

This includes the geometric data, the attribute information, and the viewing 

information needed to render the scene from a particular point of view.  

  

The geometry data presented through the perspective of a product model consisting of 

essential boundary representation information, is parsed and used to construct a 

dynamic Java3D scene graph. The scene graph needs to be carefully constructed as 

frequent traversal through the tree is required during further interaction with the 3-D 

shapes by the user.  

 

The Java3D API's scene graph-based programming model provides high level 

language constructs for creating and interacting with 3-D geometry and tools for 

constructing the structures used in rendering that geometry to support the application 

view. Interaction is provided by means of visual behaviors or Java3D methods such 

as:  

i. View Navigation through Mouse button control – Objects in the scene graph 

can be rotated in all directions by using the left mouse button and viewed.  

ii. Zoom – Objects can be zoomed in and out using the right mouse button. 

iii. Picking – Objects can be treated as picking entities with different contexts. 

 

Java3D therefore makes it simpler to construct and manipulate 3D object scene 

environments as Java objects compared to a more basic but powerful approach to 3D 



74 

graphics programming known as display lists which would require the programmer to 

implement more scene constraints and visual controls. A standard tool for this would 

have been the OpenGL programming language.   

Specifically, the application view, as shown in Figure 4.6, therefore consists of a 

Java3D canvas and a menu bar that provides the options for starting an application, in 

this case, the fixture design application view and process, at the client end.    

 

4.2.2 Client Infrastructure 

The client then executes its share of program execution beyond setting up the GUI 

and the canvas for rendering based on an event-based programming model to make 

the application view ready for the user interaction. For instance, upon a modeling 

request from the user through menu interaction, the client directs the request to the 

server over the network. It then requests and reads the results generated by the server 

as a result of executing the modeling requests. The results read by client from the 

server are processed and rendered on the canvas for visualization and interaction.   

Figure 4.6: Application View with Java3D Canvas for Interactive Fixture Design 



75 

Based on this event-driven model, Figure 4.7 shows the class architecture of the 

application view. The Menu class starts the application. This class contains the 

methods for setting up Menus. Java Swing classes are essential to building the menu 

and the menu items. Java Swing classes are the latest set of GUI components 

available as a part of the Java 2 core implementation. 

 

The Java Swing GUI components are preferred over the Java AWT components. Java 

AWT components are the old set of GUI components of previous versions of Java. 

The Swing components are preferred over AWT components because of the 

availability of many common GUI components which are lightweight in memory 

requirements. 

 

Apart from this major advantage, Swing components themselves have more features 

available and provide improved interactive handling compared to AWT components. 

Menu Class 

(Sets up the Menu 

Event Class 
(Handles the events 

generated by the 
Menu components) 

Visualisation 
Class 

(Parses the XML 
file and computes 
the visualisation 

data) 

RMI Interface 
(Contains Method 
signatures for the 

Server Side methods) 

To Server 

To Apache Server

Figure 4.7: Class Architecture on Client Side 



76 

The look and feel of the Swing components can also be controlled or tailored, even 

during runtime so as to suit a particular platform or environment.  

 

The Menu Class also sets up the necessary Java3D canvas for rendering.  User 

invocation of any of the menu items thus triggers events. These events are handled 

through the Event class to which the menu items delegate the necessary code to 

further direct the actions appropriate to each menu item in the Menu class. Such a 

division of code in two different classes is essentially the key to proper maintenance 

of code and future reusability and extensibility. Depending upon the type of event, the 

Event class can call either a local method or a remote method on the server side in a 

distributed environment. The actual implementation code is thus suitably decoupled 

by existing in those methods. For any remote methods (methods on server side), only 

the methods listed in the RMI Interface could be called. In other words, it is possible 

to provide in future support for different application process and view requirement 

whilst yet maintaining a common set, an approach essential to the framework 

conceptualization and development. 

 

4.2.3 Application View Visualization Functionality 

Application view visualization is core to product design and requires the geometric 

definition of the product model to drive it. The Visualization class thus handles the 

rendering of models in the canvas once it is set up by the Menu class.  

 

More importantly as distributed collaborative design is not about visual simulation 

which can be compromised in quality, the visualization data needs to be remotely 

integrated to and obtained from the server side as a result of executing a remote 



77 

method on the geometric modeling server. This execution is typically known as 

tessellation and results in numerous facet data. 

 

The geometric definition is obtained from this modeling server during runtime 

captured in the form of an XML schema. It is an integral part of product information 

representation and modeling to be subsequently presented as part of a design 

synchronization mechanism. The XML schema is elaborated in an XML file that is to 

be parsed and interpreted by the Visualization class to set up the Java3D scene graph 

objects for rendering and interaction. In Java3D, a visual object can be defined using 

just a Shape3D object and a Geometry node component. Optionally, the Shape3D 

object can also refer to an Appearance node component that assigns it additional 

properties for display effects. In addition, due to the information captured in the 

product information model via XML, additional and necessary interaction capabilities 

such as picking edge and faces are added. It has to be noted that visualization is vital 

for accurate interpretation and manipulation to support the application in context. 

Poor or low-resolution tessellation from the geometric modeling server would not be 

appropriate. 

 

To clarify on the distributed collaborative design context, it is impractical in the 

conceptualization of a framework for interactive design collaboration to occur across 

distributed environments if one were to only conceive a remote display capability akin 

to a shared whiteboard whereby the client terminal merely accesses the application 

and there is no computational process or algorithm of any kind. The client terminal 

therefore technically is only responsible for displaying pixels that are dynamically 

generated by and refreshed from the remote application server, onto its own 



78 

rectangular image plane. Additionally, for visual interaction with the application, all 

the key strokes and the mouse movements and events are just passed over the network 

to the remote machine. The remote server processes these events and generates the 

display data which is passed across the network to the client machine. Evidently, for 

argument sake, this approach requires huge amounts of data transfer across the 

network taxing on shared bandwidth.  

 

As a corollary and observation, this in part describes better what has recently become 

commonplace in distributed environments – real time video streaming. This capability 

is suitable since video content is crucially standardized in data format and resolution, 

widely adopted through established standards, and intrinsically requires little active 

interaction and ultimately no editing as it is already ‘authored’ and managed into huge 

but static repositories. In conclusion, such a plain distribution of functionality and 

data across a distributed environment is clearly more pertinent in the form of 

multimedia-oriented functions. In comparison, in distributed collaborative design, 

more specific or peculiar approaches and mechanisms are required to facilitate the 

needs of product design. 

 

4.3 Server Infrastructure and Geometric Modelling Services 

Distributed environments necessitate a middleware framework and layered 

perspective that has domain specific is compatible with the needs of distributed 

collaborative design in supporting interacting product and process design applications.  

As highlighted earlier, this approach, in developing distributed applications that are 

seamlessly integrated, is based on the perspective of a common collaborative design 

application ‘middleware’ infrastructure [Schantz et al 00].  



79 

 

4.3.1 Server Infrastructure 

In the domain context here, the middleware is a set of layers of software components 

that sit between solid modeling kernels and manufacturing applications (Figure 3.4). 

The layers are distributed between application clients and a central server. Here, the 

solid modeler interface and information model layers of the middleware are 

considered a fundamental part of the server, while the reusable application classes are 

part of a client, allowing for specific application view development.  

 

To enable communications across middleware layers in general, the infrastructure is 

based on using the Java RMI approach.   Requests from the client to server for the 

modeling operations for instance, have been developed using Java RMI. Java RMI is 

a high level communication capability between Java objects over the network. It 

allows one to use the methods of remote Java objects as if they were locally available 

on the same computer.  Java RMI has been preferred over other mechanisms like 

CORBA (Common Object Request Broker Architecture) due to the middleware 

nature of applications in seamless distributed environments required. CORBA is more 

general as it has been targeted at communications between different objects of 

different legacy languages and platforms whereas Java RMI is only applicable to 

communication between Java Objects.  

 

Since Java by its very nature is platform independent through the technology of 

virtual machines, Java RMI allows Java objects across different platforms to 

communicate with each other by transmitting data parameters and executing 

functional code, thus providing interoperability. The only feature that Java RMI lacks 



80 

in respect to CORBA is direct communication between objects of different native 

programming languages. However, this can also be circumvented using Java Native 

Interface (JNI) and Java RMI together. JNI provides mechanism for integrating Java 

with other languages and RMI can use these Java interfaces to manifest abstractions 

or methods to cater for communication with remote Java objects.  

 

For Java RMI, all the remote methods (methods that will be accessed remotely, in 

general, either by the client or the server) need to be declared through a set of 

declarative interfaces. The communication actually takes place between these 

declarative interfaces which generate stubs (which are Java classes containing method 

signatures of subsequent implementations of the corresponding remote method). 

These stubs are then dynamically shared across all participating computers in a 

distributed environment ready to be invoked.   

 

In summary, those modeling requests activated through the menu on the client GUI 

generate the calls to remote methods on the server side.  Java RMI then listens to 

these calls transparently and directs them to appropriate classes for further action, in 

this context, on the geometric modeling kernel.  

 

4.3.2 Geometric Modelling Services 

Geometric modelling services are fundamental and refer to the ability to create and 

manipulate geometric models, and access geometric data that are core to solid 

modelling and product definition. This is proposed as a generic middleware service 

for three reasons. Firstly, it is observed that many of the currently developed CAD, 

CAPP and CAM applications do not develop their own geometric modelling 



81 

capabilities, as noted in earlier Chapters given the tremendous complexity of 

developing kernels as well as their intrinsic characteristics underlying conventional 

systems. Thus, many of these applications in CAD/CAPP/CAE/CAM are developed 

based on either third party, proprietary or even Open Source geometric modelling 

kernels. These geometric modelling kernels provide functionality to build, 

manipulate, view and inquire geometric models during runtime. Examples of 

applications developed on third party geometric modelling kernels include 

SolidWorks 3D CAD software from SolidWorks Corporation, ESPRIT CAM 

software from DP Technology Corp and PATRAN Finite Element pre-processor from 

MSC. Given the need to share and interoperate product models, it is therefore sensible 

to provide geometric modelling services as a common service.  

 

Secondly, many applications use geometric modelling kernels only to extract 

necessary information from product data to carry out their own tasks. Providing the 

ability to access geometric data from a common service would remove the reliance of 

these applications on geometric modelling kernels just for information extraction. 

This is supposed to have been the motivation for product standards to share both 

product definition and specific process and task information, notwithstanding the 

challenges of distributed collaborative design and early design change. However, it 

has been noted in Chapter 2 that many applications or systems related to product 

design, development and simulation are not suitably integrated for distributed 

collaborative design, notwithstanding the important concerns of conventional CAD 

systems. 

 



82 

Thirdly, and therefore, providing a common geometric modelling service where 

applications create and access geometric data across distributed environments 

provides a unique opportunity to manage the concurrent authoring and processing of 

geometric data by product and process design applications.  

 

To make use of a geometric modeling kernel, a solid modeler interface needs to be 

present and responsible for interfacing. Such an interface can be generically used with 

other geometric modeling kernels. In addition, an information model layer ‘carries’ 

information from the solid modeler in a neutral form and supported by the HTTP 

protocol for data transfer. In this context, the HTTP protocol is hosted by the Apache 

web server. This information model layer can also be extended to contain other 

information deposited by application clients, due to XML schemas.  

 

Client Server Interaction 

To Apache Web Server 

Feature Modeling Class 
(Contains feature and solid 

modeling methods) 

XML Schema Class 
(Contains XML generation 
and formatting methods) 

Modeling Class 
(Contains solid 

modeling methods) 

RMI Interface 
(Calls remote methods to process client requests)

Repository 
(Databases: Native CAD, 

XML, SQL etc files) 

Figure 4.8: Class Architecture on Server End 



83 

In the middleware framework, the geometric modelling services are thus deployed on 

a central geometric modelling server based on a kernel and managed through RMI-

based modelling interfaces. The geometric modelling server, shown in Figure 4.8 in 

the form of a class architecture, was implemented in Java and consists of the 

following components: (i) Java Remote Method Invocation (RMI) Interfaces (ii) 

Implementation Classes (iii) Java Native Interface (JNI) (iv) Parasolid Modelling 

Kernel and (v) Apache HTTP Server. Portability with an Open Source kernel system, 

OpenCASCADE, has also been achieved. 

 

Since the implementation of the functionality provided by the server is 

computationally intensive and since many clients could be connecting to the server 

simultaneously, the server is required to possess powerful processing capabilities.  As 

server loads can increase due to a multitude of clients potentially connecting 

simultaneously, a single server could in principle be replaced by a number of servers 

and thus simulating a parallel-processing environment using network and session 

management capabilities.  

 

4.3.3 Modelling Interface and Functions 

Using the RMI interface approach, modelling semantics or methods can be declared 

including the following:  

public int[] createBlock(Block block)  
public int[] createSphere(Sphere sphere) 
public int[] createCylinder(Cylinder cylinder) 
public int[] createPrism(Prism prism)  
public int[] createTorus(Torus torus)  
public int[] createCone(Cone cone) 
public void union(int body1, int body2) 
public void intersection(int body1, int body2)  
public void subtraction(int body1, int body2)  
public void xRotate(int bodyTag, double x, double y, double z, double angle) 



84 

public void yRotate(int bodyTag, double x, double y, double z, double angle) 
public void zRotate(int bodyTag, double x, double y, double z, double angle) 
public void translate(int bodyTag, double x, double y, double z) 
public void scale(int bodyTag, double scaleFactor) 

 

While the RMI Interface declares the methods that application clients can invoke, the 

actual implementation of the methods is performed by the Modelling class 

implementations of the involved kernel. These implementations finally make the calls 

into the involved geometric modelling kernel library during runtime.  

 

In the prototype system, the Parasolid modelling kernel has been utilised to perform 

the operations described in these methods. As the Parasolid modelling kernel is 

written in the C programming language, a Java Native Interface (JNI) is needed to 

utilise the modelling functions of Parasolid. JNI allows Java classes to make calls to 

libraries written in other languages. Data of the created geometric model is then 

written to a Product data XML schema and hence file, and stored in the Apache HTTP 

server for application clients to access.   

 

The details of the sequence of activities when any of the methods is invoked are as 

follows: 

1. An application client invokes one of the methods of the Modelling Functions 

RMI interface. 

2. The Modelling Functions Implementation classes invoke the necessary 

Parasolid functions, resulting in the creation or modification of a geometric 

model.  

3. Parasolid (or any equivalent geometric modelling kernel) generates the 

necessary information to describe the geometric model based on a boundary 



85 

representation. A boundary representation basically describes a geometric 

model by defining the model’s boundary as a set of geometric entities 

constituting faces, edges and vertices, and establishing dynamically its 

topological relations to ensure model integrity (Figure 4.9). 

4. The geometric model and the constituent geometric entities are identified by 

tags maintained in the boundary representation. As the boundary 

representation is internal to a CAD model, tessellation is always performed by 

the kernel to generate facet data to enable visualization on the application 

client. The modelling function implementation classes thus perform the 

invocation of tessellation function. The tessellated triangles can then be 

rendered on the application client’s screen to provide a solid view of the 

geometric model. An example of a tessellated model is shown in Figure 4.10.   

Figure 4.9: Block Represented By Its Boundary 

Figure 4.10: Example of a Tessellated Model 



86 

5. The information on the tessellated triangles and the geometric data entities are 

then written to a Geometric Data XML file as a Product Data representation 

and stored in the Apache HTTP server. Application clients can then access this 

data easily from the Apache HTTP server, visualise the geometric model and 

carry out further operations.  

 

Client-server interaction consists of a client end with the functionality for setting up 

the GUI which contains Menu items for different modeling functionality (as reusable 

classes) and a Java3D canvas for rendering and visual interaction of CAD models.  

The implementation of the control code for the menu items and the code to generate 

requests to the server is also present here. However, it is clear that there is no 

implementation of the modeling functionality present on the client side, but instead 

requests are generated by the client to the server which processes the requests and 

returns back the results in the form of facetted data. This facetted data is rendered by 

the functionality available at the client, which will later on be a subject for 

middleware-based design synchronization to improve timely and consistent 

application view updates.  

 

4.3.4 Product Modelling Server Architecture 

With session management, different remote clients can thus send requests to the 

server for viewing and sharing of design or other information of any other remote 

client. The server on receiving the request from a client, retrieves the necessary 

information from the design database and sends it to the client. The client, with the 

functionality available at its end, processes and displays the data. The concept of 



87 

distributed concurrent design and engineering can be realized through this aspect 

based on the middleware and reusability perspective. 

 

The data exchanged could be more than the design data. It could be product data, 

which includes data from different manufacturing domains. The architecture allows 

for exchange of product data and not just the design data alone. The visualization of 

the product depends on the functionality provided at the client. The architecture is 

extensible enough to allow for new functionality to be added to the client for 

visualization of any new product data, including Finite Element meshes or even high 

resolution facetted data organized in a cellular model for inspection.  

 

The architecture satisfies the goals outlined in the earlier Chapters 2 and 3. By its very 

nature it satisfies the feature of remote access. The client gets only a little share of the 

total computation. The visualization and interaction capabilities are common on 

variety of platforms. It could be implemented by using different software tools and the 

choice of such tools will be discussed at the implementation stage.  The architecture is 

also modular and extensible as new functionality can be added without having to 

change the existing architecture and functionality (Figure 4.11).  One such extension 

has been the lightweight Applications Relationship Manager (ARM) which was also 

reviewed in Chapter 2, even though on its own, it does not explicitly handle product 

design changes from a design synchronization viewpoint except for information about 

these design changes affecting fixture planning.   

 

The author also notes that the ARM is an extension from the use of the system’s 

reusable client classes and RMI Interfaces to support design synchronization i.e. 



88 

timely and consistent updates, in an IPPD context involving design changes affecting 

fixture planning with the goal of seeking adaptive rapid solution responses [Mervyn et 

al 03b, c].  The Applications Relationship Manager approach therefore allows 

applications to build important lightweight associative relationships with the product 

model. Further synchronization of product models among all applications is therefore 

to be carried out through the Applications Relationship Manager such that bi-

directional associations between design and domain-specific processes can be 

leveraged for collaboration.  

 

Design is highly multi and inter-disciplinary that is, domain-specific. Thus the 

fundamental technical requirement is that software client classes must be reusable and 

extensible to include domain-specific application-bound functionality without 

 

 

RMI Interface 

Internet connection to 
Application Clients 

Parasolid Modelling Kernel 

Modelling and 
Inquiry Functions 
Implementation 

Classes 

 

Java Native Interface 

Apache HTTP 
Server 

Product Data 
Representation in 

XML

Modelling 

Product Model 
Native Files and 

Databases Handled 
by MySQL 

 
 
 
 

Geometric 
Modelling 

Server 

Figure 4.11: Basic Product Modeling Server Architecture 



89 

imposing additional interfacing burden. These common classes can be used as the 

basis for developing techniques such as the ARM, other process applications and 

hence aid to reduce the time and cost of developing applications.  

 

4.4 Product Modelling With XML 

The exchanging of geometric data between client and server is carried out through 

XML. XML (eXtensible Markup Language) is a text-based mark-up language that has 

become the standard for data interchange on the Internet. Extensible Markup 

Language (XML) has been developed by the World Wide Web Consortium (W3C) 

for applications that require functionality beyond the current Hypertext Markup 

Language (HTML) which is specifically for web page formatting and display. 

XML differs from HTML in three major respects:  

1. Information providers can define new tags and attribute names to create 

semantics.  

2. Document structures can be nested to any level of complexity and extended or 

inter-linked.  

3. Any XML document can contain an optional description of its grammar for 

use by applications that need to perform structural validation.  

XML has been designed to enable semantic expression and flexible implementation. 

Since new tags can be defined in an XML file, any data structure can be written into 

an XML file. In this context, the geometric data (product definition data) is written in 

an XML file for modeling, visualization and sharing.  The hierarchical structure in the 

XML document is called the XML schema.  The grammar defining the XML schema 



90 

is called its Document Type Definition (DTD). The DTD contains the information 

regarding the tags that will be used in the document. Tags in XML follow a 

hierarchical structure or relationship. The root tag of an XML file is always 

<DOCUMENT>.   

To represent a product model or definition, a DTD for geometric data (Figures 4.12 

and 4.13) has been proposed to demonstrate distributed interactive design and fixture 

planning for the Java3D-based application view. There can also be other schemas, 

<?xml version = "1.0" ?> 
<!DOCTYPE DOCUMENT [  
 <!ELEMENT DOCUMENT (BODY*, FACE*)> 
<!ELEMENT FACE (FACETAG, FACETYPE, NORMAL, SNAPPOINT*, 
FACET*)> 
<!ELEMENT NORMAL (X1,Y1,Z1)> 
<!ELEMENT SNAPPOINT (X1,Y1,Z1)> 
<!ELEMENT FACET (FACETNO,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3)> 
<!ELEMENT X1 (#PCDATA)> 
<!ELEMENT Y1 (#PCDATA)> 
<!ELEMENT Z1 (#PCDATA)> 
<!ELEMENT X2 (#PCDATA)> 
<!ELEMENT Y2 (#PCDATA)> 
<!ELEMENT Z2 (#PCDATA)> 
<!ELEMENT X3 (#PCDATA)> 

Figure 4.13: Actual DTD of the XML file of Geometric Data of a Body 

Document

Body Body Tag 

Face Face Tag, Face Type 

Face Normal 
• X, Y, Z 

directional 
vectors 

Facet 
• X, Y, Z 

coordinates 
of vertices

Snap Points 
• X, Y, Z 

coordinates 
of points 

Figure 4.12: DTD Schema of Product data XML file 



91 

such as feature representations (beyond basic boundary representation), assembly 

structures as sets of XML documents etc, linked together. This extensibility enables 

sharing among different applications as this same data can be used by these different 

applications in different ways. 

In the geometric data DTD, each body, identified by a <BODYTAG>, is divided into 

faces that parallel to that of the Boundary representation. A <FACETAG> is present 

to identify the various faces of the body, dictated by the geometric kernel. 

<FACETYPE> provides information on the type of the face, for example, cylindrical, 

plane and spherical. <SNAPPOINT> refers to the vertices of each face. These are 

incorporated as visual objects inside the Java3D scene graph to provide for design 

interaction. Each face is further divided into elemental triangles known as facets. The 

<FACET> tag contains the coordinates of the vertices which define each triangle or 

facet. Facets are the primary (standard) graphics or even geometric data resulting 

from tessellation of the Boundary representation of the CAD model necessary to 

visualization. The rationale behind such a choice will be explained in detail in the 

later sections in dealing with the implementation of interactive fixture design based on 

this middleware framework.   

 

A simple illustration (Figure 4.14) shows a solid model of a cube and a portion of the 

corresponding Geometric Data DTD in an XML file. From the data, it can be seen 

that the <BODYTAG> of the part is 19. The highlighted face has a <FACETAG> of 

150 and a <FACETYPE> of plane. The face has been divided into two facets and the 

corresponding vertices of the first facet can be seen in the figure. 

 



92 

This XML file is to be read, parsed for retrieving the data contained in it. There are 

many XML parsers available for free on the Internet. The SAX parser as a set of Java 

classes available from SUN Microsystems has been used. This parser has been chosen 

over other ones as it conforms to the XML standard of W3C. In addition, SUN plans 

to implement into the core specification of Java, in which case, it will be available as 

part of standard Core Java classes which all Java Virtual Machines will implement.  

 

Internally, the SAX parser parses the XML file and builds a hierarchical tree data 

structure called DOM (Document Object Model) during runtime. Data from this 

DOM can be retrieved by using the methods provided by the parser classes. The 

parsing is activated by the methods in the Visualization class, prior to rendering onto 

the Java3D canvas for the application view. 

Highlighted 
Face  

<BODY>
  <BODYTAG>19</BODYTAG>  
- <FACE> 
  <FACETAG>150</FACETAG>  
  <FACETYPE>PLANE</FACETYPE>  
+ <NORMAL> 
+ <SNAPPOINT> 
+ <SNAPPOINT> 
+ <SNAPPOINT> 
+ <SNAPPOINT> 
- <FACET> 
  <X1>-0.25</X1>  
  <Y1>0.25</Y1>  
  <Z1>0.5</Z1>  
  <X2>-0.25</X2>  
  <Y2>-0.25</Y2>  
  <Z2>0.5</Z2>  
  <X3>0.25</X3>  
  <Y3>-0.25</Y3>  
  <Z3>0.5</Z3>  
  </FACET> 
+ <FACET> 
  </FACE> 
 

Figure 4.14: An Illustration of the Product Data XML 



93 

 

4.5 Interactive Fixture Design Application  

An Internet-enabled Interactive Fixture Design (IFD) sub-system has been developed 

based on present middleware framework to demonstrate the feasibility of providing 

fixture design capabilities across distributed environments.  Fixtures are devices that 

serve the purpose of holding the work-piece securely and maintaining a consistent 

relationship with respect to the tools while machining and other manufacturing 

operations. Capabilities include fixture rules are implemented into the application 

view to demonstrate the feasibility of interacting with product models and selecting 

modular fixture elements to create a fixture solution. These rules are aimed at making 

fixture designs more applicable and optimal given that original heuristics nature. 

Rules can also be used to guide users during design. These also rules provide the 

process-specific behaviour in the context of distributed collaborative design and allow 

for a design application view to integrate, interact and synchronize with a fixture 

planning application view in terms of dealing with the timely manufacturability 

impact of design changes downstream. This is especially plausible since there could 

be more than one acceptable designs are available for a given work-piece and hence 

the fixture design solution space could be large. 

 

4.5.1 Fixture Design Methodology and Application Architecture 

Interactive fixture design as an application view requires the application logic of 

fixture design in the form of rules, the design interaction and support, and access into 

the product modelling server and repository. This depends on the reusable application 

development classes, as discussed earlier, those support middleware services, 



94 

geometric model visualization and geometric databases supporting work-pieces and 

fixture elements, and XML-based repository data. 

 

Interactive systems make the task of fixture design easier by constructing a fixture 

assembly based on input provided by the fixture designer. This assembly is also 

supported via an XML scheme. The inputs required by interactive systems include 

fixturing surfaces, fixture elements and their locations. Work in this category includes 

those by [Markus et al, 1984], [Miller and Hannam, 1985], [Nee et al, 1987], [Fuh et 

al, 1995] and [Rong and Li, 1997].  

 

The aim of interactive systems is to allow flexibility to the user to arrive at detailed 

fixture designs for complicated parts that cannot be achieved by many of the 

automated systems. A limitation of most of the interactive systems lies in the fixture 

design sequence imposed on the user. Many systems rely on the 3-2-1 locating 

principle and limit the user to the choice of fixture locations based on this principle.  

 

The interactive fixture design methodology has a typical fixture design sequence as 

shown in Figure 4.15, illustrated by a work-piece and corresponding fixture design 

(Figure 4.16). The rest of this section describes each of these activities as part of the 

application view for interactive fixture design.   

 

The objective of fixture design is different from that of part or product design which 

involves more than access to carry out visualization and interrogation of properties 

and dimensions whilst the part or product design remains, in other words, fixture 

design on its own does not require editing to say, customize designs, which results in 



95 

run-time evaluation of both the geometry and boundary representation intrinsic to the 

solid model and possibly history management. Thus, there can be two areas of 

consideration, firstly, the interaction with the visual objects within the Java3D scene 

graph representing the product model on the application view, and secondly, the 

associated behavioural actions or algorithms that are applied to these visual objects to 

create the functionality on the application view. The sequence in Figure 4.15 reflects 

essentially the first area of consideration and is elaborated subsequently, whilst the 

latter is facilitated by the use and extension of the reusable classes of the framework 

as well as the necessary Product data XML schema. 

 

The modular fixture system used in this work is the Venlic Block Jig System from 

IMAO Corporation [IMAO, 2004]. The Venlic Block Jig System is a hole-based 

modular fixture system. In hole-based modular fixture systems, fixture elements are 

Import Work-piece 
Select face to place 

on base plate Choose base plate Orientate according 
to setup 

Select locating 
elements, faces and 

points 

Select supporting 
elements, faces and 

points 

Select clamping 
elements, faces and 

points
Save fixture design 

Figure 4.15: Interactive Fixture Design Sequence 

Figure 4.16: Work-piece and Corresponding Fixture Design 



96 

fastened to the fixture base plate based on accurately positioned holes. Figure 4.17 

shows an example of fixture elements fastened onto a hole-based base plate.  

The fixture element repository contains two kinds of information on fixture elements. 

Firstly, it contains as a repository, the Product data XML files of the different fixture 

elements which are otherwise conceptually completed work-pieces. These files are 

used to visualise the fixture elements in the application view of the interactive fixture 

design system. Secondly, it contains dimensional information on the fixture elements. 

The dimensional information of these elements is derived directly from the Venlic 

Block Jig System catalogue. This is more appropriately stored in a relational database, 

implemented using the MySQL database management system. Figure 4.18 shows an 

Figure 4.17: Example of a hole-based fixture base plate [IMAO, 2004] 

Figure 4.18 Example information stored in the fixture element database (IMAO, 2004) 



97 

example of the information for a supporting cylinder from the catalogue that is stored 

in the database.  Fixture elements are organised into five groups: base plates, locating 

elements, supporting elements, clamping elements and adaptors, summarised 

currently in a database (Table4.1). 

 

Table 4.1 Fixture Element Group Database 
Group Elements Image 

Rectangular Grid Plates 
 

 
 
Base Plates 

Platform Grid Plates 
 

Locating Cylinders 
 

Horizontal V Blocks 
 

Round Pins 
 

Diamond Pins 
 

 
 
 
 
 
 
Locating Elements 
 

Adjustable Hex Stops 
 

Support Cylinders 
 

Adjustable Supports 
 

 
 
 
Supporting Elements 

Vertical V Blocks 
 

Side Clamps 
 

 
 
Clamping Elements 

Hook Clamps 
 

Riser Cylinders 
 

 
 
Adaptors 

Rack Blocks 



98 

At the start of the fixture design process, the user is prompted for the name of the 

work-piece model to be used. The reusable application development classes then 

retrieve the geometric data of the work-piece model from the geometric modelling 

server to visualise and set up the model on the Java 3D canvas and scene graph 

respectively.  The selection, transformation and interaction capabilities for the 

interactive fixture design application view can be carried out onto Java3D visual 

objects which comprises the integrated representation and placement of the Product 

data XML data for both work-piece and modular fixture elements.  

 

For example, since the Java3D scene graph instantiates the equivalent of boundary 

representation faces of the work-piece as individual scene graph nodes, it is possible 

to identify these faces with the associated face tags with any relevant selection point 

of that face. Selection of fixture elements is supported by the concept of group node in 

the Java3D scene graph. Selection points are also basic to locating fixture elements 

onto the work-piece. These points are part of the tessellation generated from the 

geometric modelling server. Other associated information such as face normals, snap 

points and face vertices have also been interrogated and are basically used for 

interactive fixture design. Furthermore, the database that captures the relevant part 

information and dimensions of fixture elements is used to support information such as 

dimensions for fixture design decision making to analyse the feasibility of the use of 

the fixture element.  Both work-piece and the elements basically are orientated with 

respect to each other through Java3D transformations. The middleware framework 

and the underlying distribution of functionality and data de-coupling approach make 

this possible.  

 



99 

On the application view, geometric and design reasoning for interactive fixture design 

is facilitated through the implementation of Java-based rules applying the associated 

Product data XML schema of the work-piece and desired fixture function and element 

integrated with Java3D scene graph. For instance, one general rule for placing support 

pins is that the triangular area formed by the three supports is the largest possible for 

the face selected to ensure greater stability for the work-piece. Each support pin, 

being an equivalent ‘work-piece’, has its Product data XML data with the associated 

snap points such as its support point co-ordinates.  

 

The rule of deciding the triangular area can be implemented on any basis such as the 

maximum possible for the supporting work-piece face selected. This rule is further 

embedded as part of an iterative interactive structure to help user confirmation (Figure 

4.19). As the rule is being used, visualization on the client end application view 

naturally ensures up-to-date interpretation of the entire fixture design process without 

further reliance on the geometric modelling server. The geometric modelling server 

side only needs to take care of the final transformation and assembly details.  

 

This implementation approach also applies to the selection, analysis, and positioning 

of locator elements (Figure 4.20). Application view interaction without geometric 

modelling server access is sufficient.   

 

Two key factors in developing an interactive fixture design system have been 

providing flexibility to the user in the design process and accurately reflecting 

constraints. The developed system provides the necessary flexibility by not 

constraining the user to specific locating schemes. Users are allowed to select as many 



100 

fixture elements as they want, as long as certain constraints are not violated. The 

constraints have been developed to be realistic and not overly constrain the design 

process. Occasionally, there are experienced users, in contrast with novice users, who 

do not wish to be constrained by say, an intelligent system that chains rules together 

in a fixed or rigid manner. Such users may even want built in rules to be modifiable or 

Generation of third 
Support Pin for display 

Support Pin 
acceptable? 

Analysis of 
Support Pin 

Generation of 
Support Rule GUI 

Support Pins 
too far apart? 

Support Pins 
too close? 

End of support rules 

All three support pins are 
deleted. The whole 

process of support pin 
selection is restarted. 

Pins are too far 
apart. Reposition 

again. 

 Reposition the 
pins again?

Re-position? 

Pins cover >50% 
of the face 

triangular area 

Figure 4.19: Support Rule Implementation and View Interaction 



101 

customisable. Overall, the developed system is flexible and is able to guide users 

arrive at acceptable designs.   

 

 

 

Figure 4.20: Locator Rule Implementation and View Interaction

Yes 

Yes

Yes
The two locators are 
deleted. The whole 
process of locator 

selection is restarted. 

Yes

No 

No 

No 

Yes

Generation and display of 
second locator. 

Analysis of 
locator rule 1

Generation of locator 
rule GUI for display 

End of support rules 

No 

The process of selection 
of second locator is 

repeated. 

Reposition 
the locators 

again? 

Locator 
placement 
complete 

Locators too far 
apart? 

Locators positioned 
on face? 

Re-position? 
 

Locator acceptable? 
 

Locators too close 
to each other? 

Yes



102 

4.5.2    Design Synchronization with Interactive Fixture Design 

In a distributed collaborative design context, Figure 4.6 highlights the necessity of 

distributed application views during product-process interactions to be updated in a 

timely and consistent manner during collaboration. 

 

The support to remotely visualize and interact with such design data requires first of 

all the master modeler and its geometric server to load from a repository and evaluate 

such design data files turning them into actual designs for collaboration. In the 

process of doing this, as known, a great deal of complex 3D facet dataset is generated. 

These datasets, also known as facet models, would be unwieldy on their own for 

transmission and propagation to application views. Furthermore, with design change, 

designs may become more complex with shape modification imposing more and more 

on a process application such as fixture design. This incurs the regeneration of more 

complicated 3D facet datasets for application views.  

 

As a result, primary design synchronization mechanisms are needed to handle 3D 

facet datasets and address the nature of design change. This requires understanding 

and exploiting the nature of 3D facet datasets to effect more timely and consistent 

application view updates for product-process interaction for instance. It also requires a 

capability to detect design change and update product data representations prior to 

activating relationship management for collaborative decision-making. 

 

For instance, should a product designer modify one side face of a workpiece as in 

creating an offset, a fixture designer would then need to be automatically made aware 

of this change in a timely and accurate manner. This awareness has to be integral as in 



103 

receiving notification about the change in the form of product-process relationships 

driven by the timely view update of the product model change itself to the fixture 

designer.  

 

As suggested in Figure 4.15, fixture design comprises dependencies requiring 

accessibility considerations of face and point selections toward locating, supporting 

and clamping elements. The effects of design change will generally necessitate new 

collections of locating, supporting and clamping faces, i.e., face tags that arise from 

design change executed on the geometric modelling server.  

 

Underlying this update, accurately obtaining the information and data about this 

design change is thus vital to preparing for the application view update and 

relationship management for carrying out collaboration in constructing a fixture re-

design response such as in re-selecting or adjusting the relevant locating element. Not 

doing this will mean completely but ineffectively regenerating the entire product 

model for application viewing. Also, important vital design change information need 

to be updated into the product data representation at application views for managing 

application relations and fixture re-design.  

 

 4.6 Discussion and Summary 

This chapter has presented the development of an interactive modular fixture design 

system based on a middleware framework for distributed collaborative design. The 

architectural elements of the framework and their design purposes are based on 

insights into the need to appropriately distribute functionality and data, These have 

demonstrated the possibility of reusable application development classes toward 



104 

domain specific or discipline specific processes as application views. The classes have 

allowed the application developer to concentrate on the fixture design functionality, 

yet allowing the developed middleware framework to be seamlessly integrated with 

other kernel modelling systems as well.  

 

The design of the middleware has further solved important problems faced in the 

development of computing environments for distributed collaborative design for 

integrated product-process development purposes. Through the abstraction and use of 

product information models via the Geometric Data XML schema, the problem of 

losing associated information under design changes when standard file formats are 

used for product exchange mechanism is resolved.  

 

All distributed process or downstream applications thus start with having a consistent 

reference to geometric entities as data is obtained from a central geometric modelling 

server based in principle on any modelling kernel. Given the fundamental conditions 

facing conventional CAD systems, it is thus very much preferred for the framework to 

be based on a central geometric modelling server that is running and thus maintaining 

consistent body and face tags. This consistent reference to geometric entities is 

presently vital to application ability to manage design change impact without entirely 

repeating the entire process. This abstraction and extraction of references is the 

underlying means to achieving design synchronization and flexible collaboration. 

 

This leads to the fuller context of distributed collaborative design with design 

synchronization which is concerned with achieving timely update and consistency of 

information and data across distributed environments so that interactive collaboration 



105 

can be supported. A scenario has been about how designers can interactively 

collaborate with fixture designers in coping with design change, i.e., product-process 

interaction, but vital for consideration are also relevant process-product and process-

process interactions where feedback and fuller product simulation take place.  

 

In developing and incorporating an interactive fixture design via a middleware 

framework, it has been necessary to incorporate on the fixture design application 

client the necessary fixture design sequences or methodology to interact with the 

product model via its product data representation.  

 

However with collaboration involving design change, it has been shown that the 

application client can carry out fixture design in a more adaptive manner via a 

mechanism that enables fixture design to be adaptive and modifiable at an appropriate 

stage of the sequence. Thus, [Mervyn et al 03b] has reported a technique of 

lightweight informational change management based on informational deposit and 

functional relationship association between applications and the product model. For 

example, in fixture design, the function of a locator in relationship to a specific 

workpiece face is captured between the fixture design application view and the 

product model via a relationship name ‘Locating face’..   

 

It has been assumed that the workpiece’s overall size is not altered to be larger than 

the current base plate, and its orientation on the base plate is maintained. As such, 

base plate selection and workpiece set up orientation activities are not to be repeated, 

allowing the focus to be on the subsequent interactive choices of locating, supporting 

and clamping elements with selection faces and points impacted by design change. 



106 

 

[Mervyn et al 03b] indicated a need to re-import a modified work-piece in order to 

update the application view for consistency and accuracy prior to achieving fixture 

design adaptation. The effect of this re-importing is such that it is not really a live and 

efficient collaboration as firstly, the entire work-piece itself has to be imported and 

updated on the application view without the incorporation of further mechanisms for 

timely update and secondly, the actual (intermediate) design change itself is not 

captured automatically and transmitted directly via evaluating the boundary 

representation and topology data, even though a messaging mechanism is said to be 

used to transmit design change information and notification. Further, the re-importing 

is based on the use of the Uniform Resource Locator (URL) which means that the 

HTTP or Web server is the current file transport means. By the same token, modular 

fixture elements ranging from simple to more complex shapes and taking part in the 

application view also have similar considerations. Importing or re-importing work-

piece designs and associated tooling geometry is in principle a form of heavy data 

transfer using any reasonable standard transfer protocol such as HTTP.  

 

It is hence appropriate to investigate suitable design synchronization middleware 

mechanisms, fundamental to the product modeller, relating to: 

1. The basic context of large amounts of complex 3D facet models for timely and 

consistent update of application views,  

2. The basic requirement of a design change detection mechanism at the B-rep 

level for incremental 3D facet model and product data updates to application 

views in order to support collaborative decision making through relationship 

management and change notification.  



107 

Chapter 5 

Design Synchronization Middleware Mechanisms for 

Effective Design Change Update 

 
 

 

 

The middleware framework and application architecture development has been 

focused on the needs and challenges of supporting distributed collaborative design, to 

help realize a distributed computing environment. The approach has to be domain 

specific as in product design and development. It has to draw on insights into 

distributed (types of) functionality and data and address their issues in distributed 

collaborative design, such as interoperability, compatibility, distributed product and 

process modeling, and effective product data representations within heterogeneous 

fragmented value chains. The design change challenge and Internet as a distributed 

environment of shared resources and diverse uses require design synchronization to 

provide for timely, accurate and consistent application view updates, as in interactive 

product and fixture design. Understanding issues of CAD and geometric modeling 

kernel systems is vital to design change handling during product-process application 

interactions for effective collaborative decision-making. This chapter develops and 

contributes to the middleware framework design with proposed boundary 

representation-based design synchronization mechanisms to support design change 

detection and update to application views. 

 

 



108 

 5.1 Design Synchronization Considerations for Application View Updates 

In the present system, the middleware framework and application architecture  

elements are corresponded by three common classes have been developed to promote 

reusability: (i) remote interface class (ii) product data XML parser class and (iii) 

Visualization class. Based on this, extensions such as Application Relationship 

Management (ARM) and different applications can be added in a flexible and 

compatible manner. 

 

For design synchronization, it is noted that application views consist of product model 

visualization (Figure 3.2) and the associated product data representation  to support 

application or domain-specific tasks, i.e. fixture design. This visualization has been 

achieved by obtaining a faceted model or tessellation of the geometric model at the 

product modeler server. The resulting facet data has been incorporated as a product 

data representation using XML. This representation contains the important association 

of geometric face and topological information with facet data of the entire product 

model. In the present context, such facet data are transmitted directly without further 

processing to the application views to construct the Java3D scene graph and canvas, 

once the work-piece or part CAD file is imported or created, and evaluated on the 

geometric modeling server. If there is design change, the entire product data 

representation and faceted model would have to be used for application view update. 

This is not optimal and in itself, is ineffective for design change considerations. 

 

Visualization is necessarily based on a tessellated representation of a part known as 

facets or polygonal meshes in 3D computer graphics terms. At the ‘user interface 

level’ at client computers, hardware-assisted rasterization is particularly effective at 



109 

rendering tessellated triangles [Rossignac97]. In 3D computer graphics literature, 

such facet data or tessellations are also known as triangle meshes. By default, a 

geometric modeling server, like most sources of facet data, does not optimize the 

triangle meshes even as it faithfully produces an accurate object rendering. This can 

generally result in large sets of complex 3D facet data associated with product 

models. As a design evolves into complex and detailed forms, increasingly complex 

facet data would characterize the ‘complete’ product model, i.e. assembled shapes 

with associated related tooling. 

 

It is thus important to understand the role of computer graphics and their relationship 

to interactive product design and by extension, relevant synchronization issues in 

distributed collaborative design. As a start, this is to facilitate the choice and leverage 

of technique(s) or mechanism(s) for design synchronization support. In general, 

distributed collaborative design environments would ultimately comprise design 

changes and application responses. 

 

5.1.1 Interactive Visualization in Distributed Collaborative Design 

Interactive 3D computer graphics play an important role in human-computer 

interaction in manufacturing, architecture, petroleum, entertainment, training, 

engineering analysis and simulation, medicine, and science. In many of these 

applications, human productivity or satisfaction would be significantly enhanced by 

the possibility of an immediate access to remotely located 3D data sets for visual 

inspection or manipulation.  

 



110 

3D computer graphics are dominated by polygonal or facet models due to their 

mathematical simplicity. This results in simple effective rendering algorithms which 

embed well in conventional hardware leading to widely available polygon rendering 

accelerators. The number and complexity, measured by the number of facets, of these 

3D models and data sets is growing rapidly, due to improved tools in the general 

context of design and model acquisition. This growth seems to be faster than the 

ability of graphic hardware to render them interactively. As well, anticipated increases 

in network bandwidth will not, by themselves, suffice to offset the explosion in 

combinatorial and geometric complexity of 3D models for remote access (Figure 5.1).  

This observation directly applies to design and manufacturing as products have grown 

in wide-ranging variety and complexity. Given the distributed collaborative design 

context, there is always a need for product models and parts assemblies to be remotely 

viewed and operated on interactively. With this visualization perspective, network 

transfer is bound to be data intensive compared to say, informational application 

relationships handled by the ARM technique storing functional relationships e.g. 

“Locating Face” between product model and application views like fixture design.  

 

Figure 5.1: Classification of 3D Models – Geometric Complexity vs Combinatorial 
Complexity [Shikhare 01]



111 

Also, it has been highlighted before that it is better to simply avoid the need to pass 

pixel or image data across the network. Pixel or image data is large quantity of non-

object data that required many updates (each update involves the entire object scene) 

across the network. Instead, transferring object-based 3D graphics or faceted models 

to the visualization functionality of the application client for interaction, manipulation 

and application processing would be far more effective.  

 

Hence, graphics handling or simplification techniques as enabling technologies are 

relevant to distributed collaborative design. A brief critique relevant to the particular 

needs of distributed collaborative design follows.  For reference, a good survey of 

such polygon simplification techniques is [Cignoni et al 98]. 

 

5.1.2 Graphics Simplification Techniques 

Briefly, these methods can simplify polygonal geometry of small, distant, or 

otherwise unimportant redundant parts of objects, seeking to reduce the rendering cost 

without a significant loss in visual interpretation, as in a flight simulation of 

dogfights. Alternatively, these methods can reduce model complexity without 

introducing geometric error such as in volumetric information stemming from medical 

imaging useful for surgical simulation. In the case of complex engineering analysis 

and simulation problems, a model is required to go through subdivision or 

partitioning, and simplification is then employed to remove unnecessary geometry. If 

the problem is to improve runtime visualization performance by simplifying the 

polygonal scene, the most common polygonal simplification technique is to generate 

levels of detail (LODs) of the objects in a scene [Lindstrom 96]. By representing 

distant objects with a lower LOD and nearby objects with a higher LOD, applications 



112 

from video games to CAD visualization packages can accelerate rendering and 

increase interactivity. In the latter, this would be evident in factory simulation rather 

than product design due to the spatial scale and multitude of objects involve in factory 

design and planning. Losses in geometric accuracy and details can be tolerated. 

 

In distributed collaborative design, design access, changes and updates need to occur 

across distributed environments. When synchronization is considered, simplification 

techniques requiring time consuming preprocessing effort to generate multiple LODs 

would not be suitable. Such LODs will mean multiple updates are required for 

distributed design, even though LODs can be progressively transmitted or streamed 

[Hoppe 96]. Worst, LODs severely compromise the geometric and visual fidelity 

required in product design and would not even be advisable in co-design involving 

distributed teams members.  

 

Nonetheless LODs have been a key influence behind the design and specification of 

the Virtual Reality Markup Language (VRML) standard and other programmatic 

scene graph methods for visualization. Their original context has been much more 

related to visual simulation and multimedia uses. It is thus inappropriate to distributed 

collaborative design context. 

 

In addition, simplification techniques that drastically allow for topology modification, 

compromise or loss [El-Sana et al 97] [Schroeder 97] are also inappropriate in 

distributed collaborative design. They also create inaccuracy and inconsistency in the 

original CAD topology and geometry or boundary representation. The resulting model 

for product design would then be grossly misinterpreted when design features are 



113 

‘lost’ during communication. Unlike flight or factory simulation, collaborative design 

requires a more static or stable viewpoint, as opposed to dynamic visual simulation of 

large spaces with many objects needing pre-computation for real time scene updates.    

 

In addition, distributed collaborative design requires an integrated framework 

supporting online dynamic product-process collaboration characterized by design 

changes. Collaborations are also virtual networks carried on the Internet. Therefore 

graphics simplification techniques that are transmission or bandwidth friendly without 

losing accuracy must be considered. Ultimately, this is for application view accuracy 

and consistency.   

 

It is also noted that during distributed collaborative design, design changes occur and 

thus, the geometric model is actually changing and evolving. For this reason, 

previously mentioned simplification techniques are also inappropriate as the scene 

model is actually changed and the entire polygonal mesh needs to be re-processed or 

re-simplified. This view is similar in understanding of the costly challenge of history 

maintenance of managing change, i.e. rolling back and forth, references to geometric 

and topological entities in the B-rep model of conventional CAD systems.  

 

An algorithm is thus required that generally takes in original highly detailed and 

complex models and reduces their sizes to a bandwidth-acceptable level of 

complexity without compromising visual and topology fidelity. Without this 

considering this as part of design synchronization, distributed collaborative design 

would be impractical. 

 



114 

 

5.1.3 Graphics Compression Algorithms 

Much of the work done in the area of geometry compression is based on innovative 

topological encoding schemes of the connectivity between facet vertices or nodes in 

the meshes. These encodings set out to minimize the repeated references to nodes, the 

main source of complexity, thereby achieving a compact description of topology. An 

interesting but realistic observation made in meshes representing manifolds is that, on 

an average, the number of triangles is twice the number of vertices and each vertex is 

referenced in 5 to 7 triangles. Hence, a lot of research has concentrated on aggressive 

attack on the problem of encoding of topological relationship between vertices. 

 

Early examples of compact encoding of a mesh were seen in triangle rendering 

engines such as OpenGL, in the form of triangle-strips and triangle-fans. A lot of 

research has been carried out in generating maximal triangle-strip decomposition of 

given meshes, minimizing the repetitions in the references to vertices.  

 

Concerning more contemporary means of compression, the original work started by 

[Deering95] described a more efficient “generalized triangle mesh” representation for 

further reducing the redundant referencing of vertex data. A set of four operators is 

defined to interpret a stream of vertex indices referring to the list of points. This leads 

to an efficient encoding. For the present purpose, Rossignac’s work on the 

Edgebreaker algorithm achieves even greater compression by compact representation 

of topological relationship between vertices of a mesh [Rossignac99]. 

 



115 

Hence, the suitable choice of model or geometric compression is based on the 

following factors: 1.) that it is basically lossless compression - topology preserving 

and geometrically accurate, and 2.) that it is capable of high compression ratios 

relevant to the bandwidth and transmission constraints of the Internet as a shared 

resource and yet, expedient to the need for timely updates to application views.  

 

Model compression applies also to the context of assembly models or assemblies of 

parts. For example, in the case of fixture planning, both workpiece and various fixture 

tools can be subject to model compression. This suggests that a multi-prong approach 

will be needed in a more general context of collaborative product development.  

 

Hence geometry data transmission speed is critical to expediting interactivity in a 

distributed collaborative design environment. Moreover, a compression scheme also 

reduces storage costs i.e. the tessellations as repositories can be more readily available 

in highly compressed forms. Loading a work-piece and say, an entire fixture design 

assembly onto application views and product modeler servers can be more readily and 

simultaneously carried out.  

 

What is subsequently important is when design changes actively take place, the role 

of integrated model compression for application view update becomes crucial. This 

aspect has not been reported elsewhere in the distributed collaborative design context. 

In conclusion, in terms of design synchronization relating to timely updates for 

application views, size reduction to store and/or transmit such 3D models or datasets 

is thus expedient if not crucial.  

 



116 

This is where model or geometric compression is suited for – integrated compression 

on the geometric modeling server side, followed by transmission and decompression 

into a proposed enhanced augmented product data XML representation. Thus, a key 

early consideration for the middleware framework and design synchronization is the 

fast compression and decompression of 3D faceted models involving innovative 

topological encoding schemes and bit efficient facet formats.   

 

In the distributed collaborative design context, appropriate distributed functionality 

and data with associated mechanisms for manageable network loads are important 

considerations as noted in [Bidarra et al 01] [Li and Qiu 06]. It is thus proposed that 

geometric or model compression is important and useful technique as a design 

synchronization mechanism within the middleware framework.  

 

5.2 Leveraging Model Compression for Design Synchronization 

5.2.1 Model Compression Algorithm 

Model compression via the Edgebreaker algorithm [Rossignac 99] thus works to 

reduce the storage size needed to record triangle meshes. A triangle mesh may be 

represented by its vertex data and by its connectivity. Vertex data comprises 

coordinates of all the vertices and optionally the coordinates of the associated normal 

vectors and textures.  

 

In its simplest form, connectivity captures the incidence relation between the triangles 

of the mesh and their bounding vertices. It may be represented by a triangle-vertex 

incidence table, which associates with each triangle the references to its three 

bounding vertices. Connectivity compression is usually achieved by reducing repeated 



117 

references to vertices that are shared by many polygons/triangles. A brief description 

of the Edgebreaker algorithm follows. 

 

For all meshes homeomorphic to a sphere, and in fact for most meshes in practice, it 

has been observed that the number of triangles is roughly twice the number of 

vertices. This means that typically a large part of the representation of a model is the 

definition of the connectivity. Also, when pointers or integer indices are used as 

vertex-references and when floating point coordinates are used to encode vertex 

locations, connectivity data also consumes twice more storage than vertex coordinates 

leading to the use of bit-efficient quantization schemes as well. Schemes that 

minimize repeated references to vertices would additionally result in compression.  

These include using half-edge data structures to carry out history-based and opcode-

based tree-traversal to encode mesh connectivity [Rossignac99]. 

 

Fundamentally, the Edgebreaker algorithm works in two stages: an initialization 

process, followed by the compression process. In the initialization process, the 

Edgebreaker is further broken up into more steps: a marching process, followed by 

marking of the bounding edges and vertices of the mesh, and a stack initialization. 

Initialization formats the geometry data and marches throughout the bounding edges 

and vertices to establish the connectivity between all the labeled triangular meshes. 

The compression is a recursive procedure that traverses the mesh along a spiraling 

triangle-spanning-tree and encodes the vertices and connectivity to generate 

compressed model. 



118 

In general, Edgebreaker adopts a simple representation of the compressed data as a set 

of {C, L, E, R, S} encodings that indicate 5 exclusive states of each triangle’s relation 

to the mesh boundary (Figure 5.2). 

The different triangles represent different cases in CLERS. The triangle X is formed 

by the gate edge g and vertex v. The location of v with respect to the boundary B 

determines the operation type: C (v is not on B), L (v immediately precedes g), R (v 

immediately follows g), E (v precedes and follows g), and S (v is elsewhere on B). 

 

During compression, Edgebreaker will determine the gate g which will be made the 

starting vertex of the compression sequence. This gate, being on the boundary, will be 

loaded onto a stack, to initiate the compression. The basic idea is that Edgebreaker 

starts with the gate and proceeds or traverses to march round the edge of each triangle. 

Edgebreaker will proceed to determine whether the triangle represents a C, L, E, R or 

S case based on where the vertex is in relation to the boundary (Figure 5.2).  

 

The determined case is stored as an alphabet or integer code in a compression history 

List, H, after which, Edgebreaker will proceed to the next triangle. It will determine 

again the relevant case, and then loading this case into the H list.  This process goes 

on, until the Edgebreaker has fully stored every single triangle in the H list. There will 

Figure 5.2: CLERS Illustration [Rossignac99]



119 

be points along the compression process where there will be a loading of new stacks 

of gates into a vertex list P to allow for the compression of new regions of facets that 

the previous series of compression was unable to reach.  This compression process 

removes all triangles of the mesh and always terminates, because the preconditions 

for the L, R, C, S, and E operations are mutually exclusive and cover all possible 

cases, and because these operations all decrement the triangle count in the mesh 

(Figure 5.3). These lists are subsequently further encoded using binary code schemes 

and are then handled by the decompression process [Rossignac 99].  

 

Subsequently, model decompression is roughly a reverse process of the model 

compression. It includes decompression process and post process. The decompression 

process reconstructs the mesh from the input streams. The post process also recovers 

any holes (generated from internal bounding loops of the boundary representation 

topology) and duly converts the data formats. Figure 5.4 illustrates the compression 

and decompression modules and internal operations. 

 

Figure 5.3: Model Compression Traversal 



120 

 

5.2.2 Product Modelling Architecture with Integrated Model Compression  

With the focus on the incorporation of the model compression technique using the 

Edgebreaker algorithm, the sequence of events is modified such that when an import 

work-piece or modeling operation is carried out, the geometric modeling kernel-

tessellated mesh of the entire model is converted, re-formatted and integrated into the 

model compression algorithm. The mesh data required for Edgebreaker are the 

number of vertices, the coordinates of the vertices, the number of triangles and the 

indices of the vertices that belong to each triangle. The resulting sequence of events 

Figure 5.4: Model Compression and Decompression Procedures 

Initialization 
Process 

Remove Redundancy 

Detect Hole 

Close Hole 

Compression Process 

Traverse Mesh 

Encode 
Connectivity

Encode 
Vertices 

Data for 
Compression

3D Facet 
Data 

Compressed Data  

Decompression Process 

Reconstruct Mesh 

Decode 
Connectivity

Decode 
Vertex Stream 

Decompressed
Data 

Post-
Decompression 

Convert Format 

Recover Hole 

Close Hole 

Decompression Module 

Compression Module 

3D Facet 
Data 



121 

for arriving at the augmented Product Data XML schema is as shown (Figure 5.5). 

The augmented Product Data representation is discussed shortly. 

Figure 5.5: Basic integration and sequence of creating the augmented Product Data schema 

Import or Modeling Operation 

Tessellation to Generate Facets/Mesh 

Compression of Facets/Mesh Using JEdgebreaker 

Creation of augmented Product Data XML 

 
 

RMI Interface 

Internet connection to 
Application Clients 

OpenCASCADE Modelling Kernel 

Modelling and 
Inquiry Functions 
Implementation 

Classes 

 

Java Native Interface 

Apache HTTP 
Server 

Augmented Product 
Data Representation 

in XML

Applications 
Relationship 

Manager 

Modelling 
Functions 

ARM Server 
Implementation 

Classes 

B-Rep Design Change Detection 

Model Compression with EdgeBreaker Algorithm 

Product Model 
Native Files and 

Databases Handled 
by MySQL 

 
 
 
 

Geometric 
Modelling 

Server 

Figure 5.6: Product Modeler Architecture with Model Compression and Design Change Detection 



122 

It is thus proposed that the model compression technique should be integrated into the 

middleware framework as a design synchronization mechanism for the product 

modeler to help achieve distributed collaborative design. With the benefit of the 

reusable application and interface classes, the resultant product modeling server 

architecture with integration of the model compression technique is indicated in 

Figure 5.6. In this particular context, a Java implementation of the Edgebreaker 

algorthim, known as JEdgebreaker is used to improve the middleware framework, and 

as a result, an overview of the product modeler system architecture is illustrated. 

 

5.2.3 Augmented Product Data Representation 

Based on the above understanding of model compression, a modified augmented 

Product Data XML Schema has been developed to handle compressed geometry data 

for complete parts, considering that these parts, i.e., workpiece and tooling, can be 

retrieved from a repository.  

 

The Edgebreaker algorithm was mainly developed for visualization of complete 3D 

models independent of the origin and role of those models. In the context of 

distributed collaborative design, the compressed data format and encoding need to be 

related to be incorporated into the product data representation thus far for application 

views and their updates.   

 

To incorporate model compression as a design synchronization mechanism, the 

product modeler supports an enhanced format introduced as the augmented Product 

Data XML representation (Figure 5.7). The revised form of the XML schema is 

described as follows.  



123 

Compared with Figure 4.21, the essential difference in the product data representation 

is the displacement of the <FACET> sub-branch tag with a  re-organization and 

augmentation of the compression encoding sub-tags under a new ‘branch’ tag. 

Basically, the <SEEDCORNER> sub-tag defines the starting corner of the 

compression sequence. The <CLERS> sub-tag contains a record of the compression 

history list where each facet is being reached by the compression algorithm. The 

<CORNERS> sub-tag contains the coordinates of the vertices (corners) in the original 

model. The <FACE> branch tag now only contains model information at the face 

level i.e. face tags and face types like in Figure 4:12. The <TRIANGLES> tag 

contains the indices of the triangles that belong to a face – basically providing access 

into the facet data themselves.  

 

In this way, the modelling information is not lost due to the compression as 

associations are still maintained and a compact representation is still obtained. [Bok et 

al 04]. The <COMPRESSEDGEOMETRY> tag therefore refers to the compression 

encoding of the tessellated model which has becomes a compressed data. An 

illustration in Figure 5.8 shows how the augmented Product Data representation is 

instantiated. 

Document

Body 
Body 
Tag 

Compressed 
Geometry 

Faces

• SeedCorner 
• CLERS 
• Corners 

• FaceTag 
• FaceType 
• Triangles 

Figure 5.7: Augmented Product Data schema incorporating compressed geometry 



124 

The visualization class within the reusable application classes layer thus retrieves 

information from the data structures and decompresses the encoded information from 

model compression, i.e. CLERS, vertices and handles data into facet data. The facet 

data is then to be sent to Java3D classes for rendering into the Java3D canvas, which 

will also be set up by this class.  It is also noted that the augmented Product data XML 

schema is in itself already flexible whether for representing the entire workpiece or 

just an individual face. The next section deals with leveraging model compression in 

the context of design change with this flexibility in mind. Figure 5.8 also illustrates 

the presence of the <COMPRESSED GEOMETRY> record.  

 

As facet models are characteristic of engineering and product models, they should be 

kept in a repository associated with the product models or native CAD files. 

Essentially in compressed data formats, such facet models via the augmented Product 

Data representation can facilitate a new or re-started collaborative session as native 

file data are drawn from the repository and instantiated into the geometric modeling 

Figure 5.8: Illustration of Augmented Product Data schema 



125 

server. The augmented Product Data can be concurrently transferred to application 

views along side with the instantiation of the product modeler server in a networked 

distributed environment.  

 

5.3 Experimental Results of Integrated Model Compression 

The effectiveness of the Edgebreaker algorithm has been initially verified by simply 

comparing XML file sizes based on the original product data representation (with the 

uncompressed <FACETS> sub-tag) and one that stores the compressed data within 

with compressed geometry format for convenience. Based on some basic primitive 

models, and at coarse resolution, chuck and flange examples (Figures 5.9 and 5.10), 

the results are presented in Table 5.1. 

 

The experimental results show a significant compression of the data required, proving 

the effectiveness of using the Edgebreaker algorithm for model compression in 

reducing data sizes. Data compactness is a vital requirement due to the shared 

bandwidth nature of the Internet and thus 3D facet models or triangle meshes should 

be made as compact as possible. 

Table 5.1: Size reduction tests with model compression 

File Size 

Model 

Type 

Before 

Compression 

After 

Compression 

Compression 

Ratio 

Cube 5KB 1KB 5 

Prism 7KB 2KB 3.5 

Sphere 178KB 31KB 5.74 

Torus 379KB 66KB 5.74 

Chuck 492KB 79KB 6.23 
Flange 137KB 39KB 3.5 



126 

Figure 5.9: A Chuck Workpiece Figure 5.10: A Flange-like Workpiece 

Initial timing tests were also conducted to compare visualization on the application 

view were also taken to verify the effects of  compression on prismatic and non-

prismatic models of different facet resolutions or complexity (Table 5.2).  

Table 5.2: Timing tests for visualization 

Visualization Time % Difference 
Model Type Without 

JEdgebreaker 
(secs) 

JEdgebreaker 
(secs)  

Cube 1.74 1.74 0.0 

Prism 1.49 1.49 0.0 

Sphere 6.73 3.53 47.5 

Torus 13.07 4.00 70.0 

 

The results demonstrate that using compression (and decompression) for application 

view update is more pronounced with greater facet complexity. However, as the 

Internet is an increasingly heavily shared (common) resource and computers 

themselves nowadays are also used for concurrently for many formal and informal 

purposes, a fully adequate predictable performance metric is not really possible. 



127 

Hence it may be expected that commercial private network services with feasible 

‘Quality of Service’ (QOS) management policies will come to ensure the viability of 

Before 
Compression

After 
Compression

643 kB Mesh Size: 93 kB 

Before 
Compression

After 
Compression

986 kB Mesh Size: 142 kB 

Before 
Compression

After 
Compression

4.76 MB Mesh Size: 678 kB 

Before 
Compression

After 
Compression

789 kB Mesh Size: 114 kB 

Before 
Compression

After 
Compression

120 kB Mesh Size: 17 kB 

Figure 5.11: Additional Results of Integrated Model Compression 



128 

distributed and collaborative design. Additionally, the following are demonstrative 

engineering examples of integrated compression of differing complexities albeit with 

a coarse facet resolution (Figure 5.11). The comparison is based on mesh data sizes 

directly obtained from JEdgebreaker. 

 

Thus far, the discussion has been about the feasibility of model compression for 

distributed collaborative design in the context of invoking complete product models 

from a repository for application view updates. For collaboration involving design 

change i.e. shape modification, the role of model compression operating in tandem 

with design changes themselves is crucial to the ability for application views to be 

updated incrementally or progressively, i.e., only the changes should be dealt with 

rather than altogether.  

 

The next section deals with this to provide for a distributed collaborative design 

environment that has the integral role of model compression and design change 

handling to support collaborative decision-making, as in design change causing 

fixture re-design. In this manner, it can be said that design synchronization 

middleware mechanisms are capable of supporting design change across distributed 

environments. The product modeler server architecture in Figure 5.5 is referred to.  

 

5.4 Design Synchronization for Design Change 

The DET and Distributed Collaborative Design issues highlighted in Chapter 2 

compel the need for infrastructures and mechanisms to manage distributed 

functionality and data for collaboration. Infrastructures require application 

architecture and middleware framework to address heterogeneous and diverse tools 



129 

and computing environments that basically impede collaborative product development 

and manufacturing amongst users. However, with design change involving shape 

modification, middleware mechanisms are required to further enable the product 

modeler server to effectively support application view updates (Figure 5.5). Updating 

depends on effective update and visualization of facet models accompanying the 

augmented Product Data representation.  

 

The following section deals with the verification of the model compression technique 

to support design change. Following that, the fundamental issue of design change 

handling at the shape modification level needs to be addressed to support 

compression. This requires B-rep evaluation mechanisms operating at the core of 

geometric modeling kernels. It should be regarded as middleware since product 

models commonly or universally relate to geometry entities such as faces and 

vertices, and their topology in boundary representations.  

 

5.5 Local Face Model Compression for Design Change Synchronization 

The present purpose in the context of application view update is to ensure that the 

faceted model of the design change can be compressed. This section here verifies that 

model compression can be applied at the face level as opposed to the entire product 

model, as presented earlier. This is experimentally done by manually selecting and 

retrieving a face to obtain its faceted model as an input to test the JEdgebreaker 

compression module.  Figures 5.12 and 5.13 demonstrate this interactively with the 

result of compression at the product modeling server.  

 

 



130 

Figure 5.12: An interactive demonstration of face selection for compression 

 

 

In addition, Figures 5.14 and 5.15 illustrate the ability to compress face meshes after a 

user-invoked design change operation, i.e. fillet command.  This is to be expected 

once the B-rep model is successfully evaluated. Compression at the face level is thus 

possible as it has been verified that the JEdgebreaker can process the triangle mesh of 

a face in the same manner as the entire facet model of the whole workpiece. Given the 

Figure 5.13: Corresponding face compression results 



131 

augmented product data representation, the DTD has provided the flexibility for each 

compressed mesh to be associated with each face as highlighted before.  

 

5.6 Design Change Detection within Shape Modification  

Design change can involve extensive shape changes with one or more faces modified 

and replaced, newly generated or removed in the boundary representation of the 

product model. By detecting these faces and understanding what takes place in the 

boundary representation, and knowing that model compression at the face level can 

take place, the groundwork is laid for an integrated approach to accurate and 

Figure 5.15: Compression of face mesh corresponding to fillet operation 

Figure 5.14: Interactive fillet modeling operation with compression of selected generated face 

Selected fillet face for compression



132 

consistent design change handling. 

 

To be more precise, design change can be described as deltas or variable data in the 

topology and geometry of a boundary representation when shape modification occurs 

to create new boundary representations. In the context of face shape entities, this delta 

is classified and described as follows: 

1. New face shapes generated with new reference tags, new surfaces and facet 

data,  

2. Face shapes modified/replaced with new reference tags, modified surfaces and 

facet data, 

3. Face shapes unmodified and mapped with new reference tags but the same 

surface and facet data, and 

4. Face shapes removed with facet data no longer necessary to the application 

views. 

Specifically, when a boundary representation is re-evaluated, reference tags are 

updated or adjusted by the geometric modeling kernel. They cannot be assumed to be 

persistent even as static CAD files are not dealt with i.e. imported into the kernel for 

tags to be re-emitted. Due to the nature of XML schemas, the augmented product data 

representation can be leveraged to capture the abovementioned information related to 

this delta.  

 

Without incorporating an integrated approach to design change handling, i.e. 

detection and update of this delta information, conventional interactive design 

modeling operations based on kernel library routines would just execute and provide a 

visualization update of the entire model. It would just be equivalent to an exercise in 



133 

creating an interactive user interface with commands to invoke modeling operations 

not unlike in conventional CAD systems. However, this only means that there is no 

change detection explicitly taking place during runtime to support distributed 

collaborative design. 

 

In other words, design change detection has to take place explicitly during shape 

modification within the kernel to enable design synchronization with application 

views. The boundary representation has to be processed together with the important 

re-emission and evaluation of the topology and geometry of shape entities.  

  

A change detection algorithm should therefore be incorporated into a geometric 

modeling kernel at runtime in order to capture and process old and new B-rep models 

to discover the delta information. In particular, surfaces that result from new 

generated, or modified and replaced faces are important to derive faceted models for 

more effective application view updates. Faces that have been removed or deleted 

cannot result in a faceted model for application view update. Also, without capturing 

the delta information, it would be impossible to carry out design synchronization at 

the application relations management level, as discussed in the next chapter.  

 

5.7 Boundary Representation Model Changes  

Usually, a product model is defined and described with geometric shapes or entities 

that are organized by an internal hierarchical topological data structure without which 

basically, solid models and modeling operations cannot be digitally realized. This 

tree-like data structure is typically organized as from root to leaves and is core to the 

boundary representation of the product model and the connectivity of its shapes based 



134 

on topological common boundaries.  It is vital to the product model in terms of 

defining and maintaining the integrity of the underlying solid model geometry and its 

properties for solid model reasoning in various applications. 

A root refers to the solid model or body itself which is then recursively represented by 

the following topological entities or types in the data structure: Shell, Face, Wire, 

Edge and Vertex. Each entity refers to its appropriate geometries (Figure 5.16). A 

vertex entity would essentially be a point. An edge entity would refer to a geometric 

curve, line or a connected line segment. A wire shape entity essentially represents the 

boundary or closed set of edges of a face. Ultimately, the shell entity is topologically 

the container of the recursive subsidiaries of Face, Wire, Edge and Vertex entities that 

form the solid model. 

 

The product model’s B-rep is dependent on its run-time state during the kernel’s 

execution. The shape entities are maintained in the form of runtime internal maps of 

respective types. These maps comprise indices that address essentially the kernel’s 

internal shape entities. Indices change dynamically due to the fact that B-rep 

operations are applied interactively resulting in shape entities of different states that 

need to be updated into the maps. These updates are internal to the kernel and hence 

the maps cannot be explicitly manipulated. These maps are part of the runtime B-rep 

evaluation process and are not contained inside a native geometry or CAD file.  

Solid Shell Face Wire Edge Vertex 

Surface Curve Point 

Topology 
Entities 

Geometry 
Entities 

Figure 5.16: Boundary Representation Graph Model 



135 

 

However, as long as geometric kernel modeler supporting the product modeler server 

is running, the ordering of shape entities during modeling would be consistent with 

the sequence number of shape entities. They are different from shape tags as they can 

change due to B-rep state operations. Shape tags can thus be assigned as an integer 

identifier for each shape entity type in an application development. 

 

This behavior contributes to the persistency problem associated with geometric 

kernels or modelers as they do not inherently support persistency of shape tags or ids 

associated with each type of shape entity. Such tags or ids are inherently important to 

product modeling as designers and engineers deal with product shapes and features; 

even to the extent that for instance, feature representations are viable once such tags 

or ids are represented and persistently used in design modeling operations.  

 

The run-time geometries underlying these entities are maintained differently through 

the respective indexed maps. The index of each shape entity is essentially the tag for 

that shape entity. Creating or re-making a shell is hence a vital step to creating and 

evaluating a new boundary representation. The above description is fundamentally the 

case in today’s mature geometric modeling technologies. 

 

In general, it is known that a new boundary representation model when evaluated 

during the running of a geometric modeling kernel can be used to write out its 

contents in the form of a series of Shell, Face, Wire, Edge and Vertex entity maps. 

 

With shape modification, there are two types: 



136 

1. Geometric modification: the initial solid is modified without changing its 

topology, e.g. modifying a hole diameter without any interaction with other 

surfaces 

2. Topology modification: the topology of the solid model is modified, e.g. 

changing a chamfer to a fillet. 

 

During a shape modification, the kernel performs a B-rep evaluation which involves 

an updating of the shape entities from the old B-rep model to the new one. The 

updating comprises an internal graph of topological operations on shape entities. The 

operations are:  

• ‘change’ – a shape entity is modified from an old model to a new model in 

terms of its local attributes:- position, area (face), length (edge) and centroid 

• ‘merge’ – two or more shape entities of the same topology type are combined 

into one entity 

• ‘split’ – two or more shape entities are created from one entity 

• ‘add’ – a shape entity is created 

• ‘delete’ – a removal of the entity 

• ‘mapping’ – a shape from the old model is not changed in the new model, 

only its internal index or sequence number is updated 

The first three operations are normally subsumed under a ‘modify’ operation.   

 

Figure 5.17 illustrates these operations with the following convention: ‘fa’ as face, 

‘ed’ as edge and ‘ve’ as vertex, the integer numbers representing sequence number of 

the shape entity type in each internal index map, and the shades mean the shape entity 

is newly added.  



137 

In general, a shape entity in a new B-rep model can be treated as modified, added, or 

mapped, and one in the old B-rep model can be modified, removed or mapped. Thus 

with design change or shape modification, the need is to decide the add(), remove(), 

modified()/replaced() and even mapped() collections of indices to entities (which can 

be identified by sequence numbers or tags from the kernel) during a runtime 

fa:1 fa:2 fa:1 fa:2change mapping 

fa:1 

fa:6 merge 

fa:1 

ed:1

ed:2

ed:5

split 

ve:2 add ve:6delete 

Figure 5.17: Illustration of Types of Topological Shape Changes 

Figure 5.18: Illustration of B-rep face shape entity state changes 

mapped replaced 

fa:1 fa:3 

fa:5 

fa:0 

fa:2 
fa:5 

fa:4 



138 

execution of a modeling operation, as in making a fillet.  

 

Figure 5.18 illustrates the B-rep face entity state changes of add() i.e. the shaded 

entities, modify()/replaced() and map() i.e. re-assignment of tag references for fillet 

modeling operations. Figure 5.19 correspondingly shows the detailed entity state 

changes in the first B-rep fillet operation. The modified() shape state actually means 

replacement of shapes (e.g. fa:1->fa:0) due to shape geometry changes in local design 

change, such as in the ‘curtailing’ of the side faces adjacent to the fillet, as well as the 

top and bottom faces of the block. In other words, there is no such state as a removed 

or deleted for an old face so to speak, rather that the face has been geometrically 

modified and replaced back with a face tag update. It is noted that vertices can only 

have add() and remove() states. 

 

5.8 Boundary Representation-Based Design Change Detection 

It has been indicated that design change detection would need to be carried out inside 

a shape modification process ‘intervening’ into the B-rep model’s shape entities. As 

Figure 5.19: Illustration of B-rep shape entity operations inside design change 



139 

well, B-rep models are evaluated during a kernel’s runtime. An integrated approach is 

thus needed to support shape modification with design change detection.  Figure 5.20 

shows the sequence of steps for this integrated approach to be realized.  

The steps indicate the necessary B-rep related tasks to be explicitly performed for 

change detection to occur and shape modification to be completed. To elaborate on 

the change detection step and in relation to design synchronization with model 

compression during design change, Figure 5.21 shows a simplified or high level 

pseudo-code description of change detection algorithm for face shape entity, the 

concern is to determine new and replaced faces. 

Carry out change detection by comparing these new shape entities 
with all indexed maps of shape entities from present B-rep model, 

and record the changes into add(), removed() and 
modified()/replaced() indexed maps.  

Complete the new solid model 

Figure 5.20: Sequence of steps to carry out shape modification with change detection 

Use these indexed maps to map the changed shape entities into the shell 
topology of the new B-rep model to complete it

Create a new empty B-rep model for the new solid model and 
transplant the shape modification’s shape into this new B-rep model. 

This new B-rep model would currently contain only new shape 
entities due to the shape modification. 

Initialize the shape modification in the existing B-rep model, create 
and add its shape into this existing B-rep model 

Retrieve from present B-rep Model all existing 
topology shape entities into their indexed maps 

Obtain present B-rep Model 

With Existing Solid Model 



140 

 

Initialize oldFaceList, newFaceList, replacedFaceList, removedFaceList; 
 
Evaluate the topological data structure of B-rep models: oldModel and newModel, and store 
all the shapes of type TopoDS_FACE into lists oldFaceList and newFaceList respectively 
for change detection processing to follow; 
 
For each Face (facen) in the oldModel 

Get a list of modified shapes from current Face (facen) using current MakeShape 
modified() method call for testing;  

 if this list is not empty 
  Get the new Face (facem) from the list; 
  Bind new to old Face /* to be used when constructing a shell */; 
  Add facen and facem to the map of replaceShapeMap; 
  Add facem to replacedFaceList; 
 end if 
end for loop 
 
For each Face (facen) in the oldModel 
 Compare facen with each element in newFaceList and replacedFaceList; 
 if newFaceList and replacedFaceList do not contain facen 
  Add current Face (facen) to removedFaceList; /* for all removed faces */ 
 end if 
end for loop 
 
For each Face (facem) in the newModel 
 Compare facem with each element in oldFaceList and replacedFaceList; 
 if oldFaceList and replacedFaceList do not contain facem 

Add current Face (facem) to addedFaceList; /* for newly generated faces */ 
 end if 
 if oldFaceList contains facem and replacedFaceList does not  

Make a mapping between current Face (facem) and the same Face in 
oldFaceList; 

 end if 
end for loop 

Figure 5.21: Design Change Detection Algorithm for Face Shape Entity 



141 

Basically, after an initialization and retrieval of lists of old and new face shape entities 

(Figure 5.20), the design change detection is done by evaluating the face indexed map 

of the new B-rep model where there are new faces which have not been contained in 

the old one. In this way, the newly added faces can be found.  Whereas, to find a 

replacement face, a modified() method call to the shape modification command with 

an existing face from the old B-rep model as input would evaluate whether there are 

replacement face(s) corresponding to this existing face. In general, the face indexed 

map of the old B-rep model can be evaluated to see if there are old faces which have 

not been included in the new B-rep model. In this way, the removed faces can be 

detected. Usually, design change or modeling operations that cause this are not local 

shape modifications, but they can occur to the workpiece such as in subtracting with a 

large hollow operation onto an existing pocket removing the pocket faces, or making 

a large through hole onto an existing smaller blind hole removing the latter’s 

cylindrical face and base face.  

 

Similarly, for other topological types, such as vertex, edge, wire, shell and solid, 

added, removed and modified shapes can also be detected for any shape modification 

operation. Therefore, with such detection, two lists for added and removed shapes, 

and two lists for shapes modification (replaced) and shapes mapping can be obtained. 

 

In totality, the collections of add(), modify()/replaced(), remove() when obtained 

respectively contain the indices to the vertex, edge and face shape entities that have 

state changes. The resulting changed shape geometries are to be further processed 

onto internal B-rep index maps with the following procedure: the removed shapes can 

be removed from the old B-rep model; the added shapes are in the new B-rep model 



142 

and the replaced shapes are also mapped into the new B-rep model. The new B-rep 

model is then initialized in the kernel. The remaining entities that are not design 

change(s) themselves are then automatically mapped into new sequence numbers or 

tags by the kernel. They can be obtained with another method call to the kernel to 

retrieve the information.  As a supplementary note, this procedure allows a B-rep 

delta or change to be captured which can be used to carry out design streaming across 

product modeler servers to maintain consistency.  

 

5.9 Design Change Synchronization for Application View Update 

The above design change detection provides the added(), modified()/replaced(),  

removed() and mapped() face entity information affected by a shape modification 

process. This information should be used for the purpose of updating application 

views as in product and say fixture design.  

 

These face shape entities would have been associated with updated face tags which 

can be used to generate face-based faceted models for local compression in the case of 

add() and modified()/replaced() collections. In the case of mapped() entities, no 

compression is needed. On the whole, these face tags are to be used to create new 

augmented Product Data representations for design change update to the application 

views to ensure that the Java3D scene graph is consistent with the product model.  

 

It is important to note from Figure 5.19, that modified()/replaced() and mapped() 

states have associated with it the old tag and new tag information. This is key to 

application view update as the old tag would be used in the application view’s Java3D 

scene graph to delete the relevant shape node or replace that shape node with the new 



143 

face tag and associated augmented Product Data representations, if necessary after 

decompression of the faceted data, and other original Product Data representations 

such as surface normals, snap points, etc.  

 

The augmented Product Data representation schema should now contain the presence 

of a <REPLACEDTAG> and <MAPPEDTAG> information (Figure 5.22). When the 

<REPLACEDTAG> and <MAPPEDTAG> tags are empty, nothing needs to be done 

as the presence of <FACETAG> is adequate to indicate a new face. If they are not 

empty, the appropriate updates would be carried out. The update of the Java3D scene 

graph is more obvious for newly added faces – it would just be the presence of 

<FACETAG> together with the compression. Removed face tags can be 

communicated directly. 

Document

Body 
Body 
Tag 

Compressed 
Geometry 

Faces

• SeedCorner 
• CLERS 
• Corners 

• ReplacedTag 
• MappedTag 
• FaceTag 
• FaceType 
• Triangles 

Figure 5.22: Improved Augmented Product data schema to support design change   

Figure 5.23: The filleted block with new and replaced face shape entities 



144 

 

Figure 5.23 illustrates the presence of new and replaced shape entities associated with 

a fillet modeling operation. 

 

5.10 Discussion and Summary 

To review, the conceptualization and development of the middleware framework and 

application architecture elements has allowed applications to be developed 

independently and be seamlessly integrated. This addresses the fundamental problem 

of distributed collaborative design involving distributed environments containing 

heterogeneous diverse practices and tools.  

 

The middleware framework has the advantage of integrating applications for 

collaboration via sharing and accessing a product master model supported by a central 

geometric modeling server during runtime. Applications that do not have to directly 

deal with or make design changes to the product model design need only have a 

product data representation to enable its algorithms to carry out decision making. The 

realization of the middleware framework and application architecture with interactive 

rules-based fixture design demonstrates this. However, there is no design 

synchronization to improve application view updates and account for design changes 

to the actual product model at the product modeler server.  

 

Design synchronization mechanisms in the middleware framework are thus needed in 

a manner appropriate to the distribution of functionality and data in distributed 

environments. Hence, to propose design synchronization for application view updates, 

two essential techniques have been proposed/evaluated and developed. 



145 

 

Firstly, it has been demonstrated that the role of integrated compression as an 

enabling technology is feasible and vital to timely, accurate and consistent application 

view updates across distributed environments. To be able to compact faceted models 

in association with a product data representation is necessary given that the Internet 

resources i.e. bandwidth and CPU are shared in a real world of many users and multi-

tasking software applications. In particular, it has also been established that handling 

design change involving face shape entities is not an issue to compression, unlike the 

assumptions and cumbersome approach of [Wu and Sarma 04].  

 

Secondly, design changes and the fundamental nature of CAD or geometric modeling 

kernels require application view update to be driven from boundary representation 

changes in the product model during shape modification itself. This cannot be simply 

dealt with by developing interactive modeling commands off a library. Without 

identifying the deltas of design changes involving face shape entities, it is impossible 

to capture evolving faceted data due to shape modification and support compression 

to achieve design change updates to application views. The deltas would also have 

been unavailable for updating product data representations. This has been addressed 

through improvements to the augmented Product Data representation schema 

(originally Geometric Data XML schema) for design change. 

 

In particular, distributed collaboration design is featured by collaborative decision-

making based on problem solving tools at the application views. With product-process 

interactions involving design changes, the management of meaningful relationships 

between application views of the product model is a useful approach. However, 



146 

effective design synchronization based on the product model’s boundary 

representation is vital. The next chapter will illustrate design synchronization 

mechanisms working on a general workpiece object as well as one related to fixture 

design. Of special interest is the relationship of these design synchronization 

mechanisms in design change handling and supporting the feasibility of application 

relations management in integrated product-process interactions. 

 

With an integrated approach, the eventual interest is that of investigating into large 

scale distributed collaborative design problems. Notably, the entire delta of a design 

change is used in constructing a new B-rep to complete a design change internally.  

This can be leveraged to carry out design streaming across product modeler servers to 

consistently update all product models even though they are physically distributed and 

different. This is concluded in the next chapter. In this manner, multiple coordination 

protocols or strategies can be introduced to the computing environment for conflict 

resolution and what-ifs from a multiple design objective viewpoint for large scale 

distributed collaborative design.   

 

 



147 

Chapter 6 

Design Synchronization for Collaborative Decision Making 

 
 
 
 

This chapter aims to integrate the developments in the thesis to demonstrate and 

emphasize design synchronization for early collaborative decision-making in product-

process interactions. In terms of design change detection and application view update, 

it follows the previous chapter with a more detailed and general illustrations of 

managing product data integrity and consistency. It also provides more effective 

results about model compression due to design change. A fixture re-design case study 

is used to focus on early design synchronization of product-process interactions due to 

design change detection and update. However, for effective design synchronization, a 

critique and discussion on the current ARM functionality is necessary for 

collaborative decision-making to be more effective.  The key idea is that application 

views do not have to have complete problem solving nor need to perform unnecessary 

problem solving given early design change detection and update. This discussion 

ultimately serves to highlight the importance of appropriate product modeller-driven 

design synchronization mechanisms to carry out early or timely collaborative 

decision-making.  

 

6.1 Introduction 

Distributed application views are necessary in today’s collaboration viewpoint of 

product-process interactions in fragmented value chains. They facilitate possibly 



148 

proprietary applications and problem solving methods belonging to dispersed users or 

companies. These users would need to share and work on actual product models in a 

synchronized manner, and to ensure that the product designs that they deal with are 

co-ordinated in a timely consistent manner to cope with design changes.  For this 

purpose, early design change detection and update is crucial to avoid costly re-import 

of product models, loss of updated face tags, and unnecessary efforts in problem 

solving that could exacerbate inconsistencies and increase product development and 

manufacturing costs.  

 

6.2 Design Change Detection and Update 

The delta of a design change can be described as follows: 

5. New faces generated:- new tags, new surfaces & facet data,  

6. Faces modified/replaced:- new tags, modified surfaces and resulting facet 

data, 

7. Faces unmodified and mapped:- new tags, same surfaces and facet data, and 

8. Faces removed:- deleted surfaces with associated facet data  

It is pertinent to subsequently understand this in greater details with regards to the 

problem of persistency and consistency in boundary representations. Persistency has 

been an issue in making sure that shape entities can always be referred to without 

having to rely on static file formats. These reference tags are emitted whenever a 

boundary representation is created when the file format is read into a CAD system or 

geometric modelling kernel. The key issue is that as a boundary representation is 

evaluated during a design change, these reference tags are mapped and updated as a 

form of internal housekeeping. Consistency is the issue of making sure that such 

reference tags as they are used must be referring to the same shape entities across all 



149 

applications. For a single product modelling server or product model, as long as there 

is design change detection and update, all applications would be able to use reference 

tags consistently during runtime. 

 

Design change detection is illustrated here in a more general way compared to the 

Chapter 5 (Figures 6.1-6.4). The illustrations demonstrate design change detection in 

terms of the B-rep processing in three phases: before, during and after a design 

change. A different design change or shape modification is used.  

 

Figure 6.1 shows an arm case workpiece of average shape complexity and topology. 

A fillet modelling operation as a design change is to be applied to the edge selected 

and highlighted. Noticeable is the shape topology around the selected edge to its left 

involving multiple affected shape entities. As such, the inside cylindrical face  is 

actually composed of two cylindrical surfaces even though a designer or engineer 

would have logically perceived or construed as one smooth surface. 

Figure 6.1: An Arm Case Workpiece 



150 

Figure 6.2 shows the workpiece represented as an old B-rep model before shape 

modification. The key affected and unaffected face shapes due to the shape 

modification are described. Of interest now is that one cylindrical surface would be 

unaffected by design change.  All of these would be indicated by the design change 

detection during shape modification (Figure 6.3). This is possible as the affected 

Figure 6.3: Modified/Replaced and New Faces Detected in Design Change 

Unaffected faces which 
will be mapped into 
new B-rep model 

Affected faces which will 
be modified and replaced 
in new B-rep model 

Edge selected for fillet 
shape modification 

Figure 6.2: Highlighted Affected Faces in old B-rep Model before Design Change 



151 

shapes can be indicated within the boundary representation for display. The 

mentioned cylindrical surface is not shown here as it is not affected at all by the fillet 

modelling operation. Figure 6.3 would also indicate that only the faceted models of 

these face shape entities need to be effectively generated for compression and update 

to application views.  

 

Figure 6.4 shows the design change completed with all shape entities, including the 

unaffected cylindrical surface, reconstituted and updated.  

 

6.3 Design Change Synchronization Case Study with Fixture Design  

A more detailed illustration of design change involving a workpiece and fixture re-

design synchronization is provided to highlight the need for early collaborative 

decision-making. This comprises the capture of the design change’s delta information 

Affected faces which have 
been modified and replaced 
in new B-rep model 

Newly generated face added 
in new B-rep model due to 
design change

Mapped faces in new 
B-rep model 

Figure 6.4: Modified/Replaced, New and Mapped Faces in new B-rep Model after Design 



152 

and its roles in compression and augmented product data representation in application 

view updates. Figure 6.5 shows the workpiece.  

Figure 6.6 shows the details of full model compression applied to the product model 

to expedite the application view update. In this case study, the interest is on design 

synchronization involving design change and its detection and update. Figure 6.7 first 

illustrates an initial fixture design configuration in process whilst Figure 6.8 shows an 

early design change applied to the workpiece. Early design change detection has to 

take place followed by a timely update to the fixture design application view (Figures 

6.9-6.10). 

 

Figure 6.9 indicates how all shape entities have been processed during design change 

and boundary representation re-evaluation. Of interest are the face shape entities that 

have been added, removed and especially, modified/replaced. These face shape 

entities have their tags mapped and updated (bold). Unmodified face shape entities’ 

tags are also mapped and updated (bold). For instance, in “fa:22->fa:14”, the top 

surface adjacent to the cylindrical boss has been modified or trimmed by the design 

change i.e. a step operation. The face tag ‘22’ must be updated as ‘14’ in the 

Figure 6.5: Workpiece before Design Change in Product Design Application View 



153 

augmented product representation as well as its faceted model deleted in the Java3D 

scene graph  of all application views. The new faceted model of face tag ‘14’ would 

also be generated and compressed for all application views (Figure 6.10).  

 

Of specific interest is that old face tag ‘8’ has been modified and replaced by face tag 

‘16’, together with new face tag ‘10’ added. This information generated directly from 

Full model compression started! 
MeshSize0 
XML file name compression.xml 
Face ID: 0 
mesh created V=34 T=32 
Euler: 18.0 
the mesh size is 1584bytes 
Number of Holes: 1 
create compressed mesh vertexcount=35 trianglecount= 66 
compress: use Predictor: dcd.jedgebreaker.ParallelogramPredictor@9db0ad 
_quantdelta=false 
the compressed model size is 996bytes 
new (empty) mesh created V=35 T=66 
decompress: use Predictor: dcd.jedgebreaker.ParallelogramPredictor@ba679e 
decompress connected region, seed=2 
 Write to file 
Face ID: 1 
mesh created V=26 T=24 
Euler: 14.0 
the mesh size is 1200bytes 
Number of Holes: 1 
create compressed mesh vertexcount=27 trianglecount= 50 
compress: use Predictor: dcd.jedgebreaker.ParallelogramPredictor@1e8b671 
_quantdelta=false 
the compressed model size is 772bytes 
new (empty) mesh created V=27 T=50 
decompress: use Predictor: dcd.jedgebreaker.ParallelogramPredictor@121dcac 
decompress connected region, seed=2 
 Write to file 
Face ID: 2 
mesh created V=26 T=24 
Euler: 14.0 
the mesh size is 1200bytes 
Number of Holes: 1 
create compressed mesh vertexcount=27 trianglecount= 50 
compress: use Predictor: dcd.jedgebreaker.ParallelogramPredictor@1ed620 
_quantdelta=false 
the compressed model size is 772bytes 
new (empty) mesh created V=27 T=50 
decompress: use Predictor: dcd.jedgebreaker.ParallelogramPredictor@7be687 
decompress connected region, seed=2 
 Write to file 

Figure 6.6: Typical Output of Model Compression of Workpiece



154 

design change detection is clear and explicit compared to presuming or assuming that 

Figure 6.7: An Initial Fixture Configuration in Application View before Design Change 

Figure 6.8: Workpiece after Design Change in the Product Design Application View 

Figure 6.9: Captured Face Shape Entities in Design Change Detection  

Added Shapes:  
ve:38  ve:39  ve:52  ve:53  ve:63  ve:64  ed:57  ed:73  ed:74  ed:87  
ed:88  ed:89  ed:97  fa:10  fa:15  
Removed Shapes:   
ve:32  ve:33  ve:54  ve:55  ed:39  ed:74  ed:80  ed:81  fa:23  
Replaced Shapes:   
ed:38->ed:56  ed:40 -->ed:54  ed:73-->ed:72  ed:76-->ed:86  fa:8-
->fa:16  fa:21-->fa:11  fa:22-->fa:14  fa:29-->fa:39 



155 

old face tag ‘8’ has been modified and replaced by face tags ‘10’, ‘16’ or even ‘15’.  It 

is noted that the compression for faces ‘10’, ‘15’ and ‘16’ result in a slightly larger 

data size, compared to the other larger faces such as ‘14’, ‘39’ and ‘11’. It is known 

that model compression works more efficiently for shapes of greater complexity. 

Nonetheless, it should be noted that with design change detection, only affected face 

shape entities need to be involved in application view updates. In this way, the 

updates are considered to be design change-driven.  

 

With the fixture design application view updated, fixture re-design can proceed with 

the problem solving approach needed, e.g. interactive editing, using rules; or applying 

a flexible fixture re-design methodology or using automated techniques such as 

Affected Face ID: 10 
the mesh size is 144bytes 
the compressed model size is 156bytes 

Affected Face ID: 11 
the mesh size is 3264bytes 
the compressed model size is 1976bytes 

Affected Face ID: 14 
the mesh size is 984bytes 
the compressed model size is 632bytes 

Affected Face ID: 15 
the mesh size is 144bytes 
the compressed model size is 156bytes 

Affected Face ID: 16 
the mesh size is 144bytes 
the compressed model size is 156bytes 

Affected Face ID: 39 
the mesh size is 312bytes 
the compressed model size is 240bytes 

Figure 6.10: Captured Face Shape Entities for Design Change Update through Compression 



156 

Genetic Algorithms [Mervyn 04]. Figures 6.11-6.12 show the fixture application view 

before and after a design change update. In this context, the early selection of a 

locator element has to be reconsidered given new face tag ‘10’. Figure 6.12 shows the 

adjustment needed or determined by the appropriate reasoning in the fixture design 

application view.  

Of interest is that this case study illustrates an early but incomplete fixture-in-process 

given that there is no downward clamping force yet applied from the top to the base of 

the fixture. If a machining operation of a tool cutting across the top is to be 

considered, a top clamp would be prudent and necessary. It cannot be safely assumed 

that the cutting tool can provide the downward clamping force as it is moving and will 

Design Change 
Update from Fixture 
Designer Viewpoint 

Figure 6.11: Fixture Design with Design Change Update on Application View 

Figure 6.12: Fixture Re-Design Completed on Application View



157 

likely cause vibration. A fixture analysis or simulation might have shown that the 

initial fixture selection is valid but this only means that design change detection and 

update to the simulation application view is necessary to either terminate or ignore the 

simulation session in a fuller collaborative product design and development 

environment. Essentially, coordination and management protocols in the design 

concurrency context would be needed. At any rate, early design change detection and 

timely update to application views is an important capability to provide opportunities 

to other application views to make their decisions as early as possible.   

At this point, it is important to note that face tags are used in a fixture design XML 

representation to associate with fixture elements, e.g. in Figure 6.13. This association 

is meaningful as it captures fixture relationships with the workpiece as can be seen in 

the <SIDECLAMP> </SIDECLAMP> tags encapsulating the <FACE></FACE> 

tags. However, when these face tags are not properly synchronized from the product 

Figure 6.13: Fixture Design Representation with Face Tag Association 



158 

model to the fixture design application view after a design change, then the resulting 

fixture representation due to fixture re-design would not be correct. The key is to note 

that re-importing the workpiece is not a solution as that would emit a new boundary 

representation with new tags. This is further discussed in the context of application 

relations management approach in the next section. Figure 6.14 shows the runtime 

command output of design change detection. 

6.4 Design Synchronization with Application Relations Management 

In the present ARM approach to synchronizing applications for collaborative 

decision-making in IPPD, the product model is normally set up by a designer to 



159 

support application relations by initializing or depositing the model into an ARM 

object. A deposit action is said depend on the Geometric Data XML file or product 

data representation to retrieve the relevant information such as tags to update the 

ARM object for managing relationships.  

 

These relations associate the product model hosted at the geometric modelling server 

with applications and their functional relations at the level of face shape entities. Each 

face tag in the ARM object contains a status option defined as “changed” or 

“unchanged” to highlight design change. When this product model is shared with a 

process application view, say a fixture design, a face in the product model is then set 

up to have the application relation function of say, “Locating Face” associated with 

the same face tag. Faces are referenced by face tags under a body tag, all available 

from the emitted boundary representation of the product model during runtime at the 

product modeller server and updated into Geometric Data XML file or product data 

representation.  

 

When design change is carried out with shape modification in the product model, 

synchronizing applications with application relations management is carried out. The 

designer activates the ARM object which notifies the affected applications based on 

the relations set up earlier with those faces which are now changed. Each affected 

application view then retrieves the Geometric Data XML or product data 

representation of the modified product model. At the same time, the notification is 

said to determine the faces affected by the shape modification, but this is not 

described although the same product model is being shared from the product modeller 

server.  



160 

 

The present synchronization approach for application view update requires the entire 

geometric data XML or product data representation, including the faceted model to be 

used after design change has occurred. On the part of faceted model data, this would 

be ineffective and less than timely to carry out application view without employing 

compression together with the augmented product data representation, and by 

extension design change-based on updates.  

 

It is now known that with design change, shape entities do have their tags updated or 

re-defined as the boundary representation is re-emitted and evaluated during runtime.  

Shape entities during design change are actually in one of the following states: new, 

replaced, deleted or mapped, all of which need to be taken into account in application 

view update as mentioned above.  

 

So on the part of design change handling in ARM, it is not clear how the update of the 

entire geometric data XML can be used to ensure that design change can be detected 

based on face tags before and after the design change. It is noted in the case study 

demonstrating application relationship management in dealing with design change in 

fixture design that the workpiece was reported to be reloaded into the product 

modeller server.   

 

Also, the ‘changed’ and ‘unchanged’ options for each face in the ARM object seem to 

be incomplete as ‘changed’ could mean the states of new, modified/replaced and 

mapped, technically speaking. Also, after re-evaluation, such faces in the ARM object 

would become invalid as their tag references do not correspond with those updated in 



161 

the boundary representation. As such, these tag references cannot be relied upon for 

tracking.  

 

So it is now known that even with a runtime B-rep model, the problem of persistency 

occurs with design change as all tag references are revised when the B-rep is 

evaluated. This causes inconsistency throughout all product-process modelling and 

interactions. It is impossible to detect design changes correctly without an appropriate 

B-rep processing technique to discover these up-to-date tags that reference all shape 

entities. Likewise, it is also impossible to carry out design synchronization with 

application relations for collaborative decision-making as these relations are 

associated with faces, just as in the fixture design representation. 

 

The current ARM notification mechanism is said to be able to determine faces 

affected by design change but it is not clear how this determination is carried out to 

discover faces modified or deleted as mentioned in the case study. Anyway, as 

indicated above, inconsistency would have set in from the changes in the boundary 

representation. 

 

A design change detection and update mechanism would have automatically updated 

the Geometric Data XML or augmented product data representation beforehand to 

ensure that all application views have consistent references. Otherwise, relying on a 

product modelling server to just update the entire Geometric Data XML file would be 

cumbersome during design changes. It is also not sufficient as all reference tags are 

updated during boundary representation evaluation and it is important to directly 

know their correspondence with previous tags. With design change detection and 



162 

update, all application relations can be generally and automatically updated at least 

with the detailed states of modified/replaced, and removed, if not the states of new 

and unmodified.  This would not require an application view, such as fixture design, 

to be responsible for determining such changes in state. 

 

6.5 Summary 

In summary, design synchronization cannot be completely fulfilled in a distributed 

collaborative design environment without appropriate design change detection within 

the boundary representation of the product model and the associated updates to 

application views. In this sense, design synchronization must be ‘driven’ from the 

product modeller itself so that for instance, application relations management can be 

carried out.  

 

Dispersed companies often collaborate in an enterprise and have their own product 

modeller servers producing product master models. These companies acting as 

customers often provide these product master models to other suppliers of services 

down the value chain such as conventional process planning which determine 

intermediate product models relative to downstream fixture design, so on and so forth.  

 

These suppliers may be given access to their customers’ product modeller servers. 

More likely, they may have a copy of the product master model hosted on their 

servers to create intermediate models for fixture design suppliers.  

 

This kind of environment can be described as large scale distributed collaborative 

design in the value chain. In the context of suppliers having to use their product 



163 

modeller servers, another form of design synchronization can take place across the 

product modeller servers from each customer to his immediate suppliers to update the 

suppliers’ product master models to keep them consistent with the customers, as if 

they are all one.  

 

The assumption is that both customer and suppliers have agreed to start with the same 

base shape for product design. Essentially, this is called design streaming and it is 

possible since the B-rep design change detection technique makes aware the shape 

entities that are new, modified and replaced, removed, and mapped, that can also be 

topologically reconstructed on a supplier‘s product modeller server. 

 



164 

Chapter 7 
 
 

Conclusions and Recommendations 
 

 
 

The research conducted in this thesis has been focused on distributed collaborative 

design characterised by design change demanding design synchronization across 

distributed environments.  

 

Facilitating distributed collaborative design requires the following issues to be 

addressed: 

1. Underlying middleware framework and application architecture 

2. Appropriate distribution of functionality and data  

3. Design synchronization with design change detection and update  

 

The middleware framework and application architecture is the foundation for the 

development of a distributed collaborative design computing environment. Within this 

environment, there has to be a distribution of functionality and data appropriate to the 

product design and development domain. Such a distribution guides the 

implementation of application architecture elements as application views, product 

modeller servers, and product models and data representation, and their respective 

functional and data issues and requirements. For instance, application views are not 

just necessary interactive visualizations of product models and process applications. 

They support the necessary functionality of the application, such as in fixture design 

by rules. As another example, product modelling and data representations are guided 

by the need to resolve compatibility problems to have seamless and flexible integration 



165 

to be useful middleware. Also, product data representations are understood to be 

without an accompanying boundary representation intentionally. This is to permit a 

process application to sufficiently act on the product model without needing a runtime 

boundary representation that can only be generated by an accompanying standalone 

CAD or geometric kernel system. As mentioned before, this arrangement would cause 

a proliferation of product model versions and static CAD files which would complicate 

the consistency issue of managing distributed collaborative design.  

 

In distributed environments where product-process interactions have to take place and 

design changes are encountered, synchronization is needed for timely, accurate and 

consistent updates. Ultimately, application view updates must be facilitated for early 

collaborative decision-making to be feasible. The most challenging aspect of design 

change involves shape modifications which affect the integrity and consistency of 

product model information that application views rely on to carry out collaborative 

decision-making. Timely and accurate design change detection and update is vital to 

ensuring that application views have the opportunity to respond and collaborate 

through their various problem-solving tools. 

 

The contributions of this thesis are as follows: 

• Conceptualisation and development of the middleware framework and 

application architecture that is based on an appropriate distribution of 

functionality and data to design a distributive design environment. This is 

exemplified by enabling a remote product modeller central server(s) and an 

interactive fixture design application view. Issues addressed include resolving 

compatibility and integration problems in heterogeneous environments with the 



166 

role of reusable object-oriented Java classes as middleware for communication 

and access into a product model, and effective product data representation for 

an application like fixture design to be carried out.  

• Design synchronization in distributed environments for timely, accurate and 

consistent application view update with integrated model compression of 

faceted models and augmented Product Data representation. This includes face-

based compression, paving the way for design change detection and update. 

 

In particular, design changes involve newly generated, modified/replaced and 

removed surfaces. It is thus not necessary to engage the entire product model 

geometry. These faceted surface models with sufficient complexity due to 

design change would be usefully compressed for application view updates. 

Removed surfaces must have their faceted models in the application view 

deleted. 

 

• Design synchronization for application views to have consistent references to 

the product model during design change. Design change detection captures 

shape entity changes in the boundary representation of the product model. 

Design change delta from runtime boundary representation evaluation includes 

shape entity addition, modification/replacement, removal and mapping of all 

reference tags. The appropriate face shape entity changes must be updated into 

the application view’s product data structure, i.e. Java3D scene graph.  

Accordingly, new, added, modified/replaced face shape entities and their 

reference tags mapping must be updated inside the scene graph that contains 

previous unmapped tags. In this manner, consistent and associated references 



167 

are available to application views during product-process interactions and 

collaborative decision-making. Hence the general approach for application 

relations and their management would require proper design change updates for 

effective application representations, information models and problem solving.  

 

The following are some recommendations for future research and improvements: 

• Integrate application relations management with design change detection and 

update at the product modeller server for design synchronization and 

consistency.  

• In the application architecture approach, application views can be extended to 

product simulation which is integral to product development and 

manufacturing. Such simulations usually require a finite element model to be 

developed from the product model. Since distributed collaborative design is 

characterised by design changes, simulations can be rapidly carried out if 

change detection and update can be integrated from product design to planning, 

if not directly to simulation via the finite element model. Product design 

affecting workpiece and tooling design as in fixture element selection and 

hence fixture analysis is a case to demonstrate this. Therefore research into 

design change integrated with and re-defining the simulation model should be 

explored. 

• For large-scale distributed collaborative design in value chains, product 

modeller servers are bound to prevail between customers and suppliers or 

companies collaborating together, as it is impossible to have one single master 

server. Research into the real time (incremental) streaming of design changes 

across these (heterogeneous) product modeller servers should be explored. 



168 

REFERENCES 

BIDARRA, R., and BRONSVOORT, W. F., Semantic Feature Modeling, 2000, 

Computer-Aided Design 32 (2000) 201–225. 

 

BLATECKY, A; WEST, A; SPADA, M., 2002, Middleware – The New Frontier. 

EDUCAUSE Review, Jul-Aug, 25-35. 

 

BRONSVOORT, W. F., and NOORT, A., Multiple View Feature Modeling for 

Integral Modeling, 2004, Computer-Aided Design 36 (2004) 929-946. 

 

BIDARRA, R.; VAN DEN BERG, E. and BRONSVOORT, W. F., 2001, 

Collaborative Feature Modeling, 2001. Proceedings of DETC’01 ASME Design 

Engineering Technical Conferences, September 9-12, 2001, Pittsburgh, Pennsylvania. 

 

BIDARRA, R; KRANENDONK, N.; NOORT, A. and BRONSVOORT, W.F., 2002, 

A collaborative framework for integrated part and assembly modeling. Journal of 

Computing and Information Science in Engineering 2(4): 256-264. 

 

BOK, S.H., SENTHIL, K.A., WONG, Y.S., NEE; A.Y.C., 2004, Model Compression 

for design synchronization within distributed environments, Proceedings of the 

International Conference of CAD and Applications, May 24–28, Pattaya Beach, 

Thailand, 2004(a), pp. 127–136 (also published in the special issue of CAD, 2005, 

CAD’04, International CAD Conference and Exhibition, May 24-28, 2004.) 

 



169 

BRONSVOORT, W. F. and JANSEN, F. W., Multi-view feature modeling for design 

and assembly. In Advances in Feature Based Manufacturing, Manufacturing Research 

and Technology, ed. J. J. Shah, M. Mantylä and D. S. Nau. Elsevier Science, 1994, pp. 

315–330. 

 

CHAN, S., WONG, M. and NG, V., 1999, Collaborative solid modeling on the WWW. 

Proceedings of the 1999 ACM Symposium on Applied Computing, San Antonio, CA, 

pp. 598–602. 

 

CIGNONI, P.; MONTANI, C.; and SCOPIGNO, R., 1998, A Comparison of Mesh 

Simplification Algorithms, Computers & Graphics, vol. 22, no. 1, 1998, pp. 37-54. 

 

DE KRAKER, K. J., DOHMEN, M. and BRONSVOORT, W. F., 1995, Multiple-way 

feature conversion to support concurrent engineering. In 3rd Symp. On Solid Modeling 

and Applications, ed. C. Hoffman and J. Rossignac. Salt Lake City, UT, 1995, pp. 

105–114. 

 

DE KRAKER, K. J., DOHMEN, M. and BRONSVOORT, W. F., Feature validation 

and conversion. In CAD Systems Development, ed. D. Roller and P. Brunet. Springer-

Verlag, Heidelberg, 1997. 

 

DE KRAKER, K. J., DOHMEN, M. and BRONSVOORT, W. F., Maintaining 

multiple views in feature modeling. In 4th Symp. on Solid Modeling and Applications. 

ACM Press, 1997, pp. 123–130. 

 



170 

DEERING, M., 1995, Geometry compression, Proceedings of SIGGRAPH ’95, pp 13–

22. 

 

EDGEBREAKER, J., Triangle Mesh Compression Software in Java. http:// 

www.igd.fhg.de/coors/JEdgebreaker/jedgebreaker.html 

 

EL-SANA, J.; and VARSHNEY, A., 1997, “Controlled Simplification of Genus for 

Polygonal Models,” Proc. IEEE Visualization 97, IEEE CS Press, Los Alamitos, 

Calif., 1997, pp. 403-412. 

 

SCHROEDER, W., 1997, “A Topology-Modifying Progressive Decimation 

Algorithm,” Proc. IEEE Visualization 97, IEEE CS Press, Los Alamitos, Calif., 1997, 

pp. 205-212. 

 

HAN, J.H., and REQUICHA, A.A.G., 1998, Modeler-independent feature recognition 

in a distributed environment, Computer-Aided Design, 30(6), pp 453–63. 

 

HOFFMAN, C.M.; and JOAN-ARINYO, R., 1998, CAD and the product master 

model, Computer-Aided Design, Vol. 30, pp. 905-919. 

 

HOFFMAN, C.M.; and JOAN-ARINYO, R., 2000, Distributed maintenance of 

multiple product views, Computer-Aided Design, Vol. 32, pp. 421-431. 

 

HOPPE, H., 1996, Progressive Meshes, Computer Graphics (Proc. SIGGRAH 96), vol. 

30, ACM Press, New York, 1996, pp. 99-108. 



171 

 

HUANG, G.Q., MAK, K.L., 1999, Web-based collaborative conceptual design, 

Journal of Engineering Design, 10(2), pp 183-194. 

 

HUANG, G.Q., MAK, K.L., 2003, Internet applications in product design and 

manufacturing, Springer-Verlag. 

 

LI, W.D., QIU, Z.M., 2006, State of the art technologies and methodologies for 

collaborative product development systems, International Journal of Production 

Research, vol. 44, no. 13, 2525–2559. 

 

LINDSTROM, P. et al., 1996, Real-Time, Continuous Level of Detail Rendering of 

Height Fields, Computer Graphics (Proc. SIGGRAPH 96), vol. 30, ACM Press, New 

York, 1996, pp. 109-118. 

 

MAROPOULOS, P. G., 1999, Aggregate product and process modeling for the 

welding of complex fabrications. Annals of the CIRP, 48(1), 401–404. 

 

MAROPOULOS, P. G., 2003, Digital enterprise technology: defining perspectives and 

research priorities. Int. J. Computer Integrated Manufacturing, 16(7-8), 467–478. 

 

MARTINO, T., FALCIDIENO, B.;, and HABINGER, S., 1998, Design and 

Engineering Process Integration Through a Multiple View Intermediate Modeler in a 

Distributed Object-Oriented System Environment. Computer-Aided Design; 30(6): 

437–452. 



172 

 

MERVYN, F., 2001, Development of a Virtual Assembly Evaluation Environment, 

NUS Mechanical and Production Engineering. BE Thesis. 

 

MERVYN, F., SENTHIL, K.A., BOK; S.H., and NEE; A.Y.C., 2003, Development of 

an Internet-enabled interactive fixture design system, Computer-Aided Design 35(10), 

pp 945-957. 

 

MERVYN, F., SENTHIL, K.A., BOK; S.H., and NEE; A.Y.C., 2004, Developing 

distributed applications for integrated product and process design, Computer-Aided 

Design 36:(8), pp 679-689. 

 

MERVYN, F., SENTHIL, K.A., BOK; S.H., and NEE; A.Y.C., 2004, Design change 

synchronization in a distributed environment for integrated product and process design, 

CAD’04, International CAD Conference and Exhibition, May 24-28, 2004. 

 

MERVYN, F., PhD Thesis, “Integrated Product and Process Design Across An 

Extended Enterprise: An Implementation in Fixture Design” Mechanical Engineering 

Department, National University of Singapore, 2004. 

 

NAM, T.J. and WRIGHT, D.K., 1998, CollIDE: A shared 3D workspace for CAD. 

Proceedings of the 1998 Conference on Network Entities, Leeds.  

http://interaction.brunel.ac.uk/~dtpgtjn/neties98/nam.pdf 

 



173 

NIST Planning Report, 1999, Interoperability Cost Analysis of the U.S. Automotive 

Supply Chain, Prepared by Research Technology Institute, Gaithersburg, MD. 

 

PAHNG, G.D.F., BAE, S., and WALLACE, D.,  1998, A web-based collaborative 

design modeling environment, Proceedings of the IEEE Workshops on Enabling 

Technologies Infrastructure for Collaborative Enterprises (WET ICE’98), pp 161-167. 

 

PTC Product Lifecycle Management, http://www.ptc.com/products/plm/index.htm 

 

RATNAPU, K.K., 2001, Web Based CAD System, NUS Mechanical and Production 

Engineering. MEng Thesis. 

 

REGLI, W. and PRATT, M., What are feature interactions? In: McCarthy JM, editor. 

CD-ROM Proceedings of the 1996 ASME Computers in Engineering Conference, 19–

22 August, Irvine, CA, USA, New York: ASME, 1996. 

 

ROSSIGNAC, J. 1997, The 3D revolution: CAD access for all, Int Conf Shape Model 

Appl, Aizu-Wakamatsu, Japan, Silver Spring, MD: IEEE Computer Society Press; pp. 

64–70. 

 

ROSSIGNAC, J., 1999, Edgebreaker: connectivity compression for triangle meshes. 

IEEE Trans Vis Comput Graph, 5(1):47–61. 

 

Roy, U., and Kodkani, S.S., Product modeling within the framework of the World 

Wide Web, IIE Transactions 1999; 31(7), pp 667–677. 



174 

 

SCHANTZ, R.E. and SCHMIDT, D.C., 2001, Middleware for Distributed Systems: 

Evolving the Common Structure for Network-centric Applications, Encyclopedia of 

Software Engineering, edited by John Marciniak and George Telecki, Wiley and Sons. 

 

SCHLENOFF, C., GNUNINGER, M., TISSOT, F., VALOIS, J., LUBELL, J., and 

LEE, J., 2000, The process specification language (PSL): Overview and version 1 

specification. NISTIR 6459, NIST. 

 

SENTHIL, K.A.; BOK, S.H.; TAN, B.C.; KUMAR, R.K.; NEE, A.Y.C., 2000, The 

development of an internet enabled interactive automated fixture design system. 

Proceedings of the 7th International Conference on Mechatronics, edited by Charles 

Ume, pp. 1-7, 6-8 Sep 2000, Atlanta, U.S.A.   

 

SHIKHARE, D., 2001, State of the Art in Geometry Compression, National Centre for 

Software Technology, India (dinesh@ncst.ernet.in) 

 

SHYAMSUNDAR, N., AND GADH, R., 2001, Internet-based collaborative product 

design with assembly features and virtual design spaces. Computer-Aided Design, 

33:637–51. 

 

SHYAMSUNDAR, N., AND GADH, R., 2002, Collaborative virtual prototyping of 

product assemblies over the Internet. Computer-Aided Design, 34:755–68. 

 

SOHLENIUS, G., 1992, Concurrent engineering. Annals of CIRP, 41(2), 645–655. 



175 

 

SPATIAL, 2002, ACIS 3D Modeling Kernel, Version 7.0. Spatial Technology Inc., 

Westminster, CO. http://www.spatial.com 

 

STORK, A. and JASNOCH, U., 1997, A collaborative engineering environment. 

Proceedings of TeamCAD '97 Workshop on Collaborative Design, Atlanta, GA, pp. 

25–33. 

 

Sun Microsystems, 1999, Java3D API specification, 

http://java.sun.com/products/javamedia/3D. 

 

UGS PLM Solutions, 2004, http://www.eds.com/products/plm/ 

 

WANG, L.H.; SHEN, W.M.; XIE, H.; NEELAMKAVIL, J.; and PARDASANI, A., 

2002, Collaborative conceptual design – state of the art and future trends, Computer-

Aided Design, Vol. 34, pp 981-966. 

 

WU DI, SARMA R., 2004, The incremental editing of faceted models in an integrated 

design environment, Computer-Aided Design, Vol. 36, pp 821 - 833. 

 

XIE, S.Q., TU,  P.L., AITCHISON, D., DUNLOP, R., and ZHOU, Z.D., A WWW-

based integrated product development platform for sheet metal parts intelligent 

concurrent design and manufacturing. Int J Prod Res 2001; 39:3829–52. 

 



176 

PUBLICATIONS ARISING FROM THIS THESIS 

 

Journals 
 
Bok S H, Senthil kumar A, Wong Y S, Nee A.Y.C, Model compression for design 
synchronization within distributed environments, Computer-Aided Design and 
Applications. Vol. 1, no. 1-4, pp. 67-73. 2004. 
 
Mervyn F, Senthil kumar A, Nee, A Y C, Design change synchronization in a 
distributed environment for integrated product and process design, Computer-Aided 
Design and Applications. Vol. 1, no. 1-4, pp. 43-52. 2004. 
 
 
Mervyn F, Senthil kumar A, Bok S H, Nee A Y C, Developing distributed applications 
for integrated product and process design, Computer Aided Design, 2004:36(8), 679-
689. 
 
Mervyn F, Senthil kumar A, Bok S H, Nee A Y C, Development of an Internet-enabled 
interactive fixture design system, Computer Aided Design, 2003:35(10), 945-957. 
 
 
Conferences 
 
 
Mervyn F, Senthil kumar A, Bok S H and Nee A Y C, Development of a Reference 
Enterprise Model for Fixture Design Information Support in Integrated Manufacturing, 
2003 ASME International Mechanical Engineering Congress and Exposition, MED 14, 
pp. 259-266, Nov 15-21, Washington D C, USA 
 
Mervyn F, Senthil kumar A, Bok S H and Nee A Y C, Internet-enabled smart 
interactive fixture design, 2002 Japan-USA Symposium on Flexible Automation, July 
14-19, Hiroshima, Japan 
 
Senthil kumar, A, Tan B C, Bok S H, Kiran R K and Nee A Y C, The development of 
an Internet-enabled interactive fixture design system, 7th Mechatronics Forum and 
International Conference and Mechatronics Education Workshop, CD-ROM ISBN 0-
08-043703 6, Sep 2000, Georgia Institute of Technology. USA 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




