98,977 research outputs found

    ARCHITECTURE OPTIMIZATION, TRAINING CONVERGENCE AND NETWORK ESTIMATION ROBUSTNESS OF A FULLY CONNECTED RECURRENT NEURAL NETWORK

    Get PDF
    Recurrent neural networks (RNN) have been rapidly developed in recent years. Applications of RNN can be found in system identification, optimization, image processing, pattern reorganization, classification, clustering, memory association, etc. In this study, an optimized RNN is proposed to model nonlinear dynamical systems. A fully connected RNN is developed first which is modified from a fully forward connected neural network (FFCNN) by accommodating recurrent connections among its hidden neurons. In addition, a destructive structure optimization algorithm is applied and the extended Kalman filter (EKF) is adopted as a network\u27s training algorithm. These two algorithms can seamlessly work together to generate the optimized RNN. The enhancement of the modeling performance of the optimized network comes from three parts: 1) its prototype - the FFCNN has advantages over multilayer perceptron network (MLP), the most widely used network, in terms of modeling accuracy and generalization ability; 2) the recurrency in RNN network make it more capable of modeling non-linear dynamical systems; and 3) the structure optimization algorithm further improves RNN\u27s modeling performance in generalization ability and robustness. Performance studies of the proposed network are highlighted in training convergence and robustness. For the training convergence study, the Lyapunov method is used to adapt some training parameters to guarantee the training convergence, while the maximum likelihood method is used to estimate some other parameters to accelerate the training process. In addition, robustness analysis is conducted to develop a robustness measure considering uncertainties propagation through RNN via unscented transform. Two case studies, the modeling of a benchmark non-linear dynamical system and a tool wear progression in hard turning, are carried out to testify the development in this dissertation. The work detailed in this dissertation focuses on the creation of: (1) a new method to prove/guarantee the training convergence of RNN, and (2) a new method to quantify the robustness of RNN using uncertainty propagation analysis. With the proposed study, RNN and related algorithms are developed to model nonlinear dynamical system which can benefit modeling applications such as the condition monitoring studies in terms of robustness and accuracy in the future

    An analysis of involuntary excess reserves, monetary policy and risk-taking behaviour of Chinese banks

    Get PDF
    In this paper, we examine the effects of monetary policy on the risk-taking behaviour of Chinese banks in the presence of involuntary excess reserves based on a sample of 95 banks. We find that involuntary excess reserves lead to more aggressive risk-taking suggesting that large involuntary excess reserves stimulate the rapid expansion of credit and the price bubble in the Chinese financial market. However, banks with larger involuntary excess reserves tend to reduce risk-taking more rapidly under the tightening monetary policy regime. The paper sheds light on the effectiveness of government monetary policy in reducing the risk-taking behaviour of banks in an emerging market where involuntary excess reserves are present

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Increasing robustness of pairwise methods for effective connectivity in Magnetic Resonance Imaging by using fractional moment series of BOLD signal distributions

    Full text link
    Estimating causal interactions in the brain from functional magnetic resonance imaging (fMRI) data remains a challenging task. Multiple studies have demonstrated that all current approaches to determine direction of connectivity perform poorly even when applied to synthetic fMRI datasets. Recent advances in this field include methods for pairwise inference, which involve creating a sparse connectome in the first step, and then using a classifier in order to determine the directionality of connection between of every pair of nodes in the second step. In this work, we introduce an advance to the second step of this procedure, by building a classifier based on fractional moments of the BOLD distribution combined into cumulants. The classifier is trained on datasets generated under the Dynamic Causal Modeling (DCM) generative model. The directionality is inferred based upon statistical dependencies between the two node time series, e.g. assigning a causal link from time series of low variance to time series of high variance. Our approach outperforms or performs as well as other methods for effective connectivity when applied to the benchmark datasets. Crucially, it is also more resilient to confounding effects such as differential noise level across different areas of the connectome.Comment: 41 pages, 12 figure

    The Dark Side of Shareholder Protection: Cross-country Evidence from Innovation Performance

    Get PDF
    Proponents of minority shareholder protection state that national legal institutions protecting small investors boost stock markets and, in turn, long-term countries’ performance. In this paper, we empirically challenge this argument. We perform three-stage least-square estimation on a sample of 48 countries over 1993-2006 and find that countries with stronger shareholder protection tend to have larger market capitalization but also lower innovation activity. We cope with stock market’s endogeneity and industry heterogeneity, and circumvent omitted variables bias, so that this finding is unlikely to be driven by misspecification problems. We interpret our estimation results arguing that stronger shareholder protection may depress, rather than encourage, the most valuable corporate productions, because it enables small and diversified shareholders to play opportunistic actions against undiversified stockholders, after specific investments are undertaken by the company; innovation activity, largely based on specific investing, is particularly exposed to this problem.shareholder protection, innovation, specific investments, inter-shareholder opportunism.

    Functional factor analysis for periodic remote sensing data

    Get PDF
    We present a new approach to factor rotation for functional data. This is achieved by rotating the functional principal components toward a predefined space of periodic functions designed to decompose the total variation into components that are nearly-periodic and nearly-aperiodic with a predefined period. We show that the factor rotation can be obtained by calculation of canonical correlations between appropriate spaces which make the methodology computationally efficient. Moreover, we demonstrate that our proposed rotations provide stable and interpretable results in the presence of highly complex covariance. This work is motivated by the goal of finding interpretable sources of variability in gridded time series of vegetation index measurements obtained from remote sensing, and we demonstrate our methodology through an application of factor rotation of this data.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS518 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore