3 research outputs found

    An Intelligent Monitoring Interface for a Coal-Fired Power Plant Boiler Trips

    Get PDF
    A power plant monitoring system embedded with artificial intelligence can enhance its effectiveness by reducing the time spent in trip analysis and follow up procedures. Experimental results showed that Multilayered perceptron neural network trained with Levenberg-Marquardt (LM) algorithm achieved the least mean squared error of 0.0223 with the misclassification rate of 7.435% for the 10 simulated trip prediction. The proposed method can identify abnormality of operational parameters at the confident level of ±6.3%

    Modeling and fault diagnosis of broken rotor bar faults in induction motors

    Get PDF
    Due to vast industrial applications, induction motors are often referred to as the “workhorse” of the industry. To detect incipient faults and improve reliability, condition monitoring and fault diagnosis of induction motors are very important. In this thesis, the focus is to model and detect broken rotor bar (BRB) faults in induction motors through the finite element analysis and machine learning approach. The most successfully deployed method for the BRB fault detection is Motor Current Signature Analysis (MSCA) due to its non-invasive, easy to implement, lower cost, reliable and effective nature. However, MSCA has its own limitations. To overcome such limitations, fault diagnosis using machine learning attracts more research interests lately. Feature selection is an important part of machine learning techniques. The main contributions of the thesis include: 1) model a healthy motor and a motor with different number of BRBs using finite element analysis software ANSYS; 2) analyze BRB faults of induction motors using various spectral analysis algorithms (parametric and non-parametric) by processing stator current signals obtained from the finite element analysis; 3) conduct feature selection and classification of BRB faults using support vector machine (SVM) and artificial neural network (ANN); 4) analyze neighbouring and spaced BRB faults using Burg and Welch PSD analysis

    An autonomous and intelligent system for rotating machinery diagnostics

    Get PDF
    Rotating machinery diagnostics (RMD) is a process of evaluating the condition of their components by acquiring a number of measurements and extracting condition related information using signal processing algorithms. A reliable RMD system is fundamental for condition based maintenance programmes to reduce maintenance cost and risk. It must be able to detect any abnormalities at early stages to allow preventing severe performance degradation, avoid economic losses and/or catastrophic failures. A conventional RMD system consists of sensing elements (transducers) and data acquisition system with a compliant software package. Such system is bulky and costly in practical deployment. The recent advancement in micro-scaled electronics have enabled wide spectrum of system design and capabilities at embedded scale. Micro electromechanical system (MEMS) based sensing technologies offer significant savings in terms of system’s price and size. Microcontroller units with embedded computation and sensing interface have enabled system-on-chip design of RMD system within a single sensing node. This research aims at exploiting this growth of microelectronics science to develop a remote and intelligent system to aid maintenance procedures. System’s operation is independent from central processing platform or operator’s analysis. Features include on-board time domain based statistical parameters calculations, frequency domain analysis techniques and a time controlled monitoring tasks within the limitations of its energy budget. A working prototype is developed to test the concept of the research. Two experimental testbeds are used to validate the performance of developed system: DC motor with rotor unbalance and 1.1kW induction motor with phase imbalance. By establishing a classification model with several training samples, the developed system achieved an accuracy of 93% in detecting quantified seeded faults while consumes minimum power at 16.8mW. The performance of developed system demonstrates its strong potential for full industry deployment and compliance
    corecore