65,507 research outputs found

    Development of a technique for predicting the human response to an emergency situation

    Get PDF
    This paper presents development work on a new approach for predicting the human response to an emergency situation. The study builds upon an initial investigation in which 20 participants were asked to predict what actions they would take in the event of a domestic fire [1]. The development work involved a retest with an additional 20 participants to investigate the reliability of the approach. Furthermore, the analysis procedure was improved such that the results represented more accurately those which could be obtained from practical application of the approach. As found in the initial investigation, the frequencies and sequences of the reported acts had significant relationships with a study of behavior in real fires [2] (Spearmanā€™s rho: 0.323, N=55, p<0.05) and (Spearmanā€™s rho: 0.340, N=37, p<0.05), respectively. Further development work is required, but the results indicate that the approach may have use for predicting human behavior in emergencies

    Anytime Cognition: An information agent for emergency response

    Get PDF
    Planning under pressure in time-constrained environments while relying on uncertain information is a challenging task. This is particularly true for planning the response during an ongoing disaster in a urban area, be that a natural one, or a deliberate attack on the civilian population. As the various activities pertaining to the emergency response need to be coordinated in response to multiple reports from the disaster site, a user finds itself cognitively overloaded. To address this issue, we designed the Anytime Cognition (ANTICO) concept to assist human users working in time-constrained environments by maintaining a manageable level of cognitive workload over time. Based on the ANTICO concept, we develop an agent framework for proactively managing a userā€™s changing information requirements by integrating information management techniques with probabilistic plan recognition. In this paper, we describe a prototype emergency response application in the context of a subset of the attacks devised by the American Department of Homeland Security

    Introducing the STAMP method in road tunnel safety assessment

    Get PDF
    After the tremendous accidents in European road tunnels over the past decade, many risk assessment methods have been proposed worldwide, most of them based on Quantitative Risk Assessment (QRA). Although QRAs are helpful to address physical aspects and facilities of tunnels, current approaches in the road tunnel field have limitations to model organizational aspects, software behavior and the adaptation of the tunnel system over time. This paper reviews the aforementioned limitations and highlights the need to enhance the safety assessment process of these critical infrastructures with a complementary approach that links the organizational factors to the operational and technical issues, analyze software behavior and models the dynamics of the tunnel system. To achieve this objective, this paper examines the scope for introducing a safety assessment method which is based on the systems thinking paradigm and draws upon the STAMP model. The method proposed is demonstrated through a case study of a tunnel ventilation system and the results show that it has the potential to identify scenarios that encompass both the technical system and the organizational structure. However, since the method does not provide quantitative estimations of risk, it is recommended to be used as a complementary approach to the traditional risk assessments rather than as an alternative. (C) 2012 Elsevier Ltd. All rights reserved

    Using visual analytics to develop situation awareness in astrophysics

    Get PDF
    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness

    Technical approaches for measurement of human errors

    Get PDF
    Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations

    In-situ simulation: A different approach to patient safety through immersive training

    Get PDF
    Simulation is becoming more and more popular in the field of healthcare education. The main concern for some faculty is knowing how to organise simulation training sessions when there is no simulation centre as they are not yet widely available and their cost is often prohibitive. In medical education, the pedagogic objectives are mainly aimed at improving the quality of care as well as patient safety. To that effect, a mobile training approach whereby simulation-based education is done at the point of care, outside simulation centres, is particularly appropriate. It is usually called ā€œin-situ simulationā€. This is an approach that allows training of care providers as a team in their normal working environment. It is particularly useful to observe human factors and train team members in a context that is their real working environment. This immersive training approach can be relatively low cost and enables to identify strengths and weaknesses of a healthcare system. This article reminds readers of the principle of Ā« context specific learning Ā» that is needed for the good implementation of simulation-based education in healthcare while highlighting the advantages, obstacles, and challenges to the development of in-situ simulation in hospitals. The objective is to make clinical simulation accessible to all clinicians for the best interests of the patient.Peer reviewe

    Addressing the challenges of ECMO simulation

    Get PDF
    This document is the Accepted Manuscript. The final, definitive version of this paper has been published in Perfusion, May 2018, published by SAGE Publishing, All rights reserved.Introduction/Aim: The patientā€™s condition and high-risk nature of extracorporeal membrane oxygenation (ECMO) therapy force clinical services to ensure clinicians are properly trained and always ready to deal effectively with critical situations. Simulation-based education (SBE), from the simplest approaches to the most immersive modalities, helps promote optimum individual and team performance. The risks of SBE are negative learning, inauthenticity in learning and over-reliance on the participantsā€™ suspension of disbelief. This is especially relevant to ECMO SBE as circuit/patient interactions are difficult to fully simulate without confusing circuit alterations. Methods: Our efforts concentrate on making ECMO simulation easier and more realistic in order to reduce the current gap there is between SBE and real ECMO patient care. Issues to be overcome include controlling the circuit pressures, system failures, patient issues, blood colour and cost factors. Key to our developments are the hospital-university collaboration and research funding. Results: A prototype ECMO simulator has been developed that allows for realistic ECMO SBE. The system emulates the ECMO machine interface with remotely controllable pressure parameters, haemorrhaging, line chattering, air bubble noise and simulated blood colour change. Conclusion: The prototype simulator allows the simulation of common ECMO emergencies through innovative solutions that enhance the fidelity of ECMO SBE and reduce the requirement for suspension of disbelief from participants. Future developments will encompass the patient cannulation aspect.Peer reviewe
    • ā€¦
    corecore