298,293 research outputs found

    A Manufacturing Execution System using Siemens\u27 PC Based Automation Technology

    Get PDF
    The focus of any manufacturing operation is to establish better yields, reduced cycle times, increase quality, and handle dynamic demand/resource fluctuations. Over the past few years many manufacturing companies have implemented Enterprise Resource Planning (ERP) systems and they have proved themselves to be successful in achieving these goals. However, real-time data is required in order to portray an accurate account of the day-to-day and/or hourly product manufacturing operations. Retrieval of this real-lime data is a challenging task. A Manufacturing Execution System (MES) is a real-time information system that improves the performance of the shop floor operations by linking business planning, order entry, material management, purchasing and accounting to the controls on the factory equipment. Siemens\u27 PC-based automation technology is an emerging technology that appears to provide a robust architecture for integrating all elements of the manufacturing environment. Applications that range from simple control to distributed control and full-fledged MES can be developed using Siemens\u27 architecture. The primary focus of this thesis is applied research to facilitate the development of a Manufacturing Execution System to control a flexible manufacturing system, CAMCELL, using Siemens\u27 PC-based automation technology and Microsoft\u27s database technology. CAMCELL contains two CNC machining centers, assembly robots, and a vision system, all of which are interlinked by a material handling system. The software architecture of the CAMCELL is based on NIST\u27s five level hierarchy. Specifically, it contains functional modules for order entry, scheduling, and routing. In addition to these functional modules, there are various support modules. In this study, we have developed software architecture to achieve vertical integration of the process control layer, the MES layer and the ERP layer. Using Siemens\u27 WinCC software, real-time process data was collected and integrated into an MES database. The study demonstrates how order information stored in a high-level database is converted into useful information for the control layer. The study also demonstrates the ability of WinCC and Visual FoxPro to update the production data into the MES database. Various Operator interface and database screens are proposed for CAMCELL

    Benchmarking VisualStudio.NET for the development and implementation of a manufacturing execution system

    Get PDF
    The focus of this thesis is to show the utility of Microsoft\u27s\u27 .NET framework in developing and implementing a MES system. The manufacturing environment today, more than ever, is working towards achieving better yields, productivity, quality, and customer satisfaction. Companies such as DELL are rapidly outgrowing their competition due to better management of their product lifecycles. The time between receiving a new order to the time the final product is shipped is getting shorter. Historically, business management applications such as Enterprise Resource Planning (ERP) systems and Customer Relationship Management (CRM) systems have been implemented without too much importance given to the operational and shop floor needs. The fact is that these business systems can be successful only when they are properly integrated with real-time data from the shop floor, which is the core of any manufacturing set-up. A Manufacturing Execution System or a MES is this link between the shop floor and the top floor. MESA international defines MES as Systems that deliver information enabling the optimization of production activities from order launch to finished goods Thus, a MES provides the right information to the right people at the right time in a right format, to help them make well-informed decisions. Thus, a necessity for an efficient MES is high capability of integration with the existing systems on the operational level. This is where Microsoft\u27s\u27 VS.NET fits in. Microsoft defines .NET as A set of software technologies for connecting information, people, systems and devices . The vision of .NET is to enable the end user to connect to information from any place at anytime, using any device and in a manner that is independent of the platform on which the service is based. The building block of the .NET framework is the Common Language Runtime or CLR, which is capable of converting data from its original format into a format understandable to .NET and then use that format to interface with its client. This feature that .NET provides holds the key in the context of a MES development and implementation. The aim of this applied research is to design a MES using VS.NET to control the working of a Flexible Manufacturing System (FMS) namely CAMCELL. The architecture used for the MES will then be gauged against an MES implementation done previously using a Siemens\u27 PC-based automation technology and Visual FoxPro. This study will integrate the Siemens\u27 technology with the .NET framework to enhance the resulting MES efficiency. The shop floor details or the real-time data collection will be done using the databases from WinCC and data aggregation and manipulation will be done within the .NET framework. The software architecture used for this study will achieve vertical integration between the CAMCELL ERP layer, the MES layer and the Control layer. The study will demonstrate how the data stored in a high level ERP database can be converted into useful information for the control layer for process control and also how real-time information gathered from the control layer can be filtered into useful information up to the ERP layer to facilitate the decision making process. VS.NET user interface screens will be proposed to support these activities. The performance of the proposed architecture will be compared to that from previous studies, thus benchmarking VS.NET for the implementation of the MES

    Modeling of Traceability Information System for Material Flow Control Data.

    Get PDF
    This paper focuses on data modeling for traceability of material/work flow in information layer of manufacturing control system. The model is able to trace all associated data throughout the product manufacturing from order to final product. Dynamic data processing of Quality and Purchase activities are considered in data modeling as well as Order and Operation base on lots particulars. The modeling consisted of four steps and integrated as one final model. Entity-Relationships Modeling as data modeling methodology is proposed. The model is reengineered with Toad Data Modeler software in physical modeling step. The developed model promises to handle fundamental issues of a traceability system effectively. It supports for customization and real-time control of material in flow in all levels of manufacturing processes. Through enhanced visibility and dynamic store/retrieval of data, all traceability usages and applications is responded. Designed solution is initially applicable as reference data model in identical lot-base traceability system

    Technologie RFID a Blochkchain v dodavatelském řetězci

    Get PDF
    The paper discusses the possibility of combining RFID and Blockchain technology to more effectively prevent counterfeiting of products or raw materials, and to solve problems related to production, logistics and storage. Linking these technologies can lead to better planning by increasing the transparency and traceability of industrial or logistical processes or such as efficient detection of critical chain sites.Příspěvek se zabývá možností kombinace technologií RFID a Blockchain pro účinnější zabránění padělání výrobků či surovin a řešení problémů spojených s výrobou, logistikou a skladováním. Spojení těchto technologií může vést k lepšímu plánování díky vyšší transparentnosti a sledovatelnosti průmyslových nebo logistických procesů, nebo například k efektivnímu zjišťování kritických míst řetězce

    Towards a Novel Cooperative Logistics Information System Framework

    Get PDF
    Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    The Dag-Brucken ASRS Case Study

    Get PDF
    In 1996 an agreement was made between a well-known beverage manufacturer, Super-Cola Taiwan, (SCT) and a small Australian electrical engineering company, Dag-Brücken ASRS Pty Ltd, (DB), to provide an automated storage and retrieval system (ASRS) facility as part of SCT’s production facilities in Asia. Recognising the potential of their innovative and technically advanced design, DB was awarded a State Premiers Export Award and was a finalist in that year’s National Export Awards. The case tracks the development and subsequent implementation of the SCT ASRS project, setting out to highlight how the lack of appropriate IT development processes contributed to the ultimate failure of the project and the subsequent winding up of DB only one year after being honoured with these prestigious awards. The case provides compelling evidence of the types of project management incompetency that, from the literature, appears to contribute to the high failure rate in IT projects. For confidentiality reasons, the names of the principal parties are changed, but the case covers actual events documented by one of the project team members as part of his postgraduate studies, providing an example of the special mode of evidence collection that Yin (1994) calls ‘participant-observation’
    corecore