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Abstract 

 

Coal-fired power plant boiler trip happens when the fuel feed to the furnace is 

stopped. This practice is carried out to clear any residue of combustible substances 

from the boiler. It is a safety procedure to prevent explosive occurrences. The 

combustible substances residue consists mainly of slag, ashes and flue gas 

desulphurization gypsum. These chemical deposits have been the major part of many 

literatures in assessing its impact on environment and public health. A power plant 

monitoring system has the potential to (1) improve plant performances, (2) reduce 

down time, and (3) address possible issues before it results in an unplanned downtime 

or costly equipment damage. An existing monitoring system embedded with artificial 

intelligence can enhance the effectiveness of the preventive maintenance further. It 

contributes in reducing the time spent in trip analysis and following up with 

supervisory approval. The intelligent feedback from the interface allow operators to 

use the information as guideline in analyzing the affected operational parameters that 

are causing the trips. The work involved in this research include the development of 

an intelligent interface that optimizes the boiler monitoring system in a coal-fired 

power plant. The tools used in the development include (1) an Artificial Neural 

Network multi-layered model, and (2) and an interface to provide the advisory 

feedback. These tools utilize a simulation prototype and an Integrated Development 

Environment executable file that can run in a portable platform. Experimental results 

shown that Multi-layered perceptron neural network trained with Levenberg-

Marquardt algorithm achieved the least mean squared error. These predictions of 

possible trips were recorded to have occurred at a specific time interval and this 

information is important as a guideline for the effective inspection and maintenance 

work.       
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Chapter 1. Introduction 

1.1 Introduction 

Frequent electrical power outages have tremendously disrupted the 

operational cost and production process of most industries. The accumulative effects 

of unscheduled power outages incur cost in power restoration, interrupted production 

loss, equipment maintenance and protection. These factors of unscheduled power 

outage are mainly due to a sudden shortfall of electrical load failure and frequency 

drop in the electrical power plant. To restore the operation of power plant, a series of 

electrical standard set by Energy Commission [1] has to be carried out. One of the 

standards requires a time lapse after the system inspection before start-up can be safely 

administered. This delay can cause cost setbacks to small businesses, office 

equipment’s failure, and even traffic flow interruption. Hence, it becomes more 

apparent to consider improving the existing equipment monitoring system for a more 

stable contingency plan for power recovery.  

The current monitoring system continuously tracks the plant’s equipment’s 

operating condition. Any identified features that affects the availability, capacity, 

safety and quality of the energy production will be displayed on the plant monitoring 

system. These displayed information helps plant operators to report the data for the 

scheduled maintenance as part of the action items. Generally, most of the tell-tale signs 

of an equipment’s degradation will be overlooked until the maintenance is carried out. 

As a result, additional cost and time are required to carry out the necessary equipment 

overhaul. 

In this research work, a coal-fired boiler is one of the two main components of 

a thermal power plant. A schematic diagram for a coal-fired boiler in a thermal power 

plant is shown in Fig.1.1. A boiler is a vessel used to contain the combustion process 

and facilitate heat transfer from flame and hot gases to water and steam tubes [2]. A 

boiler unit trip has a huge impact on a plant’s continued operation and may lead to 

power production process interruption.  A trip condition happens when the fuel feed to 

the furnace is stopped in order to clear any residues of combustible substances from 

the boiler and to prevent explosive occurrence [3]. Common factors for boiler unit trips 
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are mainly related to the combustion process. Consequently, damages to the boiler 

tube, back end corrosion, loss of flame and interruption of fuel, air supply or ignition 

energy to the burners may occur. Hence, it is important for plant operators to be able 

to identify and narrow down the affecting operational parameters. 

The energy conversion process starts from the fuel handling systems where 

coal supplies are pulverized and then transported to the boiler. A forced-draft (FD) fan 

is then used to supply combustion air to the burners where the air is preheated in an air 

heater to improve the cycle efficiency and to dry the pulverized coal. As the mixture 

of fuel-air flows through the pulverizer into the burners, a primary air fan is used to 

supply heated air to be burned in the furnace portion of the boiler. Heat is recovered 

from the combustion in the boiler to generate steam at the required pressure and 

temperature. Along with the steam, combustion gases, also known as flue gas leave 

the boiler, economizer and finally to the air heater, which will then pass through the 

environmental control equipment to remove the acid gases so that the cleaned flue gas 

can flow to the stack through an induced draft (ID) fan. The carefully controlled 

conditions of the steam generated in the boiler will then flow to the turbine that drives 

the generator for electricity production [4]. In order to provide continuous supplies of 

electricity, the steam is cooled and condensed back into water which is then circulated 

back into the boiler to repeat the whole process. Based on the conversion process  

 

Figure 1.1 Pulverized coal processed as fossil fuel in a thermal power plant 

boiler.  
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described, 32 operational parameters have been identified. They include monitored 

parameters for steam production, pressure and temperature of the air supply, feedwater 

supply, and pulverized coal. Data for these parameters from an actual plant has been 

collected for the purpose of designing a simulation model for boiler trip condition 

monitoring. These parameters were identified as the influencing factor or critical to 

monitor for boiler unit trip prediction. 

1.2 Problem statement 

To address the issues and determining fault in the combustion process, 

scheduled equipment maintenance is carried out. However, it is an ineffective strategy 

for it either results in unnecessary inspections of a healthy equipment or the exercise 

is carried out after equipment has degraded. Therefore, it is crucial for plant operators 

to monitor the boilers to ensure that the plant is able to operate at its best condition to 

avoid any unnecessary interruption of service caused by faulty condition and trips. 

However, to properly define, access and predict a boiler trip is not easy. The 

complexity of the boiler mechanism makes it harder to monitor and identify any 

occurring trip in real time. Furthermore, whenever the trip occurs, plant operators will 

need time to report the incident, get approval from their immediate plant supervisors 

to take action and submit an incident report sheet to the maintenance team to carry out 

physical inspection of the equipment. While these standard procedures were carried 

out, businesses linked to the plant’s power grid are losing required power supply due 

to the power outage. Consequently, this unnecessary delay can cause financial setbacks 

for the businesses.  In existing systems, historical data are used mainly for monitoring, 

control and over-limit alarm; but not for trip prediction or diagnosis [5]. A quick 

decision making and solution is required whenever there is an interruption of power 

service. Hence, an intelligent interface is proposed for a coal fired boiler trip 

monitoring in a power plant to improve the current available boiler trip monitoring 

system and assist plant operator in identifying the trip more effectively.  

1.3 Research questions 

1. How to apply machine learning approach to utilize historical data collected in 

existing power plant monitoring system for an automated boiler fault 

detection? 
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2. How to effectively use the recorded plant data to improve the work flow for 

plant operators to carry out equipment inspection and maintenance work only 

when necessary? 

1.4 Objectives 

The overall aim of this research is to design an advisory interface system for 

an existing coal-fired thermal power plant boiler trip detection system using artificial 

neural network. It can be sub-divided into the following objectives: 

 

1. To implement a boiler trip monitoring model using multi-layered perceptron 

modelling approach. 

2. To design an interface for the monitoring system that provides an advisory 

feedback to the operator for the trip. 

1.5 Research Contribution 

In this research work, a multi-layered perceptron model for a coal-fired boiler 

trip is implemented. The simulation of the model used the data collected from an actual 

power plant. Various simulations have been carried out, and the performance of the 

proposed model is reported in this thesis. From the findings of this research work, a 

comparative study of the model can be derived when it is implemented on an actual 

power plant.   

To date, many literatures have reported the different methods of improving 

faulty conditions identified in a power plant boiler unit. This include knowledge base 

system, numerical simulation model, operation optimization models, and control-

oriented models [6]. However, very few of these literatures have mentioned the root 

cause of the trip. This research can serve as a platform to further investigate the root 

cause including the generated advisory guideline in the proposed interface.  

In any power generation industry, continuous and timely production is 

considered important economically. As this research was carried out using historical 

data from an actual power plant, it may offer a more practical maintenance scheduling 

compared to existing ones in the industry. This depends on the accuracy of the 

prediction and the number of instances where trips have occurred.  

The proposed intelligent mechanism of the system helps to provide guided 

actions and prediction of a possible faulty condition alert of the boiler’s operational 
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parameters. It allows the technical and maintenance team to carry out maintenance and 

physical inspection on the identified parameters. Following this, an advisory guide 

generated based on the incident will be included as part of the maintenance reports for 

a schedule boiler shutdown in order to clear any residual combustible substances from 

the boiler and to prevent any possible explosive occurrence. The known explosive 

conditions include interruption of fuel or air supply or ignition energy to the burners, 

fuel leakage into an idle furnace and the accumulation in the ignition, repeated attempts 

of light up without proper purging and an accumulation of explosive substances due 

to a complete furnace flameout [3]. 

1.6 Organization of this thesis 

This thesis consists of six (6) chapters and they are organized as follows: 

 

 Chapter 2 describes the importance of coal-fired boiler in a thermal power 

plant. Theories related to boiler performance monitoring using artificial neural 

network and earlier research on factors affecting the boiler performance will 

also be elaborated. 

 Chapter 3 describes the unit operational parameters of a coal-fired power plant. 

The architecture and components that construct a coal fired power plant and 

the important parameters investigated and monitored for trips and alerts are 

introduced. 

 Chapter 4 detail out the framework for a multi-layered perceptron network 

based boiler trip prediction scheme using data samples collected from an actual 

power plant. This chapter also report on the simulation and experimental result 

of the boilers’ performance monitoring.  

 Chapter 5 proposes an advisory guide for an intelligent interface that uses the 

prediction output from the proposed MLP network. The interface design and 

corresponding advisory guide generated from the interface are discussed.  

 Chapter 6 concludes the research work with its findings and results, followed 

by suggestions for future work. 
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Chapter 2. Review of Intelligent 
Approach to a Coal-Fired Power Plant 
Boiler Trip Monitoring System 
2.1 Introduction 

In industries, a reliable alarm system is crucial to provide an advance warning 

to plant operators before abnormal reading is measured beyond the normal threshold. 

The existing power trip monitoring systems are limited in diagnosing and processing 

problems reported on screen; often display information that are not the root cause 

problems [2]. Instead, the alarms simply indicate that a problem exists, yet no course 

of action is provided as a guideline for operators to analyse before conducting a 

physical inspection of the equipment. When an upgrade of electrical and mechanical 

systems was carried out, the human factors are neglected. Plant operators need to be 

informed with clear and informative instructions on what actions to take in order to 

recognize signals exhibit by the equipment monitoring system [7]. Therefore, the 

current situation in fault and trip diagnosis of a boiler in a utility plant reports many 

improvements in its approaches to assess the health of the equipment and system 

involved. These include monitoring the operational readings such as temperature, 

pressure, vibration and noise; physical inspection of the boiler unit for leakage, cracks, 

stress or other defects, and most recently, observation of pre-existing condition using 

historical data to predict the trips and unscheduled shut down of the utility unit [8]–

[16]. However, an adequate response time is identified to be another important 

requirement especially in a real time environment. In this chapter, the importance of 

integrating the existing trip monitoring system in the current power generating plant 

in Malaysia with an intelligent approach is discussed. 

 

2.2 Importance of a boiler unit in a power plant 

The continuous evaluation of the boiler’s operating condition helps to identify 

any features that may affect the quality, availability, capacity, safety, risk and cost 

incurred relating to the boiler unit. The practice has in many cases extends the time 
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between maintenance shutdowns, minimizes downtime and ensuring the equipment is 

maintain accordingly. It helps operators to be more informed of the decision for 

performance optimization and its maintenance needs [17]. For instance, it will notify 

operators when a major problem may be developing and this allows the operators to 

anticipate a potential failure and to take action to resolve it. Any observed abnormal 

deviations could therefore be investigated to avoid unscheduled shutdowns. 

As the overall performance of an energy generating plant is evaluated by its 

efficiency, it depends on its boilers for continuous operation and maintenance. The 

efficiency of a boiler may be due to different reasons, such as poor combustion, heat 

transfer fouling, including poor operation and maintenance. In recent years, the 

deterioration of fuel and water quality is also considered as contributing factors to 

thermal inefficiencies in boilers. The normal practice to evaluate boiler efficiency is 

by defining its ratio of heat output to the heat input [18]. This method is proven to 

assist plant operators to quickly evaluate the boiler’s health because it requires less 

operational parameter monitoring. Operational parameters monitoring can help 

operators identify the root cause problem more efficiently. Additionally, observation 

of pre-existing condition based on historical data may provide insights of the 

degradation of the equipment to better understand ways to carry out scheduled 

maintenance works. 

 

2.3 Factors contributing to boiler trips and efforts to reduce the 

impact on energy production 

Issues leading to tripping of boiler in a coal-fired power plant are usually 

related to the coal combustion. These issues include the state of the coal when 

transferred into the furnace, such as sticky coal blocking conveyors and chutes, fine 

coal causing stockpile slumps following heavy rain and also wet coal. Other condition 

such as contaminated coal supply with large rocks or pieces of steel that can damage 

the conveyors and pulverizing mills may also contribute to boiler instability due to the 

excessive holdup in mills [2].  

There are limited literatures reporting on the exact cause of faulty condition 

leading to a trip and shut down in a coal-fired boiler of a power plant. Nevertheless, 
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common factors have been noted by many industrial experts and plant operators as 

reported by Wilkinson [7] which may include the following operational parameters; 

- Flame loss or instability 

- High steam pressure 

- Low or unstable fuel pressure 

- Low or high boiler water level 

- Low or high feed water temperature 

- Unstable boiler water level (foaming) 

- Low or unstable combustion airflow 

- Incorrect combustion air damper position 

- Incorrect combustion air fan status 

- High, low, or unstable firebox pressure 

- High or low stack gas temperature; and 

- High or low stack gas oxygen content 

 

Subsequently, fault diagnosis study of the health of the boiler equipment using 

historical data after a physical inspection and maintenance were carried out to improve 

the current monitoring system. The reports added tube leakage and corrosion in a boiler 

due to slagging or fouling as leading factors to unscheduled boiler shut downs [8]–

[14]. In a more recent work, wall thinning and overheating has also been identified as 

a major damage mechanism leading to boiler tube failure [15]. In most of these papers, 

the power plant boiler’s performance is measured by assessing its efficiency in some 

of these following parameters losses, using the American Society of Mechanical 

Engineers (ASME) performance test codes-4 (PTC-4), as reported by Umrao et al. 

[16]: 

- Dry flue gas loss 

- Moisture in fuel loss 

- H2 in fuel loss 

- Unburnt carbon loss 

- Other unaccounted loss 

 

Slagging in a boiler happened when leftover cooled molten ash and 

incombustible by-products from coal combustion gets hardened and sticks to the 
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surface of the furnace walls. On the other hand, deposits build-up that occurred in the 

convection pass after the combustible gasses exits the furnace are known as fouling. 

These accumulated deposits are usually formed at the leading edges of the superheater 

and re-heater tubes. Although they are easily dislodged using soot blowers, the ash 

particles blown by the soot blowers may result into the flue gas stream and create 

cinders which can plug air heater baskets and block selective catalytic reduction 

catalyst flow paths or bridge across the boiler tube in the convection pass [19]. The 

most common sections of the boiler affected by slagging and fouling are from the 

burner belt to the furnace exit. Typically, boiler slagging and fouling are caused by low 

furnace excess oxygen, extreme stratifications of the Furnace Exit Gas Temperature 

(FEGT), high primary airflows, burner damage and deficient mechanical condition or 

tolerances, poor coal pulverizer performance and inconsistent fuel properties and 

chemistry. These slagging and fouling occurrences, when left untreated eventually 

result in a significant increase of the flue gas temperature that reduces the system 

overall efficiency and leading to an increase in corrosion problems in boilers [20]. 

Continuous research and efforts has been carried out to manage and reduce the 

impact of fouling and slagging in a coal fired power generation system. This includes 

the use of soot blowers as a blowing medium to blow water or compressed air directly 

at the deposits through a nozzle. However, the success rate of fully removing the slag 

on the back side of the tubes is very low. Hence, the invention of an intelligent soot 

blowing mechanism is introduced by incorporating intelligent system to allow the soot 

blowing system to ‘learn’ and trigger initiation for appropriate sequence of cleaning 

actions. Coal blending method has also been implemented to combine different types 

of coals that can be measured and analyse using thermos mechanical analysis 

technique to produce a slagging propensity index for monitoring purposes. This 

approach has high potential with low investments cost to minimised slagging problem. 

Other promising innovations also include pulse detonation wave technology to remove 

slag from various parts of the boiler, installation of internal cameras to monitor boiler 

deposition problems, and inserting stain gauges devices to measure the deformation of 

an object (in this instance the forming of slag within the boiler) [20].   
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2.4 Intelligent Monitoring System for Coal-Fired Boiler Trip 

Condition 

A Power Plant Boiler Condition Monitoring System is an automated computer 

system that tracks the condition of the boiler unit continuously. The system retrieves 

the boiler operational parameter readings from the sensors with a one-minute time 

interval. The continuous data reading provided the plant operator with information on 

the health of the boiler unit. An addition to monitoring and retrieving data, the system 

can also be incorporated with an intelligent mechanism. For instance, an Intelligent 

Monitoring Interface (IMI). It is a human-machine interface system that tracks and 

improves the responses of an event associated with monitored equipment. It enables 

user to perform potentially complex tasks more effectively and quickly with greater 

accuracy. This is made possible by presenting users with information on the equipment 

condition, user’s next actions, and warnings of undesirable consequences and 

suggestions of an alternative action [21]. 

The study of developing a computer system that is equipped with the capability 

of processing information intellectually like a human being has been conducted since 

the early 1950s, known as Artificial Intelligence (AI) [22]. One of the branches of AI 

is machine learning. It is a computer with learning capacity that learns through 

experience or prior knowledge and recognizes patterns of outcome in a huge amount 

of data to carry out a given task [23]. 

The most common techniques of an AI found in power systems applications 

include Expert Systems, Fuzzy Logic, Genetic Algorithm (GA) and Artificial Neural 

Network (ANN) [24]–[28]. Recent studies have suggested ANN as one of the most 

popular schemes for power systems fault diagnosis, where the sources of diagnostic 

information derive from the error between predicted and actual behaviour of the 

system. The required expectation (prediction) is based on a model of what should 

happen. Such techniques have been very well researched and implemented in many 

utility plants [29]–[31]. 

An ANN is a model of reasoning based on the human brain [22], and it is one 

of the most preferred branches of the study of AI. Due to its interconnected structure 

of neurons and numerical weights that mimics the biological neurons of a human brain; 

it learns to understand the relationship between the input parameters and variable by 
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acquiring knowledge through pre-recorded data also known as training process. One 

of the key advantages of an ANN is that it is adaptable due to its non-linear 

characteristics [32]. Instead of being built from specific sets of parameter value, the 

neural and adaptive systems use external data to automatically set their parameters 

[33]. The group of interconnected artificial neurons in an ANN processes information 

in parallel. The performance of the network is continuously improved by rendering it 

to be “aware” of its output value through a performance feedback loop that includes a 

cost function. The feedback is used to adjust the network parameters through 

systematic procedures called learning or training rules, in order to improve the system 

output with respect to the desired goal [33]. This process is called ‘supervised 

learning’. It is an iterative process that continues to loop until an acceptable level of 

errors is obtained. The number of time for a whole set of data (both a forward and a 

backward pass) is processed is known as an epoch. This method is defined as the error 

back-propagation training [29].  

Meanwhile, another popular intelligent system is known as an expert system 

(ES). It is a computer software program built to perform a narrow, specialized domain 

problem solving using existing expert knowledge acquired from a set of rules, decision 

trees, models and frames. The simplicity of each given rules and existing information 

allows a quick respond to the identified problem through reasoning, heuristics and 

judgement. This method is useful  when it involves large amount of data that needs to 

be processed in a short period of time [22], [25]–[27]. However, it is limited to produce 

good feedbacks to only known situation, where ES may exhibit important gaps in 

knowledge when an unknown incident occurred. This is due to the fact that ES are 

unable to learn or adapt to new problems or situation that are not included in its 

knowledge database. 

There is also an optimization technique, known as Genetic Algorithm (GA). It 

is based on biological metaphors, which is the process of natural selection and genetics 

[26], [27]. It is known to be highly efficient at reaching a very near optimal solution in 

a computationally efficient manner, where it continuously use a set of candidate 

description of the given system called population to gradually improve the quality of 

the population until sufficient level of quality is achieved  or no further improvement 

occurs [25], [27]. Since the algorithm is simple and robust, it is a very good technique 

for solving complex problems and nonlinear problems that usually occurred in power 

generation planning, transmission and distribution system to properly adjust its 
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parameter’s excitation and control problem of reactive power compensation and 

voltage [28]. However, GA is widely applied for optimization, and not classification 

of data. It is not known if GA is able to identify and recognize a trip pattern from a 

normal condition. 

The study of fuzzy logic involves classes of objects with uncertain boundaries, 

it allows uncertainties in problems formulation to be expressed and processed [25], 

[27]. This approach is similar to a human decision making with an ability to produce 

exact and accurate solutions from an approximate information and data. The 

fuzzification provides superior expressive power, higher generality and an improved 

capability that allows ambiguity throughout an analysis that specifies the available 

information and minimizes the problem complexity. Fuzzy logic is commonly applied 

in stability analysis and enhancement, power system control, fault diagnosis and 

security assessments [26]. Although it can be a very useful tool in a control system, 

implementing fuzzy logic as a predictor in a trip monitoring system may not yield 

efficiency required for the proposed interface in this research.   

2.5 Current methods to improve the monitoring system 

Table 2.1 provides a summary of work done by previous scholars to monitor, 

diagnose and predict plant equipment faults and trip operational condition with their 

proposed methods. The approach varies from mathematical to artificial intelligence 

model, acoustic signal analysis and hybrid intelligent modelling. 

 

Table 2.1. A decade of methods implementing intelligent mechanism to diagnose and 

support plant equipment monitoring 

Year Author(s) Objective Method Specifications 

2010 
Ismail F.B and Al-

Kayiem [11] 

To monitor trip for a high 

temperature superheater in a 

steam boiler 

Using AI technique; the multi-

dimensional minimization 

training algorithm for the 

monitoring system.  

2011 
Pena B., E. Teruek 

and L.I. Diez [34] 

To predict the effectiveness 

of soot blowing in a 

pulverized fuel utility 

boilers 

The model developed is based 

on ANN and Adaptive Neuro-

Fuzzy Inference system. 

2012 

Bekat T., M. 

Erdogan, F. Inal 

and A. Genc [35] 

To predict the ratio of 

bottom ash produced to the 

amount of coal burned 

Using 3 layered, feed forward 

artificial neural network model 

architecture. 

2012 

Kljajić M., D. 

Gvozdenac and S. 

Vukmirović [36] 

To predict the efficiency of 

boilers based on measured 

operating performance 

Utilizes neural network to 

analyze, predict and discover 

possibilities to enhance the 

efficiency of boiler operation. 
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Year Author(s) Objective Method Specifications 

2013 
Hamid S.S. and 

D.N. Jamal [12] 

To automatically detect and 

analyse a boiler tube leakage 

incident 

Using an acoustic signal 

processing by sound wave 

using transducers. The method 

uses backpropagation neural 

network (BPNN) efficiently. 

2013 
Mayadevi, V. and 

Ushakumari [37] 

To develop a simulation for 

an expert plant operator’s 

action in decision making 

and management to various 

plant related activities 

Using expert system with fuzzy 

logic, neural network, machine 

vision and data acquisition 

system 

2014 

Behera S.K., E. R. 

Rene, M. C. Kim 

and H. S. Park 

[17] 

To improve the energy 

efficiency in the industry, by 

assessing and optimizing the 

performance of a refuse 

plastic fuel-fired boiler. This 

is done by predicting the 

temperature, pressure and 

mass flow rate of steam 

produced.  

Using ANN with a feed 

forward backpropagation 

model that is trained with 5 

months’ worth of real plant 

data. 

2015 
Rostek M. et al. 

[13] 

To detect and predict leaks in 

fluidized-bed boilers earlier 

before a boiler shutdown. 

Using ANN using virtual 

sensors, classifiers of fault and 

two stage structure of ANN. 

2015 
Shi Y. and J. 

Wang [14] 

To monitor ash fouling in a 

coal-fired power plant boiler 

and analyze the key 

variables affecting its 

performance 

Implemented ANN to optimize 

the boiler soot blowing model 

and using mean impact values 

to determine the important key 

variables  

2016 

Mohan S. P., R. 

Kanthavel and M. 

Saravanan [38] 

To develop a generic 

prediction tool of an early 

detection fouling/slagging in 

a boiler, due to excessive 

fireside deposits. 

Using a hybrid fuzzy clustering 

method and an ANN 

2016 Kumari A., S.K. 

Das and P.K. Sri 

Vastava [39] 

To predict the fireside 

corrosion rate of superheater 

tubes in coal fired boiler 

assembly 

Using Multi layered perceptron 

method from ANN with a 

gradient based network 

training algorithm. 

2017 Bhavani S. et al. 

[40] 

To continuously monitor the 

combustion quality and 

flame temperature of the 

boiler. 

BPA (Backpropagation) and 

Ant colony Optimization 

(ACO) with Internet of Things 

using embedded intelligent 

sensors. 

2017 Vakhguelt A. , 

S.D. Kapayeva et 

a.[15] 

To assessed and detect 

damages and predict the life 

span of boiler tubes more 

efficiently. 

Using Non-destructive test 

(NDT) by combining Electro-

Magnetic Acoustic Transducer 

and an internal oxide layer 

measurement with specialized 

ultrasonic. 
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Year Author(s) Objective Method Specifications 

2017 Zhen T., L. Xu, J. 

Yuan, X. Zhang 

and J. Wang [6] 

To developed a monitoring 

platform of an online 

estimation key state variables 

and performance evaluation 

of a thermodynamic balances 

in a thermal power plant unit. 

Using a combination of 

Matlab based mathematical 

model, with a data 

management tool (MySQL) 

and a C++ coded OPC client 

server, and an Apache web 

server based web page as an 

interface. 

2018 
Dehghani A. S. 

[41] 

To predict the exhaust steam 

vacuum of the steam turbine 

(ST) output and power output 

of the ST under two gas 

turbines’ varying load 

conditions. 

Two ANN network were 

constructed, one for the 

steam turbine and another for 

the main cooling system. 

These networks were 

modelled using Multi-

layered perceptron (MLP) 

with backpropagation 

training. 

2018 
Chen X. and J. 

Wang [42] 

To improve the combustion 

efficiency of a coal-fired 

power plant boiler by 

measuring the flue gas 

oxygen content. 

Backpropagation neural 

network model with nine 

hidden neurons, tansig 

function and a purelin linear 

transfer function. 

 

2.6 Summary 

In summary, for thermal power plant equipment monitoring, specific 

techniques most favoured to accomplish the task to monitor machinery performances 

are expert systems and neural network. These approaches have been widely applied in 

a number of successful applications for classifications task, forecasting, control 

systems and optimization and decision making. More importantly, ANN has been 

reported to have successfully interpret the behaviour of machinery processes in energy 

conversion plants. Generally, large number of operational data is captured 

continuously by the on-line plant’s monitoring system during operation and stored in 

large databases. Using these data, ANN models can be trained and used in a power 

plant operation simulation to predict a possible trip condition in an actual plant. 

Additionally, by comparing the prediction of ANN model with actual system, plant 

degradation or fault detection may also be assessed for both off-line and on-line 

applications. 
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Chapter 3. Coal-Fired Power Plant 
and Boiler Unit Operational 
Parameters 
3.1 Introduction 

A coal fired power plant is a complex facility. It consists of fuel supply system 

(coal is used), combustion and steam generators system, environmental safety control 

system, turbine and electric generator system, condenser and feed water system and 

heat extraction and rejection system. The focus of this research will be the combustion 

and steam generator system, involving the boiler unit. This chapter briefly describes 

the functional and operational control of the boiler and its parameters. It is divided into 

three sections. Section 3.2 will illustrate the six components of the entire power plant 

and its functionality. Section 3.3 will describe the coal-fired boiler unit and its 

importance. While section 3.4 presents the operational parameters selected to be used 

and monitored to identify the trip condition for a boiler unit. 

3.2 Functional & Operational Control 

Electricity is an essential utility for a household, thus the existence of power 

plants that could process our natural resources such as coal or gas into energy are very 

important. For instance, a coal-fired power plant can generate up to 700 MW of power, 

which can provide electricity for about 500,000 residential and business units 

continuously.  

As illustrated in Figure 3.1, a thermal power plant consists of the following 

components: 

 

C1: Coal supply and preparation system 

C2: A combustion and steam generator 

C3: Environmental and safety control system 

C4: Turbine generator and electric production system 

C5: Condenser and feed water system 

C6: Heat extraction and rejection system which includes the cooling tower. 
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3.2.1. Component 1 (C1): Coal supply & Preparation system 

The major component of a pulverized coal fired power plant involves the 

manner in which the coal is received, handled and delivered to the boiler. Hence, it is 

important to ensure that the fuel supply is kept well and dry for high rate combustion 

in the burner.  

In a thermal power plant such as the one under study, coal is used as its main 

fuel supply for combustion. To ensure a high quality refined coal, it is important to 

ensure that the coals are transported in a control manner into the pulverizer. Dry and 

high quality coal is transferred into the pulverizer using a conveyor to be crushed and 

refined into coal powder for the combustion process in the burner. The refined powders 

are kept dry by using heated air supplied through a primary air (PA) fan. A PA fan is 

the source for heated air to dry the coal in the pulverizer, and to provide primary air to 

the burners as the fuel air mixture flows from the pulverizer into the burner. 

3.2.2. Component 2 (C2): Combustion & Steam generator 

In the second component of the power plant, the heated dried powdered coals 

are transferred into the burners through a pipe. These fuel and hot air mixture are then 

burned in the furnace portion of the boiler. For a complete combustion, preheated air 

is supplied through the forced draft (FD) fan as the combustion air. However, before it 

can be fed into the burner, the air is re-heated using air heaters. This process improves 

the air cycle efficiency in the boiler.  

Meanwhile, purified water supplies are pumped using pipes into the boiler from 

the feed water pumps through a high pressure heater. The tremendous heat generated 

from the combustion turns the highly purified water into steam. The high temperature 

and pressure steam generated in the boiler are carefully managed to retain its specific 

readings in a controlled condition before being transferred into the turbine generator. 

3.2.3. Component 3 (C3): Environmental & Safety Control 

system 

As required by the Energy Commission, the plant needs to be equipped with 

an environmental and safety control system. This include the Flue Gas Desulfurization 

(FGD) system, which is used to scrub the flue gas leaving the boiler during combustion 

to control the Sulphur Dioxide (SO2) emission level at the stack. Meanwhile, a 

tangential combustion system is used to achieve minimum discharged of Nitro Oxide 
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(NOx) by delivering excess air to the top of the combustion zone to reduce combustion 

zone stoichiometry and supress the NOx formation. 

3.2.4. Component 4 (C4): Turbine Generator & Electric 

production 

The recovered high temperature and pressure steam from the boiler provides 

the force to turn the turbine blades in the turbine generator to spin electromagnet within 

copper coils in the generator. This is the process in which electricity are generated. A 

substation transformer is used to distribute the electricity into its proper and safe 

voltage to be supplied to residential and business units accordingly. 

3.2.5. Component 5 (C5): Condenser & Feed water system 

To improve the overall process efficiency in preserving energy, the steam used 

in the turbine is converted back to water to be reuse as boiler feed water using the 

condenser. The condensed water is recycled back into the boiler through a series of 

pumps and heat exchangers called feed water heaters. These processes have indirectly 

increases the pressure and temperature of the water prior to its re-entering the boiler. 

3.2.6. Component 6 (C6): Heat extraction & Rejection system 

At the final stage of the energy conversion process, the remaining cooling water 

that passes through the condenser will absorb the rejected heat from condensing and 

releasing it to the atmosphere through the cooling tower. Any excess steam is cooled 

and condensed back into water which is then circulated back into the boiler to repeat 

the whole process. This essential cooling process requires large quantities of fresh 

water; thus, most thermal power plants are located on lakes or rivers. 

3.3 Boiler unit in a Thermal Power Plant 

A boiler is designed to optimize thermal efficiency and to economically benefit 

an energy conversion plant. Its main purpose is to transfer heat from flue gas to water 

or steam circulation. Heat transfer surfaces in a boiler play an important role. They 

include the furnace, evaporators, superheaters, economizers and air preheaters. These 

surfaces are the main interior built of the boiler from the furnace to the boiler exhaust. 

It is crucial to have the correct arrangement of the heat surfaces within the boiler. 

Because it dictates the durability and fouling of the material use, temperature of steam 
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and final temperature of the flue gas [43]. An illustration of the arrangement of heat 

transfer surfaces in a boiler is presented in Figure 3.2. 

Pulverized coal-fired boiler is one of the major equipment in the thermal power 

plant. It has a high thermal cycle efficiency with a fuel price advantage, although it 

comes with a costly SO2 and NOx control. Using coal as its fuel supply has its pros and 

cons. Organic particles of the coal are highly combustible, while its inorganic particles 

can cause a build-up of ash and slag in the furnace. Hence, pulverizing coal into finer 

particles allows the inorganic substances to be filtered before it reaches the furnace. 

Moreover, finer coal particle allows a more stable and complete combustion. This 

contributes to the reduction of soot and carbon monoxide in the flue gas [44].  

To increase the temperature of the saturated steam leaving the furnace, 

superheater is required. By increasing the temperature of the saturated steam, the 

efficiency of the energy production is further improved. However, the tubes of the 

superheater used to conduct the steam from one connected header to the other are 

constantly exposed to the high temperature flue gas passing outside the tubes. 

Therefore, flue gases leaving the superheater zone are cool down using economizers. 

For overall performance, a suitable amount of furnace cooling is imperative within a 

boiler. Yet, removing too much heat will affect the combustion process, and leaving 

the temperature too high will cause smelting of ash. This will result in a more serious 

issue such as ash deposition and high temperature corrosion on the superheater tubes. 

In order to stabilize the boiler and prevent an explosive occurrence, a boiler trip will 

be executed. This procedure is implemented to check the boiler condition and clear 

any residue or combustible substances from the it [3].  

3.4 Boiler Parameters & Performance Monitoring 

Due to the extent of the boiler complexity, the number of operational 

parameters has been narrowed down to 32. The selection is based on the plant 

operator’s past experience and system knowledge. Various researchers [13], [45], [46] 

has carried out studies on different types of boiler representing different range of 

industrial grade boilers to generate steam and hot waters. They suggested that although 

boilers of a particular type will behave differently due to its specific design or assembly 

tolerances, each unit does have common operational parameters which impose a 

significant effect on its efficiency, such as the main steam temperature, reheat 

temperature and reheat pressure variation.  
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Although the boiler operating conditions are important variables, another vital 

role in other faulty condition, such as the fireside corrosion rate in a boiler should also 

be considered. This includes the chemical reaction mechanism of the inorganic content 

of the coal [36]. Additionally, due to the unpredictable atmospheric conditions, power 

units have the high tendencies of working with greater load variability, resulting in 

changes in temperatures and pressures. Hence increasing the exposure of precipitation 

of sediment from water, this can easily deposit on rough areas of the inner pipes. Even 

though this condition escalates slowly and may easily be overlooked by plant 

operators; it will still posed a threat to a total shutdown when it causes pipe overheating 

and feed water flow disorder [14].  

 

Figure 3.2. Process drawing of the arrangement of heat transfer surfaces in a 

furnace equipped boiler. 
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Figure 3.3 A large coal fired utility boiler unit 
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Table 3.1 Boiler Operational Parameter List 

Parameter 

List 
Description Unit 

V1 Total combined steam flow ton/hr 

V2 Feed water flow ton/hr 

V3 Boiler drum pressure bar 

V4 Super heater steam pressure bar 

V5 Super heater steam temperature C 

V6 High temperature re-heater outlet temperature C 

V7 High temperature super heater exchange metal temperature C 

V8 
Intermediate temperature (A) super heater exchange metal 

temperature 
C 

V9 High temperature super heater inlet header metal  temperature C 

V10 Final super heater outlet temperature C 

V11 Super heater steam pressure transmitter (control) bar 

V12 Feed water valve station ton/hr 

V13 Feed water control valve position % 

V14 Drum level corrected (control) mm 

V15 Drum level compensated (from protection) mm 

V16 Feed water flow transmitter % 

V17 Boiler circulation pump 1 pressure bar 

V18 Boiler circulation pump 2 pressure bar 

V19 
Low temperature super heater left wall outlet before super heater 

dryer 
C 

V20 
Low temperature super heater right wall outlet before super 

heater dryer 
C 

V21 
Low temperature super heater left wall outlet after super heater 

dryer 
C 

V22 
Low temperature super heater right wall exchange metal 

temperature 
C 

V23 
Intermediate temperature (B) super heater exchange metal 

temperature 
C 

V24 
Intermediate temperature super heater outlet before super heater 

dryer 
C 

V25 
Intermediate temperature super heater outlet header metal 

temperature 
C 

V26 High temperature super heater outlet header metal temperature C 

V27 High temperature re-heater outlet steam pressure bar 

V28 
Superheated steam form intermediate temperatures outlet 

pressure 
bar 

V29 Super heater water injection compensated flow ton/hr 

V30 Economizer inlet pressure bar 

V31 Economizer inlet temperature C 

V32 Economizer outlet temperature C 
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In big utility plant such as the one illustrated in Figure 3.3, detailed observation 

on each of its operational parameters is crucial. According to [47], it is important to 

acquire real data from an actual working boiler unit in order to be able to identify 

possible scenario for the simulated fault detection system to be trained and provide 

feedback accordingly. Identifying faults and trip condition of a boiler in its most 

effective operating condition requires in depth understanding and knowledge of its 

faulty parameters and factors causing the malfunctions. Since there are a large number 

of data obtained from the industry, irrelevant values and outliers need to be identified 

and removed. The parameter selection is based on plant operator’s experience on 

identifying the essential variables that contributed to the boiler trips of the particular 

unit. The boiler operational parameters identified for this study are listed in Table 3.1. 

The design of the steam cycle and its operating condition involving the steam 

supply and discharge condition; dictates the pressure, temperature and flow rate of the 

steam required to generate the specified power output [48]. In order to achieve this 

requirement, steam is directed through a piping system to the turbine as the point of 

use. Throughout the steam circulating system, the steam pressure is regulated using 

valves and checked with steam pressure gauges [49]. Parameters monitored for ideal 

condition of the steam cycle are listed in Table 3.2. 

Table 3.2 Steam circulation parameters  

 Steam flow & Control Unit 

V1 Total combined steam flow ton/hr 

V28 
Superheated steam form intermediate temperatures outlet 

pressure 
bar 

 

The water supplied to the boiler is called feed water. The two main source of 

feed water are condensate steam returned from the combustion process and make up 

treated raw water that comes from outside of the plant, such as lakes or rivers. The 

feed water system functions as a regulator for the boiler to continuously provide water 

supply to generate the steam. As the heat rate of the produced steam decreases, the 

requirement for heated feed water increases. Hence, for higher efficiency, the feed 

water is preheated by an economizer, using the waste (rejected) heat in the flue gas 

[49]. The list of parameter related to the feed water supply and control are shown in 

Table 3.3. 
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Table 3.3 Feed water supply and control parameters 

 Feed water supply & Control Unit 

V2 Feed water flow ton/hr 

V12 Feed water valve station ton/hr 

V13 Feed water control valve position % 

V14 Drum level corrected (control) mm 

V15 Drum level compensated (from protection) mm 

V16 Feed water flow transmitter % 

V29 Super heater water injection compensated flow ton/hr 

For most boiler, water and steam flow through tubes, where they absorb heat 

resulting from the fuel combustion. To ensure continuous generation of steam, water 

must be circulated continuously through the tubes. The common method applied is to 

use a forced circulation system that involves a pumped control system (refer to Table 

3.4). A pump is added to the flow loop between the boiler drum and the burner. The 

pressure difference created by the pump controls the water flow rate. Small diameter 

tubes are normally used where pumps can provide adequate head for circulation and 

for required velocities [4]. 

Table 3.4 Boiler drum & pump control system parameter 

 Boiler drum & Pump control Unit 

V3 Boiler drum pressure bar 

V17 Boiler circulation pump 1 pressure bar 

V18 Boiler circulation pump 2 pressure bar 

Steam heated above the saturation temperature is called superheated steam. 

This steam contains more heat than does saturated steam at the same pressure, and the 

added heat provides more energy for the turbine to convert it into electric power. A 

super heater surface has steam on one side and hot gasses on the other. The tubes are 

therefore dry with steam circulating through them. In order to prevent overheating of 

the tubes, the unit is designed to tolerate the heat transfer required for a given steam 

velocity based on the desired steam temperature. Hence, it is important to ensure that 

the steam is distributed evenly to all the super heater tubes and at the velocity sufficient 

to provide a scrubbing action to avoid overheating of the tube metal surface [4]. It is 

therefore crucial to monitor the condition of the super heater control parameters as 

listed in Table 3.5. 
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Table 3.5 Super heater control parameter 

 Super heater Control Unit 

V4 Super heater steam pressure bar 

V5 Super heater steam temperature C 

V7 High temperature super heater exchange metal temperature C 

V8 
Intermediate temperature (A) super heater exchange metal 

temperature 
C 

V9 
High temperature super heater inlet header metal  

temperature 
C 

V10 Final super heater outlet temperature C 

V11 Super heater steam pressure transmitter (control) bar 

V19 
Low temperature super heater left wall outlet before super 

heater dryer 
C 

V20 
Low temperature super heater right wall outlet before super 

heater dryer 
C 

V21 
Low temperature super heater left wall outlet after super 

heater dryer 
C 

V22 
Low temperature super heater right wall exchange metal 

temperature 
C 

V23 
Intermediate temperature (B) super heater exchange metal 

temperature 
C 

V24 
Intermediate temperature super heater outlet before super 

heater dryer 
C 

V25 
Intermediate temperature super heater outlet header metal 

temperature 
C 

V26 
High temperature super heater outlet header metal 

temperature 
C 

Meanwhile, a re-heater (or reheat of super heater) is used in utility application 

for the re-heating of steam after it leaves the high pressure portion of a turbine. The 

reheated but lower pressure steam then returns to the low pressure portion of the 

turbine. The incorporation of both re-heater and super heater into the boiler unit 

improves the overall plant efficiency [4]. The following table (Table 3.6) list the 

temperature and steam pressure reading parameters to ensure that it is within the safe 

threshold for a normal boiler operation.  

Table 3.6 Re heater outlet parameter  

 Re-heater Unit 

V6 High temperature re-heater outlet temperature C 

V27 High temperature re-heater outlet steam pressure bar 

Finally, to efficiently optimize the cost of electrical power generation in a 

utility boiler unit; an economizer or an air heater is use and usually located downstream 

of the boiler bank. An economizer is a mechanical device that preheats fluids to reduce 
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energy consumption. Specifically, in a steam boiler, it is used to recover heat from 

combustion products which in turn is used to preheat boiler feed water before it is re-

introduced into the boiler to be converted into super-heated steam. Correspondingly, a 

condensing economizer is applied to reduce the flue gas temperature leaving the boiler 

and to provide an efficient boiler cycle. Parameters monitored to ensure the normal 

reading of the economizer as the flue gas flows out of the boiler are listed in Table 3.7. 

Table 3.7 Economizer parameter 

 Economizer Unit 

V30 Economizer inlet pressure bar 

V31 Economizer inlet temperature C 

V32 Economizer outlet temperature C 

The need for boiler plant availability is becoming one of the important 

considerations of boiler’s efficiency rating. Therefore, it is crucial to ensure that the 

plant’s boiler units are able to continuously operate with regards to energy efficiency, 

as well as safety and reliability. 

3.5 Summary 

In Malaysia, a thermal power plant has been an important asset and facility to 

generate and supply electricity demand of the country. Hence, the continuous 

development and commissioning of Manjung 4 plant in 2015, followed by Tanjung 

Bin coal fired plant for 2016, another Manjung 5 coal-fired plant in 2017 and another 

1MDB project planned for 2018 [50]. The need for proper monitoring and diagnosis 

system of early detection of trip and faulty condition of the boiler units in these type 

of utility power plants has been constantly discussed in recent studies [13], [39], [51]. 

Thermal power plant boiler unit trips often lead to the reduction of a boiler’s efficient 

rate for a high utility availability demand. To resolve this problem, an intelligent 

interface that uses neural network as a tool to monitor and predict boiler trip condition 

will be discussed in the following chapter. Due to the high cost of a new monitoring 

system deployment, relocation and set up, an incorporation of a neural network and an 

advisory guide interface is considered. 



 

27 

 

Chapter 4. Boiler Fault Detection 
Using Artificial Neural Networks 
(ANN) 
4.1 Introduction 

Fault conditions are common in huge machinery such as the energy generating 

power plant that may lead to lost, both financially and operationally. Fault is defined 

as an unpermitted deviation of a standard machine operation from the acceptable or 

usual operational condition [45]. The complexity of a boiler makes it difficult to 

monitor and identify any occurring fault in real time. Therefore, in the past decades 

there have been many research in developing a model and system to analyze, evaluate, 

monitor, predict, detect and diagnose faults of a boiler in a power generating system 

[8], [9], [11], [13], [14], [36], [46], [47]. All of these papers suggested that the 

implementation of ANN would improve the existing systems considerably. This 

chapter will describe the ANN model design and power plant boiler simulation result 

using a set of pre-randomized data attained from an actual power plant here in 

Malaysia. The outcome of the proposed network’s “predicted” output will be used to 

compare findings and simulation results from previous work to report any variation of 

the pre-selected features and suggests possible modification on the network parameters 

for future work. This chapter is divided into two sections. The first section will be a 

discussion on the development and design of the ANN model. While the experimental 

setup and simulation result of the prediction system is reported in the second section.  

The following diagram (see Figure 4.1) illustrates the framework of the 

proposed boiler fault detection system implementing artificial neural network.  
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Figure 4.1. Boiler fault detection framework 

4.2 Artificial Neural Network (ANN) 

An ANN is a method used to replicate how interconnected neurons of a human 

brain communicate to learn a common pattern and experience to predict and make 

decisions. These neurons are linked with numerical weights which are the basic means 

of a long term memory of an ANN. The process of learning occurs through the repeated 

adjustments of these weights. Figure 4.2 represents the connections of a single building 

block artificial neuron. To build an artificial neural network, many of these neurons 

can be linked together. When more than one neurons are interconnected and arranged 

in different layers, it is then known as a multi layered neural network [52]. Most 

networks will have between zero and two hidden layers. Figure 4.2 shows how an 

output is produced when the sum of each input is multiplied by a weight in an artificial 

neuron that is later passed to an activation function. 

The learning process of a network is known as training. ANN has a strong 

modelling environment that lets user test and explore simulated model faster and 

easier. The training process of the model is done with available data. An ANN program 

is used to introduce the input and output data. Once the training is completed, the 

model is ready to predict the outputs for ‘unknown’ data not presented to the ANN 

before. In order to design an ANN, the basic components need to be determined. The 

following steps were carried out to process the raw data and properly screened the 

trained dataset with validation and testing. 
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Plant data 

identification
Data pre-

processing

Neural Network 
modeling

Network 
feature 

selection

Neural network 
model 

architecture 
development

Fault detection & 
Advisory Guide

Feature 
sensitivity 

analysis

Maintenance 
guideline 

generated on 
interface



 

29 

 

 

 

Figure 4.2 An abstract structure of a single artificial neuron.  

The boiler fault detection model utilizes the output of the neural network as the 

boiler condition prediction. Therefore, the modeling should have a high accuracy rate 

for the model to be implemented in the system. Since modeling accuracy depends on 

how the network is trained, the selection of neural network type as well as the training 

algorithm is very important. There are various types of neural network, such as Radial 

Basis Networks (RBF), Elman network, Jordan network and Multi-layered perceptron 

(MLP). These networks are classified under two main categories, namely static and 

dynamic neural networks.  For example, Elman network represents the dynamic neural 

network, and MLP is one of the static type networks. Once the type of network is 

selected, the training algorithm should be chosen to match it accordingly. Due to the 

nature of this research, MLP based network will be used and discussed. 

4.2.1 MLP based boiler fault detection 

In this study, a feed forward MLP network was used. It is one of the most well 

documented and frequently used types of ANN architecture [53]. An MLP is a feed 

forward neural network consisting of a number of neurons connected by weighted 

links. The neurons are organized in several layers, namely the input layer, hidden 

layer(s) and output layer.  
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Figure 4.3 A typical multilayer perceptron structure 

An example of a typical MLP is illustrated in Figure 4.3. In this network 

architecture, the input layer receives an external activation vector, and passes it 

through the weighted connections (wij) of the neurons in the hidden layer. This process 

computes their activations (wkj) and passes them to neurons in succeeding layers until 

it reaches the output layer [54].  Basically, the input vector is propagated forward 

through the network producing an activation vector in the output layer at the end of 

the process. The mapping of input vector onto output vector is in fact determined by 

the connection weights of the net. As the weights of the neural network has an 

important role in determining how well the network is train and its output, it is often 

initialized to a random state [52], [55]. 

4.2.2 Data pre-processing and normalization 

Data for 32 parameters from the plant under study were obtained for an interval 

of 1 minute for one week. Parameters selection listed in Table 4.1 for the boiler unit 

has been discussed in the previous chapter, which include those related to air, fuel 

(coal), feed water and steam. To remove any outliers and eliminate negative effect on 

the prediction performance; data filtering was carried out. Max, min and median value 

of the sample collected was calculated and data normalization was performed using 

the min-max method as shown in Eq. (4.1) to fit the range of 0 – 1. Any unreliable data 

collected during boiler shutdown period and when there was no power (electricity) 

generated were also removed. 

Data normalized =
(𝐴𝑥 − 𝐴𝑥𝑚𝑖𝑛)

(𝐴𝑥𝑚𝑎𝑥− 𝐴𝑥𝑚𝑖𝑛)
 (4.1) 
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where Ax represents the original value of the data before normalization. 

  

Next step is to identify the right activation function for the selected MLP. 

According to [53], it was found that an MLP does not increase the computing power 

if the activation functions are linear for a single layer network. Hence, the unique 

advantage of an MLP comes from a non-linear activation functions.   

4.2.3 Activation functions 

An activation function or transfer function establishes the bounds for the output 

of neurons within a neural network. Choosing the right activation function is important 

because it affects the formatting method of the input data. There are six activation 

functions to select from, depending on the target outcome of the network [52]. 

However, for the purpose of this research, an MLP is used as the network for training; 

hence only two of the commonly used non-linear activation functions for a 

feedforward network are discussed. They are as follows;   

4.2.3.1 Sigmoid activation function 

In a feedforward neural network, the common choice is the sigmoid or logistic 

activation function, when the expected output is only positive numbers and to ensure 

values stay within relatively small range. Eq. (4.2) is an example of a sigmoid function. 

Due to its continuous and differentiable behaviour, sigmoid function plays an 

important role in weight adaptation during training when it produces a nonlinear 

response in the interval of 0 to 1 [35]. Though it is widely used, in many research; the 

hyperbolic tangent seem to produce a better outcome and becoming a more popular 

option [14], [30], [52], [56].   

∅(𝑥) =
1

1 + 𝑒−𝑥
 (4.2) 

4.2.3.2 Hyperbolic tangent activation function 

The hyperbolic tangent (tanh) function is another popular choice for a 

feedforward network that has the output value range between -1 and 1. The advantage 

of hyperbolic tangent when compared to the sigmoid function is evident when it 

involves the derivatives used when training neural network. An example of a 

hyperbolic tangent function is given in (4.3). 
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∅(𝑥) =  tanh𝑥 (4.3) 

4.2.4 Training algorithm 

The training algorithm is the procedure used to carry out the learning process 

in a neural network. Each type of training algorithm has its unique characteristics and 

performance. In this research, the common five training algorithm will be discussed to 

determined which one fits the network best to achieve the best outcome. 

4.2.4.1 Levenberg-Marquardt (LM) 

The Levenberg-Marquardt algorithm, also known as the damped least-squares 

method was designed specifically for loss functions that take the form of a sum of 

squared errors. This makes the training process very fast. LM is a hybrid algorithm 

that is based on Newton’s method and on gradient descent (backpropagation). A neural 

network is trained with LM algorithm by calculating the loss, gradient and the Hessian 

approximation. If the stopping criteria are false, then the damping parameter is 

adjusted to reduce the loss in each iteration. As shown in Eq. (4.4), the LM algorithm 

enhances the Newton’s algorithm as follows: 

∆𝑤 = (𝐻 +  𝜆𝐼)−1𝑔 (4.4) 

In this equation, the damping factor, represented by a lambda λ is multiplied by an 

identity matrix represented by I. Where I is a square matrix with all the values are at 0 

except for a northwest line of values at 1. As the damping factor increases in value, the 

Hessian, represented by H will be factored out of the above equation. Meanwhile, as 

the damping factor decreases, the Hessian becomes more significant than the gradient 

vector (g), allowing the LM training algorithm to interpolate between gradient descent 

and Newton’s method. The training iteration of an LM algorithm begins with a low λ 

and increases it until a desirable outcome is achieved [52]. 

4.2.4.2 Resilient Backpropagation (RProp) 

The resilient backpropagation training algorithm is also known as the RProp is 

a local adaptive learning scheme that performs supervised batch learning in an MLP. 

Its main objective is to eliminate the harmful influence of the partial derivative size on 

the weight step. This means only the sign of the derivatives is considered to indicate 
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the direction of the weight update. This is illustrated in Eq. (4.5), where the size of the 

weight change is exclusively determined by a weight specific ‘update value’ ∆𝑤𝑖𝑗
(𝑡)

: 

∆𝑤𝑖𝑗
(𝑡)
= 

{
 
 

 
 − ∆𝑖𝑗

(𝑡) , 𝑖𝑓
𝜕𝐸(𝑡)

𝜕𝑊𝑖𝑗
> 0

+∆𝑖𝑗
(𝑡)
, 𝑖𝑓

𝜕𝐸(𝑡)

𝜕𝑊𝑖𝑗
< 0

0 , 𝑒𝑙𝑠𝑒

 (4.5) 

while  
𝜕𝐸(𝑡)

𝜕𝑊𝑖𝑗
 denotes the summed gradient information over all patterns of the batch 

learning. The way that RProp adapt its learning process to the error function topology, 

is by following the principle of ‘learning by epoch’. This means that the weight update 

and adaptation are performed after the gradient information of the whole pattern set 

has been computed [54].  

4.2.4.3 Scaled Conjugate Gradient (SCG) 

The SCG is a training function that updates weight and bias values according 

to the conjugate direction method. For this method to work, the availability of a set of 

conjugate vectors s(0), s(1),…, s(w-1) is required. The successive direction vectors are 

generated based on a conjugate version of the successive gradient vectors of the 

quadratic function f(x) as it progresses. Therefore, the direction vectors set {s(n)}, 

where n = 0 is excluded is determined in a sequential manner at successive steps of the 

method. Eq. (4.6) illustrates how the SCG algorithm is used to adjust the step size as 

a reduction in the error estimation.  

∆𝑘= 
2𝛿𝑘[𝐸(𝑤̃𝑘) − 𝐸(𝑤̃𝑘 + 𝛼𝑘  𝑃̃𝑘)]

𝜇𝑘
2

{
 

 𝑖𝑓 ∆𝑘> 0.75 , 𝑡ℎ𝑒𝑛 𝜆𝑘 =
1

4
𝜆𝑘

𝑖𝑓∆𝑘< 0.25 , 𝑡ℎ𝑒𝑛 𝜆𝑘 = 𝜆𝑘 +
𝛿𝑘(1 − ∆𝑘)

𝜇𝑘
2

 (4.6) 

 

The SCG function is explained as follows. Here, ∆𝑘 is a measure of the approximation 

of the global error function 𝐸(𝑤̃𝑘), a better approximation can be determined when ∆𝑘 

is closer to 1. First, the weight vectors of 𝑤̃k and scalars need to be set to positive 

values, then the second order information need to be calculated. Next, the delta 𝛿𝑘 

value is scaled using; 𝛿𝑘: 𝛿𝑘 = 𝛿𝑘 + (𝜆𝑘 − 𝜆̅𝑘)|𝑝̃𝑘|
2. If the 𝛿𝑘is less than zero, then 

the Hessian matrix needs to be made into positive definite. To calculate the step size, 

µk and αk is used. This is followed by the calculation of the comparison parameter of 

∆𝑘 as seen in the above equation. If ∆𝑘≥ 0.75, then the scale parameter (𝜆𝑘) is 
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reduced. Otherwise, if ∆𝑘< 0.25 the 𝜆𝑘 is increased. SCG is independent of any user 

parameters, which gives it an advantage over other line search based algorithms [57].  

4.2.4.4 Gradient Descent with momentum and adaptive learning rate (GDX) 

Steepest descent also known as the gradient descent (GD) is known to be the 

simplest training algorithm. Since it only requires information from the gradient 

vector, it is a first order method. It is normally considered in a neural network training 

when the size of the network is big, where big number of parameters are involved. This 

is possible because this method only stores the gradient vector and not the Hessian 

matrix which requires a small memory capacity. However, based on the way the 

training direction is computed, it requires more iterations resulting in a slow 

convergence.  

The function GDX is a gradient descent method that combines adaptive 

learning rate with momentum training. It is invoked in the same way as a GD except 

that it has momentum coefficient (mc) as an additional training parameter. It is able to 

train any network as long as its weight, network input and transfer functions have 

derivative functions. As for each of the weight (w) and bias variables, it has to be 

adjusted according to the gradient descent with momentum as illustrated in the 

following Eq. (4.7). 

∆𝑤 =  𝑚𝑐 ∗ 𝑑𝑤𝑝𝑟𝑒𝑣 − 𝑙𝑟 ∗ 𝑚𝑐 ∗ 𝑑𝑝𝑒𝑟𝑓/𝑤 (4.7) 

Where dwprev is the previous change to the weight or bias, lr represents the learning 

rate and dperf is the calculated derivatives of performance.  

4.3 Experimental Results & Discussion 

Based on existing literature [29]–[31], a non-linear transfer functions are better 

for modelling real life coal-fired thermal power plant. To validate the theory, data was 

pre-randomized before dividing into training, validation and testing dataset. The 

training of the boiler model was carried out to identify the suitable transfer function 

under identical conditions of 500 epochs with 32 hidden neurons, repeated for ten runs, 

using the same set of pre-randomized data with random initial weights in each run to 

avoid local minima or over training and normalization boundaries of [0 1]. The only 

variances in the trial runs were the activation functions and training algorithms.   

Generally, a physical model requires an exact number of parameters values for 

calculations. Hence, the choices are dictated by the equation representing the processes 
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involved. This limits the choice of input and output parameters by the “cause and 

effect” relations [30]. Unlike a physical model, the input and output parameters in 

ANN are selected on the basis of the objective of the equipment monitoring and the 

boiler’s operators’ experience. In fact, the input parameters are usually optimized to 

compromise between the number of parameters and the desired accuracy of the ANN 

prediction. 

The final set of input parameters for this experiment was defined on the basis 

of observations related only to the boiler unit, advice and feedback from the plant 

operator, removal of parameters that has non-effective factors on the faulty scenario 

and any redundant readings from the same sensors [58]. The input parameters and their 

dataset description are listed in Table 4.1. 

 

Table 4.1 Input Parameters Description 

Input Parameters Unit 

Temperature 

• Boiler re-heater and super heater inlet/outlet and 

exchange metal temperature 

• Economizer inlet/outlet temperature 

°C 

Pressure 

• Boiler drum pressure 

• Superheated steam pressure 

• Circulation pump pressure 

• Temperature and steam outlet pressure 

• Economizer inlet pressure 

Bar 

Flow rate 

• Steam flow 

• Feed water flow 

• Super heater water injection compensated flow 

Ton/hr 

 

All experiments are carried out in a simulation environment software running 

on a 2.20GHz Intel® CoreTM i5-5200U processor with 8GB RAM memory. To 

demonstrate the comparison result, the following criteria were set: 

 All sample data used for the experiments were normalized using the Min-Max 

normalization method Eq. (4.1). 

 The MLP network consists of 3 layers; input layer, one hidden layer and an 

output layer. The number of hidden neurons used in these experiments was set 

between 2 to 32 hidden neurons, and two target output values of 0 and 1. The 

number of iterations for each epoch was set to 500 and each data set was trained 

for 10 simulations. 
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 There were four selected training algorithm tested for their convergence speed, 

accuracy and robustness; and two types of activation functions were tested to 

identify which one is more likely to produce output that are on average closest 

to zero. 

 The same proportion of data for training, validation and testing was applied for 

each data set, namely 70% for training, 15% for validation and 15% for testing. 

 To determine the minimum difference or error between the actual output Y and 

the target output Z of the network during training; the minimization of error 

using Mean Squared Error (MSE) method is used as given in Eq. (4.8). where 

Zj is the target output and Yj represents the output of the network, while n is the 

number of true values, and i is the number of samples.  

𝑀𝑆𝐸 = 
1

𝑛
 ∑(𝑍𝑗 − 𝑌𝑗  )

2

𝑛

𝑖=1

 (4.8) 

 

 To evaluate the performance of the network in achieving an acceptable 

accuracy rate, the misclassification rate (MCR) given in Eq. (4.9) is used. TP 

represents true positive, TN represents the true negative and TS is the total 

number of samples used.  

𝑀𝐶𝑅 (%) =  (1 − 
∑𝑇𝑃 + ∑𝑇𝑁

∑𝑇𝑆
) ×  100% (4.9) 

 

According to [59], [60], the initial values of weights in a network have a 

significant effect on the training process. To produce a well-trained network, 

coordination between the normalization training data set, selection of training function 

and the choice of weight initialization are important. To evaluate how much influence 

each assumed initial weights has on the output while identifying the best initial weight 

for the simulation, two sets of weight values are used; namely W1 and W2. Where W1 

consist of initial weights that are set to zeros and W2 are random initial weights. In the 

initial stage of the experiment to compare the different initial weight application, these 

two sets of weights are applied to one of the 10 available sets, using RProp as the 

training algorithm. The comparison was carried out to observe how the initial weights 

influence the accuracy of the MCR achieved. With reference to Table 4.2, it is observed 

that the selected training algorithm (RProp) was able to compute the training in an 

average of 1.42 milliseconds for 500 iterations using W1. It was also able to achieve a 
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fairly good MSE of 0.0317 and an MCR of 3.53%. When the weights were modified 

to be initialized at random values using W2, the outcome has improved, where a 

minimum error of 0.0254 was achieved and an even lower MCR of 2.71% was 

recorded.  

 

Table 4.2 Initial weights identification to achieve least MCR & MSE 

 Weight set MSE MCR (%) 

Training 
W1 0.0317 3.53 

W2 0.0254 2.71 

Testing 
W1 0.0487 5.86 

W2 0.0491 6.06 

 

However, when the network is presented with a new set of data for testing, 

there was a slight increment in both the MSE and MCR for both initial weights setup.  

This may be due to a few contributing factors, such as the training algorithm used, 

generalization method, and the convergent rate [61], [62]. There has been an 

improvement in the result when other training algorithms were applied as seen in the 

following section of the experiment (see Table 4.3).  

 

Table 4.3 Training algorithm identification using the same sets of initial weights 

to achieve the least MCR and MSE 

 W1 W2 

Training 

Algorithm 
MSE MCR (%) MSE MCR (%) 

LM 0.057018 5.8% 0.008006 1.8% 

RProp 0.072464 7.2% 0.042608 4.7% 

SCG 0.091411 11.2% 0.084871 11.6% 

GDX 0.097826 9.8% 0.10057 11.2% 

 

The next experiment is to determine the best activation function to train the 

network. In the initial stage, the sigmoid activation function was used for both layers 

in the network, namely hidden layer and at the output layer in the training. This 

decision was considered because the expected predicted output is within the range of 

0 to 1. However, the training results indicate a higher rate of MCR (refer to Table 4.4). 

To improve the recognition rate, changes were made to use hyperbolic tangent (tanh) 

activation function for one of the layers.  
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As seen in Table 4.4, the MCR achieved is still higher than the acceptable range 

of below 10%. However, when the activation functions for both layers were changed 

to use the tanh activation function, the training result has improved noticeably. Where 

the MCR recorded was below 10% during training with a slight difference of 1.96% 

during testing. A good indicator that the network was able to learned and recognized 

the pattern of the boiler performance if it is faulty or normal. For this experiment, the 

LM training algorithm was used for the purpose of identifying the best selection of 

activation function for the dataset. The recorded MCR is a calculated based on an 

average of 10 simulations of one randomized dataset. 

 

Table 4.4 A comparison table showing MCR with different combinations of 

activation functions, namely the sigmoid and hyperbolic tangent (tanh) functions. 

 Activation function structure MCR (%) 

  training testing 

1.  sigmoid (hidden layer) + sigmoid (output layer) 13.78% 13.99% 

2.  tanh (hidden layer) + sigmoid (output layer) 14.19% 11.96% 

3.  tanh (hidden layer) + tanh (output layer) 9.02% 10.98% 

 

In the previous two experiments, two different types of training algorithm were 

used. To validate the most suitable training algorithms for the neural network; another 

experiment was carried out and the identified network parameters from the previous 

experiments’ outcome were included. At the beginning, a total of 58, 784 raw data 

from 32 boiler variables were collected from an actual power plant here in Malaysia. 

These collected data units range from temperature, pressure to volumes of energy 

productions. The main objective of this research is to identify trip conditions classified 

under two values of 1 for fault and 0 for normal. Hence, these raw data have been 

normalized to be in the range of 0 and 1.  Then, these normalized data were sub divided 

into 10 randomized data sets for neural network simulation purposes. From the first 

two experiments discussed earlier, two of these data sets have already been used for 

the activation function and network weight setup. Therefore, the remaining 8 data sets 

will be used to determine the next important neural network parameter, the training 

algorithm. The following network criteria were set up: 

 An MLP with 3 layers; input, one hidden and an output layer. 

 The number of iterations for each epoch was set to 500 and a data set was 

trained for 10 simulations 
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 The number of hidden neurons is set to 32, using random initial weights for 

both input and hidden layers 

 The activation function, as identified in the previous experiment will 

implement the hyperbolic tangent (tanh) for both network layers 

 The training algorithms considered for this experiment include RProp, LM, 

SCG and GDX. 

 Performance standard used are the least MSE and MCR. 

 

Table 4.5 Mean and standard deviation of minimum MSE obtained for each training 

algorithm 

 Epoch (500) 

 Meanmse Stdevmse 

LM 0.0223 0.0074 

RProp 0.0420 0.0058 

SCG 0.0943 0.0056 

GDX 0.1090 0.0029 
 

In this work, the focus of the experiment is to identify the best optimization 

backpropagation technique for the prediction model. Hence value of the mean MSE 

and MCR of ten rounds is best achieved by LM in comparison to the rest of the training 

algorithm. The standard deviation of LM recorded in this experiment is seen to have a 

higher deviation in comparison to the other training algorithm. This may be due to the 

random weight initialization method implemented in this experiment. As reported by 

[61], [62], the standard deviation can be improved by considering a deep learning 

neural network technique. Since the focus of this experiments is only to identify the 

best optimization backpropagation technique, a deep learning method was not 

considered. 

Table 4.6 Mean and standard deviation of MCR for 500 epochs 

 Epoch (500) 

 Training Validation Testing 

 Meanmcr Stdevmcr Meanmcr Stdevmcr Meanmcr Stdevmcr 

LM 7.435% 3.952 8.239% 3.580 8.978% 3.697 

RProp 8.380% 2.994 8.873% 2.866 9.351% 2.842 

SCG 13.205% 0.938 13.207% 2.013 13.543% 2.067 

GDX 13.848% 0.536 13.725% 1.791 13.971% 1.872 
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4.4 Summary 

The boiler fault detection comprising a replicated MLP network architecture is 

used in this chapter. In order to train the MLP, a standard feedforward algorithm is 

applied and a fairly high prediction rate was obtained. The simulation result shows the 

Rprop algorithm was found to compute faster when the initial weights are set to zero, 

however a better performance and misclassified rate are evident when LM algorithm 

was used. The initialization of the random weights in the network results in an 

improved misclassified rate of the overall learning pattern. Additionally, an equal 

distribution of the normal and faulty reading in the training set is also important to 

avoid data overfitting when testing of the network is carried out. To conclude, it 

appears that LM was able to reach the minimum MSE in Table 4.3. The result 

demonstrates LM dominants in pattern recognition network against the other three 

training algorithm for the trip prediction of the thermal power plant boiler parameters. 
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Chapter 5. Intelligent Boiler Trip 
Monitoring Interface and Advisory 
Guide 

 

5.1 Introduction 

An Intelligent Monitoring Interface (IMI) is a human-machine interface system 

that tracks and improves the responses of an event associated with monitored 

equipment. It enables user to perform potentially complex tasks more effectively and 

quickly with greater accuracy. This is made possible by presenting users with 

information on the equipment condition, user’s next actions, and warnings of 

undesirable consequences and suggestions of an alternative action. The basic idea 

behind the IMI for a coal fired boiler unit is due to the limited capabilities of the current 

monitoring system. It does not allow simultaneous collaboration between plant 

supervisor and boiler operator when a trip occurred.  

In Chapter 4, we have discussed the computational optimization algorithm and 

network architecture of the boiler trip monitoring. Many researchers have been 

focusing on improving the monitoring system using various methods, see [5], [8]–[10], 

[14], [17], [46], [63], [64]. These methods include comparative analysis, hybrid fuzzy 

clustering, ANN, support vector machine, data mining, and a multi agent system to 

name a few. The next part of the intelligent monitoring is the interface development 

for the boiler trip advisory guide.  

In 2002, an expert system to manage abnormal condition of a manufacturing 

system has already been proposed by [65] where their main objective was to develop 

a system that was able to detect unusual events early, assess the potential impacts of 

the identified event, diagnose the root cause and provide operators with guided advice 

for an appropriate immediate actions. In their paper, “smart” generic and reusable 

objects known as “Generic Heaters” developed using Gensym Optegrity software were 

used to provide proactive diagnostic to manage these identified abnormality and 

performance indices. Generic Heaters are software objects containing diagnostic, fault 

models and advisory messages for managing over 80 faults typical for boilers, 



 

42 

 

furnaces, ethylene crackers and incinerators. Using their method for a 32 sensor 

parameter reading to identify the fault condition of a boiler will require over 2,560 

fault models objects to consider. This will be time consuming and may not be practical 

for real time implementation. Hence, in this work the method of using ANN as the 

prediction tool for fault detection and forecasting of a boiler’s abnormal reading is 

used instead. Additionally, the user interface will be developed using a simulation 

environment software to generate the data reading and prediction along with the 

advisory guide whenever a fault is forecasted. The following sections of this chapter 

will elaborate on the steps involved to design and develop the Graphical User Interface 

(GUI) of the advisory guide for the monitoring system using an Integrated 

Development Environment (IDE) program. The preliminary design of the user 

interface is based on the following flowchart (Figure 5.1). 

5.2 Power plant boiler monitoring interface 

An extension to the current monitoring system is the GUI development for both 

client side data representation and control and maintenance operations. The most 

common interface implementation of a monitoring system is through an on-site server 

where authenticated user access the data collected through their local workstation 

connected to a Virtual Private Network (VPN). Meanwhile, a remote server monitoring 

system allows data collected on site to be sent to a remote server and accessible through 

any standard web browsers (e.g. Mozilla, Explorer, or Google Chrome). Anyone with 

an authentic username and password can view the data without installing the client 

software. The advantage of the latter; plant staff, analyst and equipment and 

maintenance operators and technicians can simultaneously look at the data to 

collaborate on remedial actions [66]. Rather than delivering machine data in-house 

only (on-site control rooms), the Internet allows information to be accessible from 

anywhere, anytime.  

Ideally, plant operators of this monitoring system are made accessible at 

different levels, and possibly different types of views and control, depending on their 

profile, conditions of the system and the current task being executed. As suggested in 

the illustration in Figure 5.2, the operator is responsible in monitoring and inspecting 

physical condition of the equipment whenever an alarm is triggered on the monitoring 

system. 
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Figure 5.1 The flowchart outlining the features of the GUI  
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Figure 5.2 An illustration of the interaction between plant operator and the 

monitoring system 

 

A user interface is used to represent the functionality of the system by 

categorizing user actions and their working paradigms into interactive visual objects 

on a user’s screen or monitor. These important features of a user interface makes a 

system easier to use [67], [68]. Visualization and interactivity are important aspects 

when designing a monitoring system interface. This is because the graphical 

capabilities of a computer using images, buttons or animation, helps the user to easily 

navigate the system. Furthermore, the intractability between the system and the user 

allows simultaneous response to any changes or feedback of the system. This rich 

visual content allows user to gain useful practical insights into the monitoring systems 

[69]. However, to successfully put all the interactive and functionality features in a 

system; its development, testing and maintenance proved to be more challenging [68].  

Currently, there are many tools available to build a user interface for a wide 

range of engineering systems; the most common ones include MATLAB, LabVIEW, 

and SCADA. Other open source tools for some programming languages like Netbeans 

for JAVA and even a few with numerical computing libraries such as NumPy/SciPy 

for Phyton, and Numeric.js for JavaScript are now equipped with an Integrated 

Development Environment (IDE) to develop graphical interfaces [69]. However, they 

could be challenging to use for inexperienced programmers to develop interactive 

tools. To define a best fitting user interface to link the ANN boiler trip mechanism, a 

set of basic requirements of the system needs to be considered. They are listed as 

follows: 

 The knowledge of the system to be monitored needs to be specified 

 An executable user interface must be possible and logical based on the 

specification provided 
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 It must be feasible to verify properties and to validate the specification 

 It must be possible to classify users into different profiles 

 It must be possible to define the tasks that may be available to only some user 

profile 

Apart from the above listed requirements, the human factor is also an important 

feature; to achieve productivity gains from the monitoring system. This involved the 

main four personnel directly in contact with the monitoring system and its 

corresponding interface. They are: 

 Expert: An expert will be the direct person to contact for an alarm event 

involving an equipment sensor malfunctions or trips. The purpose of the user 

interface is to provide the expert on the equipment sensor installation, ANN 

design, and testing and diagnosis report. 

 Maintenance: The user interface will be used to display statistics or machine 

reading for various parameter measurements to the maintenance team. 

 Supervisor: The task of a supervisor is to manage the machinery processes and 

oversee the learning process of the embedded ANN into the system. Hence, the 

user interface will provide information regarding the movements of the plant 

equipment operators and the communication link and channel for information 

exchange between the two personnel. 

 Operators: Generally, the operators are the one handling the continuous 

innovation and improvements of the machinery. Furthermore, should there be 

any need for equipment changeover and reporting anomalies during 

inspections; direct communication to the supervisors are critical especially for 

triggered alarm or trip inspections. The user interface should provide the 

interaction medium in real time.  

The above requirements are known as the Human Machine Interaction (HMI). It 

provides the link between the ANN based monitoring system and the end user by 

providing the means for a long term analysis and aid improvements and innovation of 

the equipment [70], [71]. The monitoring system runs a boiler condition reading at 

regular intervals of one minute throughout the day. These captured data are then stored 

into a data management system, that manages them into a database as historical data 

and ease of retrieval to be analyse in the developed prediction model. To predict any 
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possible trip occurrences, a dedicated program was coded in a simulation environment 

software with neural network as discussed in the previous chapter.  

5.3 Power plant boiler trip advisory guide  

The output of the sample user interface consists of a time stamp and normalized 

data reading for the 32 parameters being observed, an identified number of parameter 

abnormalies for both warning and alarm indicator and an advisory message box alert 

detailing the root cause explanations and suggested actions to be carried out. A sample 

of the designed GUI is shown in Figure 5.3. Using a simulation environment software, 

the custom interface has been developed in Microsoft Windows 10 operating system, 

using a 2.20 GHz Intel® CoreTM i5-5200U CPU with 8GB RAM. One of the features 

added in the GUI is an update button, where for each button press; a new set of time 

stamp data is retrieved from the (.mat) file and displayed in the first column for review 

and analysis purpose. In this prototype, data displayed have already been normalized 

between the values of 0 to 1. This is due to the specification requirement of the 

developed neural network model which identifies faults when a reading is closer to the 

value of 1. As for the parameter anomalies feature in the GUI, a set of condition based 

algorithm is added to identify the number of warnings and alarms identified (if any) 

whenever the data reading is updated in the table.  

 

Meanwhile, in the parameter analysis section of the GUI, a button that generates 

the text file of the advisory guideline is included. The action performed when this 

button is pressed; it will open a text document on a separate window using the notepad 

program. In this text file, detailed information of the alarm/fault reading is displayed. 

Where the description of the parameters identified to be affected by the trip alert is 

listed with its suggested actions to be considered when an inspection or maintenance 

exercise is carried out on the parameter. 
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5.4 Boiler parameter sensitivity analysis 
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In chapter 3, a set of observed parameters were listed in Table 3.1 and these 

parameters were identified as crucial data for monitoring the performance of the 

overall boiler unit. To validate its impact on the boiler performance, a sensitivity 

analysis was carried out to see which parameters may have been the cause of the boiler 

trip. The outcome of the analysis is illustrated in the boxplot in Fig. 5.4.  

 

Figure 5.5. V5, V8 and V9 a sudden upsurge of temperature reading at interval 1835 to 

1837 

As illustrated here in the boxplots, there are a group of outliers identified 

between the 1501 to 1508 minute intervals for V20 and V21. This could be an indicator 

that the low super heater wall outlet parameters may be experiencing some 

disturbances causing some faulty reading which is about 12.6% exceeding the lower 

and upper bounds of the confidence intervals. Apart from these two parameters, three 

other parameters related to the super heater temperature were also showing a slight 

increment in its reading at intervals 1835 to 1837. They are V5, which is the super 

heater steam temperature, V8 the intermediate temperature (A) super heater exchange 

metal temperature, and V9 as the high temperature super heater inlet header metal 

temperature which were above the upper bounds of the confidence interval of 544.8C, 

567.7C, and 570.2C respectively. This can be seen in the snippet of the chart shown 

in Fig. 5.5. The correlation between these variables are unclear when analysed with a 
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statistical tool, hence the importance to use neural network to make the correlation 

between these variable reading.  

5.5 Summary 

A description of the proposed intelligent monitoring user interface has been 

presented and discussed. The advantages of the proposed system were described along 

with the comparison of a traditional and existing monitoring system. Some of the 

feedback provided on the advisory system were also provided. As a conclusion, the 

boiler fault condition identification tool and advisory guide was able to save thousands 

in revenue as well as the lives of people involve in the work of maintaining the boiler 

operation in the power plant. The gains for these improvements added to the existing 

monitoring system not only benefit the industry economically, but it also improved the 

overall optimization of the boiler equipment unit in a power plant.  
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Chapter 6. Conclusion and Future 
Work 
6.1 Conclusion 

Thermal power plant boiler unit trips often lead to the declining rate of boiler 

efficiency for the high utility availability demand. Due to the alarming rate of the 

frequent blackouts resulting from an unscheduled power unit trips, various new 

methods have been proposed for the diagnosis and monitoring of the boiler unit in a 

power plant. In Malaysia, a thermal power plant is an important asset and facility to 

generate and supply electricity demand of the country. Hence, the continuous 

development and commissioning of Manjung 4 plant in 2015, followed by Tanjung 

Bin coal fired plant in 2016, Manjung 5 coal-fired plant in 2017 and another 1MDB 

project planned for 2018 [50]. These new projects are a necessity to meet the demand 

of the growing number of users. However, building more utility plants does not 

necessarily resolve the boiler unit trip occurrences issue.  Despite new efforts to 

diagnose and monitor the trips, more research is needed to develop new system that is 

able to monitor and diagnose factors leading to the degradation of boiler unit(s) in a 

power plant.  

In chapter 2, a comprehensive literature review on the specific techniques most 

favoured to accomplish the task to monitor boiler performance was presented. Based 

on previous work, ANN has been identified as the most appropriate candidate. It has 

been widely applied in a number of successful applications for classifications task, 

forecasting, control systems and optimization and decision making. For instance, ANN 

has been reported to have successfully interpret the behaviour of machinery processes 

in energy conversion plants [29], [31], [38], [58], [72]–[74]. Commonly, large number 

of operational data is captured continuously by the on-line plant’s monitoring system 

for its proper operation. These are usually stored as parameter record and historical 

data in a database. By utilising these data, ANN can be used to simulate a power plant 

operation to recognize and identify boiler unit degradation that eventually leads to trips 

in an actual plant. Furthermore, a comparison study of the simulated data to an actual 

plant data can be used to assess the plant degradation rate. By being able to establish 
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the timeline of a boiler unit’s lifespan, better maintenance schedule and planning can 

be carried out.  

In chapter 3, the boiler unit operational parameters were presented. In big 

utility plant, detailed observation on each of its operational parameters is crucial. Due 

to the extent of the boiler complexity, the number of operational parameters to be used 

as sample in this work include the 32 most influential parameters to the boiler unit. 

The selection is based on the plant operator’s past experience and system knowledge. 

Identifying faults and trip condition of a boiler in its most effective operating condition 

requires in depth understanding and knowledge of its faulty parameters and factors 

causing the malfunctions. Since there are a large number of data obtained from the 

industry, irrelevant values and outliers need to be identified and removed accordingly.  

In chapter 4, an ANN model implementing the LM algorithm was presented. 

As suggested in the literature [29]–[31], a non-linear activation functions are better for 

modelling coal-fired thermal power plant. Hence, an MLP were used and simulations 

were carried out under an identical condition of 500 epochs, with 32 hidden neurons, 

pre-randomized initial weights and a hyperbolic tangent activation function. There 

were four training algorithm tested for their convergence speed, accuracy and 

robustness. They were LM, RProp, SCG and GDX. Simulation outcome and result 

showed LM has proven to be consistent in achieving the least MSE and MCR in all of 

the simulations.   

In chapter 5, major issues associated with an intelligent approach for an 

intelligent monitoring system was reported. Most of the issues was due to the high cost 

for deployment, relocation and set up [75]. Thus, the incorporation of neural network 

for boiler fault identification with an interactive GUI was also studied. In this chapter, 

an application of an intelligent monitoring GUI was presented and discussed. A 

simulation environment software was used to develop the GUI in a standard CPU setup 

of a windows based operating system. The advantages of the proposed system were 

described along with the comparison of a traditional and existing monitoring system.  

To conclude, the problems related to thermal power plant boiler trips were 

identified and analyzed with existing literatures. Comparison of existing monitoring 

systems and the research gap using various methods and approaches have also been 

highlighted and acknowledged. The boiler fault condition identification tool and 

advisory guide was able to save thousands in revenue as well as the lives of people 

involve in the work of maintaining the boiler operation in the power plant. The gains 
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for these improvements added to the existing monitoring system not only benefit the 

industry economically, but it also improved the overall optimization of the boiler 

equipment unit in a power plant.  

6.2 Future Works 

In developing the proposed advisory guide interface for the existing boiler 

power plant trip identification, some of the costing issues identified will be addressed. 

For instance, a portable executable file setup for the interface module should be 

considered. This is to avoid any additional cost on software installation and licensing 

to run the extended module.  

Another recommendation would be to look into other machine learning 

approach for feature selection and analysis. By enabling the intelligent feature 

selection module, the parameters monitored could be simplified and reduced to 

improve the overall efficiency of the monitoring system. One neural network method 

that could be considered is the Convolutional Neural Network (CNN). In recent 

studies, CNN has been widely used to extract robust and informative features from a 

set of sequential data [76], [77]. The collected real time data usually contain noise, 

CNN is used to extract only the most significant features. It does this through the 

convolutional layers (also known as convolutional kernels) by combining multiple 

local filters with the raw sequential data to generate invariant local features. Then, the 

following pooling layers extracts the sequence of the local robust features hence 

reducing the data spectrum in a multiple variables sequential data [77].  

Additionally, in a real-time computing process, plant controllers need to 

quickly make a decision based on the predicted output of the prediction model. To 

accelerate and simplify the overall computing process, a simpler network architecture 

for a faster predicted result are required. As a static feedforward ANN, an MLP may 

not be suitable when longer time steps are involved [78]. With the conventional 

Backpropagation Neural Network (BPNN), error signals flowing backwards has the 

tendency to either blow up or vanish. This means, more time will be needed for the 

model to simulate the analysis and produced a forecasted trip. To solve the issue, [79] 

addresses it by introducing a novel and time efficient gradient based method known as 

Long Short-Term Memory (LSTM). It enforces the constant error back flow of a 

traditional backpropagation method by applying a multiplicative gate that opens and 

closes the access to the constant flow creating a “constant error carousels”. Hence, to 
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further improve the current proposed monitoring system, integrating the LSTM may 

be consider as the next method for quicker trip predicted result. Finally, it is hope that 

the improved version of the proposed intelligent monitoring system can be 

implemented on an actual coal-fired power plant. 
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