219 research outputs found

    State-of-the-Art of Hand Exoskeleton Systems

    Get PDF
    This paper deals with the analysis of the state-of-the-art of robotic hand exoskeletons (updated at May 2011), which is intended as the first step of a designing activity. A large number of hand exoskeletons (both products and prototypes) that feature some common characteristics and many special peculiarities are reported in the literature. Indeed, in spite of very similar functionalities, different hand exoskeletons can be extremely different for the characteristics of their mechanism architectures, control systems and working principles. The aim of this paper is to provide the reader with a complete and schematic picture of the state-of-the-art of hand exoskeletons. The focus is placed on the description of the main aspects that are involved in the exoskeleton design such as the system kinematics, the actuator systems, the transmission parts and the control schemes. Additionally, the critical issues provided by the literature analysis are discussed in order to enlighten the differences and the common features of different practical solutions. This paper may help to understand both the reasons why certain solutions are proposed for the different applications and the advantages and drawbacks of the different designs proposed in the literature. The motivation of this study is the need to design a new hand exoskeleton for rehabilitation purposes

    The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons

    Get PDF
    This article presents the development of a power augmentation and rehabilitation exoskeleton based on a novel actuator. The proposed soft actuators are extensor bending pneumatic artificial muscles. This type of soft actuator is derived from extending McKibben artificial muscles by reinforcing one side to prevent extension. This research has experimentally assessed the performance of this new actuator and an output force mathematical model for it has been developed. This new mathematical model based on the geometrical parameters of the extensor bending pneumatic artificial muscle determines the output force as a function of the input pressure. This model is examined experimentally for different actuator sizes. After promising initial experimental results, further model enhancements were made to improve the model of the proposed actuator. To demonstrate the new bending actuators a power augmentation and rehabilitation soft glove has been developed. This soft hand exoskeleton is able to fit any adult hand size without the need for any mechanical system changes or calibration. EMG signals from the human hand have been monitored to prove the performance of this new design of soft exoskeleton. This power augmentation and rehabilitation wearable robot has been shown to reduce the amount of muscles effort needed to perform a number of simple grasps

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Exploring the Design of a Simultaneous, Parallel, Discrete Joint Control Orthosis for Hand Rehabilitation

    Get PDF
    This project explores the design of a hand orthosis for rehabilitation which builds upon several pre-existing designs to create a novel mechanism which can provide targeted therapy to one or more discrete joints simultaneously across the lower forearm. This work expands upon and improves the capabilities of hand orthoses to move beyond common design limitations such as controlling only entire fingers or immobilizing crucial regions such as the wrist

    Wearable exoskeleton systems based-on pneumatic soft actuators and controlled by parallel processing

    Get PDF
    Human assistance innovation is essential in an increasingly aging society and one technology that may be applicable is exoskeletons. However, traditional rigid exoskeletons have many drawbacks. This research includes the design and implementation of upper-limb power assist and rehabilitation exoskeletons based on pneumatic soft actuators. A novel extensor-contractor pneumatic muscle has been designed and constructed. This new actuator has bidirectional action, allowing it to both extend and contract, as well as create force in both directions. A mathematical model has been developed for the new novel actuator which depicts the output force of the actuator. Another new design has been used to create a novel bending pneumatic muscle, based on an extending McKibben muscle and modelled mathematically according to its geometric parameters. This novel bending muscle design has been used to create two versions of power augmentation gloves. These exoskeletons are controlled by adaptive controllers using human intention. For finger rehabilitation a glove has been developed to bend the fingers (full bending) by using our novel bending muscles. Inspired by the zero position (straight fingers) problem for post-stroke patients, a new controllable stiffness bending actuator has been developed with a novel prototype. To control this new rehabilitation exoskeleton, online and offline controller systems have been designed for the hand exoskeleton and the results have been assessed experimentally. Another new design of variable stiffness actuator, which controls the bending segment, has been developed to create a new version of hand exoskeletons in order to achieve more rehabilitation movements in the same single glove. For Forearm rehabilitation, a rehabilitation exoskeleton has been developed for pronation and supination movements by using the novel extensor-contractor pneumatic muscle. For the Elbow rehabilitation an elbow rehabilitation exoskeleton was designed which relies on novel two-directional bending actuators with online and offline feedback controllers. Lastly for upper-limb joint is the wrist, we designed a novel all-directional bending actuator by using the moulding bladder to develop the wrist rehabilitation exoskeleton by a single all-directional bending muscle. Finally, a totally portable, power assistive and rehabilitative prototype has been developed using a parallel processing intelligent control chip

    The Research on Soft Pneumatic Actuators in Italy: Design Solutions and Applications

    Get PDF
    Interest in soft actuators has increased enormously in the last 10 years. Thanks to their compliance and flexibility, they are suitable to be employed to actuate devices that must safely interact with humans or delicate objects or to actuate bio-inspired robots able to move in hostile environments. This paper reviews the research on soft pneumatic actuators conducted in Italy, focusing on mechanical design, analytical modeling, and possible application. A classification based on the geometry is proposed, since a wide set of architectures and manufacturing solutions are available. This aspect is confirmed by the extent of scenarios in which researchers take advantage of such systems’ improved flexibility and functionality. Several applications regarding bio-robotics, bioengineering, wearable devices, and more are presented and discussed

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location
    • …
    corecore