344 research outputs found

    Rank discriminants for predicting phenotypes from RNA expression

    Get PDF
    Statistical methods for analyzing large-scale biomolecular data are commonplace in computational biology. A notable example is phenotype prediction from gene expression data, for instance, detecting human cancers, differentiating subtypes and predicting clinical outcomes. Still, clinical applications remain scarce. One reason is that the complexity of the decision rules that emerge from standard statistical learning impedes biological understanding, in particular, any mechanistic interpretation. Here we explore decision rules for binary classification utilizing only the ordering of expression among several genes; the basic building blocks are then two-gene expression comparisons. The simplest example, just one comparison, is the TSP classifier, which has appeared in a variety of cancer-related discovery studies. Decision rules based on multiple comparisons can better accommodate class heterogeneity, and thereby increase accuracy, and might provide a link with biological mechanism. We consider a general framework ("rank-in-context") for designing discriminant functions, including a data-driven selection of the number and identity of the genes in the support ("context"). We then specialize to two examples: voting among several pairs and comparing the median expression in two groups of genes. Comprehensive experiments assess accuracy relative to other, more complex, methods, and reinforce earlier observations that simple classifiers are competitive.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS738 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Outcome prediction based on microarray analysis: a critical perspective on methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information extraction from microarrays has not yet been widely used in diagnostic or prognostic decision-support systems, due to the diversity of results produced by the available techniques, their instability on different data sets and the inability to relate statistical significance with biological relevance. Thus, there is an urgent need to address the statistical framework of microarray analysis and identify its drawbacks and limitations, which will enable us to thoroughly compare methodologies under the same experimental set-up and associate results with confidence intervals meaningful to clinicians. In this study we consider gene-selection algorithms with the aim to reveal inefficiencies in performance evaluation and address aspects that can reduce uncertainty in algorithmic validation.</p> <p>Results</p> <p>A computational study is performed related to the performance of several gene selection methodologies on publicly available microarray data. Three basic types of experimental scenarios are evaluated, i.e. the independent test-set and the 10-fold cross-validation (CV) using maximum and average performance measures. Feature selection methods behave differently under different validation strategies. The performance results from CV do not mach well those from the independent test-set, except for the support vector machines (SVM) and the least squares SVM methods. However, these wrapper methods achieve variable (often low) performance, whereas the hybrid methods attain consistently higher accuracies. The use of an independent test-set within CV is important for the evaluation of the predictive power of algorithms. The optimal size of the selected gene-set also appears to be dependent on the evaluation scheme. The consistency of selected genes over variation of the training-set is another aspect important in reducing uncertainty in the evaluation of the derived gene signature. In all cases the presence of outlier samples can seriously affect algorithmic performance.</p> <p>Conclusion</p> <p>Multiple parameters can influence the selection of a gene-signature and its predictive power, thus possible biases in validation methods must always be accounted for. This paper illustrates that independent test-set evaluation reduces the bias of CV, and case-specific measures reveal stability characteristics of the gene-signature over changes of the training set. Moreover, frequency measures on gene selection address the algorithmic consistency in selecting the same gene signature under different training conditions. These issues contribute to the development of an objective evaluation framework and aid the derivation of statistically consistent gene signatures that could eventually be correlated with biological relevance. The benefits of the proposed framework are supported by the evaluation results and methodological comparisons performed for several gene-selection algorithms on three publicly available datasets.</p

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Gene expression profile based classification models of psoriasis

    Get PDF
    AbstractPsoriasis is an autoimmune disease, which symptoms can significantly impair the patient's life quality. It is mainly diagnosed through the visual inspection of the lesion skin by experienced dermatologists. Currently no cure for psoriasis is available due to limited knowledge about its pathogenesis and development mechanisms. Previous studies have profiled hundreds of differentially expressed genes related to psoriasis, however with no robust psoriasis prediction model available. This study integrated the knowledge of three feature selection algorithms that revealed 21 features belonging to 18 genes as candidate markers. The final psoriasis classification model was established using the novel Incremental Feature Selection algorithm that utilizes only 3 features from 2 unique genes, IGFL1 and C10orf99. This model has demonstrated highly stable prediction accuracy (averaged at 99.81%) over three independent validation strategies. The two marker genes, IGFL1 and C10orf99, were revealed as the upstream components of growth signal transduction pathway of psoriatic pathogenesis

    Profiling alternatively spliced mRNA isoforms for prostate cancer classification

    Get PDF
    BACKGROUND: Prostate cancer is one of the leading causes of cancer illness and death among men in the United States and world wide. There is an urgent need to discover good biomarkers for early clinical diagnosis and treatment. Previously, we developed an exon-junction microarray-based assay and profiled 1532 mRNA splice isoforms from 364 potential prostate cancer related genes in 38 prostate tissues. Here, we investigate the advantage of using splice isoforms, which couple transcriptional and splicing regulation, for cancer classification. RESULTS: As many as 464 splice isoforms from more than 200 genes are differentially regulated in tumors at a false discovery rate (FDR) of 0.05. Remarkably, about 30% of genes have isoforms that are called significant but do not exhibit differential expression at the overall mRNA level. A support vector machine (SVM) classifier trained on 128 signature isoforms can correctly predict 92% of the cases, which outperforms the classifier using overall mRNA abundance by about 5%. It is also observed that the classification performance can be improved using multivariate variable selection methods, which take correlation among variables into account. CONCLUSION: These results demonstrate that profiling of splice isoforms is able to provide unique and important information which cannot be detected by conventional microarrays

    Feature selection for microarray gene expression data using simulated annealing guided by the multivariate joint entropy

    Get PDF
    In this work a new way to calculate the multivariate joint entropy is presented. This measure is the basis for a fast information-theoretic based evaluation of gene relevance in a Microarray Gene Expression data context. Its low complexity is based on the reuse of previous computations to calculate current feature relevance. The mu-TAFS algorithm --named as such to differentiate it from previous TAFS algorithms-- implements a simulated annealing technique specially designed for feature subset selection. The algorithm is applied to the maximization of gene subset relevance in several public-domain microarray data sets. The experimental results show a notoriously high classification performance and low size subsets formed by biologically meaningful genes.Postprint (published version

    Improving Feature Selection Techniques for Machine Learning

    Get PDF
    As a commonly used technique in data preprocessing for machine learning, feature selection identifies important features and removes irrelevant, redundant or noise features to reduce the dimensionality of feature space. It improves efficiency, accuracy and comprehensibility of the models built by learning algorithms. Feature selection techniques have been widely employed in a variety of applications, such as genomic analysis, information retrieval, and text categorization. Researchers have introduced many feature selection algorithms with different selection criteria. However, it has been discovered that no single criterion is best for all applications. We proposed a hybrid feature selection framework called based on genetic algorithms (GAs) that employs a target learning algorithm to evaluate features, a wrapper method. We call it hybrid genetic feature selection (HGFS) framework. The advantages of this approach include the ability to accommodate multiple feature selection criteria and find small subsets of features that perform well for the target algorithm. The experiments on genomic data demonstrate that ours is a robust and effective approach that can find subsets of features with higher classification accuracy and/or smaller size compared to each individual feature selection algorithm. A common characteristic of text categorization tasks is multi-label classification with a great number of features, which makes wrapper methods time-consuming and impractical. We proposed a simple filter (non-wrapper) approach called Relation Strength and Frequency Variance (RSFV) measure. The basic idea is that informative features are those that are highly correlated with the class and distribute most differently among all classes. The approach is compared with two well-known feature selection methods in the experiments on two standard text corpora. The experiments show that RSFV generate equal or better performance than the others in many cases
    • …
    corecore