712 research outputs found

    ISCR Annual Report: Fical Year 2004

    Full text link

    Full potential methods for analysis/design of complex aerospace configurations

    Get PDF
    The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry

    Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991

    Computational Methods in Science and Engineering : Proceedings of the Workshop SimLabs@KIT, November 29 - 30, 2010, Karlsruhe, Germany

    Get PDF
    In this proceedings volume we provide a compilation of article contributions equally covering applications from different research fields and ranging from capacity up to capability computing. Besides classical computing aspects such as parallelization, the focus of these proceedings is on multi-scale approaches and methods for tackling algorithm and data complexity. Also practical aspects regarding the usage of the HPC infrastructure and available tools and software at the SCC are presented

    Modelling and simulations of reactor neutron noise induced by mechanical vibrations

    Get PDF
    Mechanical vibrations of core internals are among the main perturbations that induce oscillations in the neutron flux field, also known as neutron noise. In this work, different simulation models for the study of the influence of the mechanical vibrations of fuel assemblies on the neutron flux in the reactor core have been discussed. These methodologies employ the diffusion approximation, with or without a previous homogenization model, to simulate the neutron noise in the time or the frequency domain. The diffusion-based approach is expected to be less accurate in the vicinity of the vibrating fuel assemblies, but correct when considering distances larger than a few diffusion lengths away from the perturbation. All methodologies provide consistent results and can reproduce typical features of the neutron noise induced by mechanical vibrations of core components. First, FEMFFUSION can perform simulations in both the time and frequency domains. Second, CORE SIM + can be used to study various neutron noise scenarios in realistic three-dimensional reactor configurations. The third methodology is centred on using commercial codes as CASMO-5, SIMULATE-3 and SIMULATE-3K. This methodology allows time domain simulations of the neutron noise induced by different neutron noise sources in a nuclear reactor. Finally, a model for time-dependent geometry is implemented for the code system ATHLET/QUABOX-CUBBOX employing a cross-section-based approach for encoding water gap width variations at the reflector

    COMPUTATIONAL SCIENCE CENTER

    Full text link

    Numerical Simulations of Shock and Rarefaction Waves Interacting With Interfaces in Compressible Multiphase Flows

    Full text link
    Developing a highly accurate numerical framework to study multiphase mixing in high speed flows containing shear layers, shocks, and strong accelerations is critical to many scientific and engineering endeavors. These flows occur across a wide range of scales: from tiny bubbles in human tissue to massive stars collapsing. The lack of understanding of these flows has impeded the success of many engineering applications, our comprehension of astrophysical and planetary formation processes, and the development of biomedical technologies. Controlling mixing between different fluids is central to achieving fusion energy, where mixing is undesirable, and supersonic combustion, where enhanced mixing is important. Iron, found throughout the universe and a necessary component for life, is dispersed through the mixing processes of a dying star. Non-invasive treatments using ultrasound to induce bubble collapse in tissue are being developed to destroy tumors or deliver genes to specific cells. Laboratory experiments of these flows are challenging because the initial conditions and material properties are difficult to control, modern diagnostics are unable to resolve the flow dynamics and conditions, and experiments of these flows are expensive. Numerical simulations can circumvent these difficulties and, therefore, have become a necessary component of any scientific challenge. Advances in the three fields of numerical methods, high performance computing, and multiphase flow modeling are presented: (i) novel numerical methods to capture accurately the multiphase nature of the problem; (ii) modern high performance computing paradigms to resolve the disparate time and length scales of the physical processes; (iii) new insights and models of the dynamics of multiphase flows, including mixing through hydrodynamic instabilities. These studies have direct applications to engineering and biomedical fields such as fuel injection problems, plasma deposition, cancer treatments, and turbomachinery.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133458/1/marchdf_1.pd
    corecore