335 research outputs found

    Foreword Special Issue on "New Simulation Methodologies for Next-Generation TCAD Tools"

    Get PDF
    Technology computer-aided design (TCAD) is an integral part of the development process of semiconductor technologies and devices, a field which has become increasingly complex and heterogeneous. Processing of integrated circuits requires nowadays over 400 process steps, and the resulting devices often have an intricate 3-D structure and contain various specifically designed materials. The full device behavior can only be understood by considering effects on all length scales from atomistic (material properties, interfaces, defects, and so on), to nanometric (quantum confinement, non-bulk properties, tunneling, ballistic transport, and so on), to full-chip dimensions (strain, heat transport, and so on), and time scales from femtoseconds (scattering, ferroelectric switching time, and so on) to seconds (trapping times, degradation, and so on). Voltages, currents, and charges have been scaled to such low levels that statistical effects and process variations have a strong impact. Devices based on new materials (e.g., 2-D crystals) and physical principles (ferroelectrics, magnetic materials, qubits, and so on) challenge standard TCAD approaches. While the simulation methods developed by the physics community can describe the basic device behavior, they often lack important simulation capabilities like, for example, transient simulations or integration with other TCAD tools, and are often too slow for daily use. Due to the complexity of semiconductor technology, it becomes more and more difficult to assess the impact of a change in processing or device structure on circuit performance by looking at a single aspect of an isolated device under idealized conditions. Instead, a TCAD tool chain is required which can handle realistic device structures embedded in a chip environment. New methodologies are required for all aspects of TCAD to ensure an efficient tool chain covering from atomistic effects to circuit behavior based on flexible simulation models that can handle new materials, device principles, and the ensuing large-scale simulations and that make use of artificial intelligence for well-chosen (sub)routines to decrease the overall simulation time. This Special Issue features six invited and 18 regular papers that address these problems

    A Multi-Method Simulation Toolbox to Study Performance and Variability of Nanowire FETs

    Get PDF
    An in-house-built three-dimensional multi-method semi-classical/classical toolbox has been developed to characterise the performance, scalability, and variability of state-of-the-art semiconductor devices. To demonstrate capabilities of the toolbox, a 10 nm gate length Si gate-all-around field-effect transistor is selected as a benchmark device. The device exhibits an off-current ( IOFF ) of 0.03 μ A/ μ m, and an on-current ( ION ) of 1770 μ A/ μ m, with the ION/IOFF ratio 6.63×104 , a value 27% larger than that of a 10.7 nm gate length Si FinFET. The device SS is 71 mV/dec, no far from the ideal limit of 60 mV/dec. The threshold voltage standard deviation due to statistical combination of four sources of variability (line- and gate-edge roughness, metal grain granularity, and random dopants) is 55.5 mV, a value noticeably larger than that of the equivalent FinFET (30 mV). Finally, using a fluctuation sensitivity map, we establish which regions of the device are the most sensitive to the line-edge roughness and the metal grain granularity variability effects. The on-current of the device is strongly affected by any line-edge roughness taking place near the source-gate junction or by metal grains localised between the middle of the gate and the proximity of the gate-source junction

    Statistical circuit simulations - from ‘atomistic’ compact models to statistical standard cell characterisation

    Get PDF
    This thesis describes the development and application of statistical circuit simulation methodologies to analyse digital circuits subject to intrinsic parameter fluctuations. The specific nature of intrinsic parameter fluctuations are discussed, and we explain the crucial importance to the semiconductor industry of developing design tools which accurately account for their effects. Current work in the area is reviewed, and three important factors are made clear: any statistical circuit simulation methodology must be based on physically correct, predictive models of device variability; the statistical compact models describing device operation must be characterised for accurate transient analysis of circuits; analysis must be carried out on realistic circuit components. Improving on previous efforts in the field, we posit a statistical circuit simulation methodology which accounts for all three of these factors. The established 3-D Glasgow atomistic simulator is employed to predict electrical characteristics for devices aimed at digital circuit applications, with gate lengths from 35 nm to 13 nm. Using these electrical characteristics, extraction of BSIM4 compact models is carried out and their accuracy in performing transient analysis using SPICE is validated against well characterised mixed-mode TCAD simulation results for 35 nm devices. Static d.c. simulations are performed to test the methodology, and a useful analytic model to predict hard logic fault limitations on CMOS supply voltage scaling is derived as part of this work. Using our toolset, the effect of statistical variability introduced by random discrete dopants on the dynamic behaviour of inverters is studied in detail. As devices scaled, dynamic noise margin variation of an inverter is increased and higher output load or input slew rate improves the noise margins and its variation. Intrinsic delay variation based on CV/I delay metric is also compared using ION and IEFF definitions where the best estimate is obtained when considering ION and input transition time variations. Critical delay distribution of a path is also investigated where it is shown non-Gaussian. Finally, the impact of the cell input slew rate definition on the accuracy of the inverter cell timing characterisation in NLDM format is investigated

    Large-scale simulations of intrinsic parameter fluctuations in nano-scale MOSFETs

    Get PDF
    Intrinsic parameter fluctuations have become a serious obstacle to the continued scaling of MOSFET devices, particularly in the sub-100 nm regime. The increase in intrinsic parameter fluctuations means that simulations on a statistical scale are necessary to capture device parameter distributions. In this work, large-scale simulations of samples of 100,000s of devices are carried out in order to accurately characterise statistical variability of the threshold voltage in a real 35 nm MOSFET. Simulations were performed for the two dominant sources of statistical variability – random discrete dopants (RDD) and line edge roughness (LER). In total ∼400,000 devices have been simulated, taking approximately 500,000 CPU hours (60 CPU years). The results reveal the true shape of the distribution of threshold voltage, which is shown to be positively skewed for random dopants and negatively skewed for line edge roughness. Through further statistical analysis and data mining, techniques for reconstructing the distributions of the threshold voltage are developed. By using these techniques, methods are demonstrated that allow statistical enhancement of random dopant and line edge roughness simulations, thereby reducing the computational expense necessary to accurately characterise their effects. The accuracy of these techniques is analysed and they are further verified against scaled and alternative device architectures. The combined effects of RDD and LER are also investigated and it is demonstrated that the statistical combination of the individual RDD and LER-induced distributions of threshold voltage closely matches that obtained from simulations. By applying the statistical enhancement techniques developed for RDD and LER, it is shown that the computational cost of characterising their effects can be reduced by 1–2 orders of magnitude

    Modelling and simulation study of NMOS Si nanowire transistors

    Get PDF
    Nanowire transistors (NWTs) represent a potential alternative to Silicon FinFET technology in the 5nm CMOS technology generation and beyond. Their gate length can be scaled beyond the limitations of FinFET gate length scaling to maintain superior off-state leakage current and performance thanks to better electrostatic control through the semiconductor nanowire channels by gate-all-around (GAA) architecture. Furthermore, it is possible to stack nanowires to enhance the drive current per footprint. Based on these considerations, vertically-stacked lateral NWTs have been included in the latest edition of the International Technology Roadmap for Semiconductors (ITRS) to allow for further performance enhancement and gate pitch scaling, which are key criteria of merit for the new CMOS technology generation. However, electrostatic confinement and the transport behaviour in these devices are more complex, especially in or beyond the 5nm CMOS technology generation. At the heart of this thesis is the model-based research of aggressively-scaled NWTs suitable for implementation in or beyond the 5nm CMOS technology generation, including their physical and operational limitations and intrinsic parameter fluctuations. The Ensemble Monte Carlo approach with Poisson-Schrödinger (PS) quantum corrections was adopted for the purpose of predictive performance evaluation of NWTs. The ratio of the major to the minor ellipsoidal cross-section axis (cross-sectional aspect ratio - AR) has been identified as a significant contributing factor in device performance. Until now, semiconductor industry players have carried out experimental research on NWTs with two different cross-sections: circular cylinder (or elliptical) NWTs and nanosheet (or nanoslab) NWTs. Each version has its own benefits and drawbacks; however, the key difference between these two versions is the cross-sectional AR. Several critical design questions, including the optimal NWT cross-sectional aspect ratio, remain unanswered. To answer these questions, the AR of a GAA NWT has been investigated in detail in this research maintaining the cross-sectional area constant. Signatures of isotropic charge distributions within Si NWTs were observed, exhibiting the same attributes as the golden ratio (Phi), the significance of which is well-known in the fields of art and architecture. To address the gap in the existing literature, which largely explores NWT scaling using single-channel simulation, thorough simulations of multiple channels vertically-stacked NWTs have been carried out with different cross-sectional shapes and channel lengths. Contact resistance, non-equilibrium transport and quantum confinement effects have been taken into account during the simulations in order to realistically access performance and scalability. Finally, the individual and combined effects of key statistical variability (SV) sources on threshold voltage (VT), subthreshold slope (SS), ON-current (Ion) and drain-induced barrier lowering (DIBL) have been simulated and discussed. The results indicate that the variability of NWTs is impacted by device architecture and dimensions, with a significant reduction in SV found in NWTs with optimal aspect ratios. Furthermore, a reduction in the variability of the threshold voltage has been observed in vertically-stacked NWTs due to the cancelling-out of variability in double and triple lateral channel NWTs

    Development of tools for the simulation of nanometric transistors using advanced computational architectures

    Get PDF
    The aim of this thesis project is the study of nanoscale semiconductor devices, including new options based on new architectures and designs, for which multidimensional simulation tool based on Monte-Carlo models are going to be developed, including quantum corrections by solving the Schrödinger equation in the transverse direction to the propagation of carriers within the device. So far, our research group has developed several simulators semiconductor devices using various simulation techniques. This work is developed in collaboration with several national and international groups. It should primarily highlight the group maintains collaborations with the universities of Glasgow, Swansea and Granada and gives rise to this thesis project.The ultimate goal is to use the simulator to study various optimized, especially classical electronic devices, SOI-based and multigate, with silicon devices for sizes of under 10 nm

    Numerical simulation of advanced CMOS and beyond CMOS devices

    Get PDF
    Co-supervisore: Marco PalaopenLo scaling dei dispositivi elettronici e l'introduzione di nuove opzioni tecnologiche per l'aumento delle prestazioni richiede un costante supporto dal punto di vista della simulazione numerica. Questa tesi si inquadra in tale ambito ed in particolare si prefigge lo scopo di sviluppare due tool software completi basati su tecniche avanzate al fine di predire le prestazioni di dipositivi nano-elettronici progettati per i futuri nodi tecnologiciDottorato di ricerca in Ingegneria industriale e dell'informazioneembargoed_20131103Conzatti, Francesc

    Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability

    Get PDF
    Three cross sections (rectangular, bullet shaped, and triangular), resulting from the fabrication process, of nanoscale In0.53Ga0.47As-on-insulator FinFETs with a gate length of 10.4 nm are modeled using in-house 3-D finite-element density-gradient quantum-corrected drift–diffusion and Monte Carlo simulations. We investigate the impact of the shape on I – V characteristics and on the variability induced by metal grain granularity (MGG), line-edge roughness (LER), and random dopants (RDs) and compared with their combined effect. The more triangular the cross section, the lower the OFF-current, the drain-induced-barrier-lowering, and the subthreshold slope. The ION/IOFF ratio is three times higher for the triangular-shaped FinFET than for the rectangular-shape one. Independent of the cross section, the MGG variations are the preeminent fluctuations affecting the FinFETs, with four to two times larger σVT than that from the LER and the RDs, respectively. However, the variability induced threshold voltage ( VT ) shift is minimal for the MGG (around 2 mV), but VT shift increases 4-fold and 15-fold for the LER and the RDs, respectively. The cross-sectional shape has a very small influence in VT and OFF-current of the MGG, LER, and RD variabilities, both separated and in combination, with standard deviation differences of only 4% among the different device shapes. Finally, the statistical sum of the three sources of variability can predict simulated combined variability with only a minor overestimation

    Efficient GPU implementation of a Boltzmann‑Schrödinger‑Poisson solver for the simulation of nanoscale DG MOSFETs

    Get PDF
    81–102, 2019) describes an efficient and accurate solver for nanoscale DG MOSFETs through a deterministic Boltzmann-Schrödinger-Poisson model with seven electron–phonon scattering mechanisms on a hybrid parallel CPU/GPU platform. The transport computational phase, i.e. the time integration of the Boltzmann equations, was ported to the GPU using CUDA extensions, but the computation of the system’s eigenstates, i.e. the solution of the Schrödinger-Poisson block, was parallelized only using OpenMP due to its complexity. This work fills the gap by describing a port to GPU for the solver of the Schrödinger-Poisson block. This new proposal implements on GPU a Scheduled Relaxation Jacobi method to solve the sparse linear systems which arise in the 2D Poisson equation. The 1D Schrödinger equation is solved on GPU by adapting a multi-section iteration and the Newton-Raphson algorithm to approximate the energy levels, and the Inverse Power Iterative Method is used to approximate the wave vectors. We want to stress that this solver for the Schrödinger-Poisson block can be thought as a module independent of the transport phase (Boltzmann) and can be used for solvers using different levels of description for the electrons; therefore, it is of particular interest because it can be adapted to other macroscopic, hence faster, solvers for confined devices exploited at industrial level.Project PID2020-117846GB-I00 funded by the Spanish Ministerio de Ciencia e InnovaciónProject A-TIC-344-UGR20 funded by European Regional Development Fund

    Variability analysis of FinFET AC/RF performances through efficient physics-based simulations for the optimization of RF CMOS stages

    Get PDF
    A nearly insatiable appetite for the latest electronic device enables the electronic technology sector to maintain research momentum. The necessity for advancement with miniaturization of electronic devices is the need of the day. Aggressive downscaling of electronic devices face some fundamental limits and thus, buoy up the change in device geometry. MOSFETs have been the leading contender in the electronics industry for years, but the dire need for miniaturization is forcing MOSFET to be scaled to nano-scale and in sub-50 nm scale. Short channel effects (SCE) become dominant and adversely affect the performance of the MOSFET. So, the need for a novel structure was felt to suppress SCE to an acceptable level. Among the proposed devices, FinFETs (Fin Field Effect Transistors) were found to be most effective to counter-act SCE in electronic devices. Today, many industries are working on electronic circuits with FinFETs as their primary element.One of limitation which FinFET faces is device variability. The purpose of this work was to study the effect that different sources of parameter fluctuations have on the behavior and characteristics of FinFETs. With deep literature review, we have gained insight into key sources of variability. Different sources of variations, like random dopant fluctuation, line edge roughness, fin variations, workfunction variations, oxide thickness variation, and source/drain doping variations, were studied and their impact on the performance of the device was studied as well. The adverse effect of these variations fosters the great amount of research towards variability modeling. A proper modeling of these variations is required to address the device performance metric before the fabrication of any new generation of the device on the commercial scale. The conventional methods to address the characteristics of a device under variability are Monte-Carlo-like techniques. In Monte Carlo analysis, all process parameters can be varied individually or simultaneously in a more realistic approach. The Monte Carlo algorithm takes a random value within the range of each process parameter and performs circuit simulations repeatedly. The statistical characteristics are estimated from the responses. This technique is accurate but requires high computational resources and time. Thus, efforts are being put by different research groups to find alternative tools. If the variations are small, Green’s Function (GF) approach can be seen as a breakthrough methodology. One of the most open research fields regards "Variability of FinFET AC performances". One reason for the limited AC variability investigations is the lack of commercially available efficient simulation tools, especially those based on accurate physics-based analysis: in fact, the only way to perform AC variability analysis through commercial TCAD tools like Synopsys Sentaurus is through the so-called Monte Carlo approach, that when variations are deterministic, is more properly referred to as incremental analysis, i.e., repeated solutions of the device model with varying physical parameters. For each selected parameter, the model must be solved first in DC operating condition (working point, WP) and then linearized around the WP, hence increasing severely the simulation time. In this work, instead, we used GF approach, using our in-house Simulator "POLITO", to perform AC variability analysis, provided that variations are small, alleviating the requirement of double linearization and reducing the simulation time significantly with a slight trade-off in accuracy. Using this tool we have, for the first time addressed the dependency of FinFET AC parameters on the most relevant process variations, opening the way to its application to RF circuits. This work is ultimately dedicated to the successful implementation of RF stages in commercial applications by incorporating variability effects and controlling the degradation of AC parameters due to variability. We exploited the POLITO (in-house simulator) limited to 2D structures, but this work can be extended to the variability analysis of 3D FinFET structure. Also variability analysis of III-V Group structures can be addressed. There is also potentiality to carry out the sensitivity analysis for the other source of variations, e.g., thermal variations
    • …
    corecore