10,839 research outputs found

    Investigation of finite-volume methods to capture shocks and turbulence spectra in compressible flows

    Get PDF
    The aim of the present paper is to provide a comparison between several finite-volume methods of different numerical accuracy: second-order Godunov method with PPM interpolation and high-order finite-volume WENO method. The results show that while on a smooth problem the high-order method perform better than the second-order one, when the solution contains a shock all the methods collapse to first-order accuracy. In the context of the decay of compressible homogeneous isotropic turbulence with shocklets, the actual overall order of accuracy of the methods reduces to second-order, despite the use of fifth-order reconstruction schemes at cell interfaces. Most important, results in terms of turbulent spectra are similar regardless of the numerical methods employed, except that the PPM method fails to provide an accurate representation in the high-frequency range of the spectra. It is found that this specific issue comes from the slope-limiting procedure and a novel hybrid PPM/WENO method is developed that has the ability to capture the turbulent spectra with the accuracy of a high-order method, but at the cost of the second-order Godunov method. Overall, it is shown that virtually the same physical solution can be obtained much faster by refining a simulation with the second-order method and carefully chosen numerical procedures, rather than running a coarse high-order simulation. Our results demonstrate the importance of evaluating the accuracy of a numerical method in terms of its actual spectral dissipation and dispersion properties on mixed smooth/shock cases, rather than by the theoretical formal order of convergence rate.Comment: This paper was previously composed of 2 parts, and this submission was part 1. It is now replaced by the combined pape

    Turbulent jet simulation using high-order DG methods for aeroacoustics analysis

    Full text link
    In this work, a high-order discontinuous Galerkin (DG) method is used to perform a large-eddy simulation (LES) of a subsonic isothermal jet at high Reynolds number Re D = 10^6 on a fully un-structured mesh. Its radiated acoustic field is computed using the Ffowcs Williams and Hawkings formulation. In order to assess the accuracy of the DG method, the simulation results are compared to experimental measurements and a reference simulation based on a finite volume method. The comparisons are made on the flow quantities (mean, rms and spectra) and pressure far field (rms and spectra)

    Numerical studies towards practical large-eddy simulation

    Get PDF
    Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine

    Hybrid Spectral Difference/Embedded Finite Volume Method for Conservation Laws

    Full text link
    A novel hybrid spectral difference/embedded finite volume method is introduced in order to apply a discontinuous high-order method for large scale engineering applications involving discontinuities in the flows with complex geometries. In the proposed hybrid approach, the finite volume (FV) element, consisting of structured FV subcells, is embedded in the base hexahedral element containing discontinuity, and an FV based high-order shock-capturing scheme is employed to overcome the Gibbs phenomena. Thus, a discontinuity is captured at the resolution of FV subcells within an embedded FV element. In the smooth flow region, the SD element is used in the base hexahedral element. Then, the governing equations are solved by the SD method. The SD method is chosen for its low numerical dissipation and computational efficiency preserving high-order accurate solutions. The coupling between the SD element and the FV element is achieved by the globally conserved mortar method. In this paper, the 5th-order WENO scheme with the characteristic decomposition is employed as the shock-capturing scheme in the embedded FV element, and the 5th-order SD method is used in the smooth flow field. The order of accuracy study and various 1D and 2D test cases are carried out, which involve the discontinuities and vortex flows. Overall, it is shown that the proposed hybrid method results in comparable or better simulation results compared with the standalone WENO scheme when the same number of solution DOF is considered in both SD and FV elements.Comment: 27 pages, 17 figures, 2 tables, Accepted for publication in the Journal of Computational Physics, April 201
    • …
    corecore