14 research outputs found

    Design of an exercise glove for hand rehabilitation using spring mechanism

    Get PDF

    Tecnologías digitales innovadoras para el diseño de exoesqueletos para la mano aplicados en la rehabilitación de pacientes con artritis crónica

    Full text link
    [ES] El artículo describe la metodología planteada en el diseño de creación de un prototipo de exoesqueleto para la rehabilitación de la artritis reumatoide enfermedad inflamatoria, sistémica y crónica que afecta principalmente al sistema osteomuscular de pies, manos y que desemboca a la larga, en una discapacidad funcional severa. La propuesta de diseño del exoesqueleto de la mano descrito en el artículo tiene en cuenta los accionamientos mecánicos aplicados sobre las articulaciones mediante el uso de servomotores conectados a hilos tensores que permiten el movimiento de flexo-extensión correcto de los dedos. Se propone un planteamiento sistémico en la creación del prototipo final considerando los parámetros de esfuerzos y movimientos que se utilizan normalmente en la rehabilitación convencional y la creación de un dispositivo generado con técnicas de prototipado rápido de la mano tratada que permita diseñar un exoesqueleto único y exacto basado en las características antropométricas de cada paciente. El resultado final ha permitido validar y verificar el proceso de desarrollo innovador de técnicas relacionadas con el Diseño Asistido por Ordenador, DAO y el Prototipado Rápido PR.Esta investigación ha sido desarrollada gracias a los trabajos realizados durante la tesis doctoral “Estudio sistémico de estructuras exoesqueléticas de la mano para la rehabilitación de la atrofia muscular debido a la artritis en personas adultas” desarrollado en la Universitat Politécnica de Valencia.Moya-Jiménez, R.; Magal-Royo, T.; Ponce, D. (2021). Tecnologías digitales innovadoras para el diseño de exoesqueletos para la mano aplicados en la rehabilitación de pacientes con artritis crónica. En Proceedings INNODOCT/20. International Conference on Innovation, Documentation and Education. Editorial Universitat Politècnica de València. 537-543. https://doi.org/10.4995/INN2020.2020.11866OCS53754

    The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons

    Get PDF
    This article presents the development of a power augmentation and rehabilitation exoskeleton based on a novel actuator. The proposed soft actuators are extensor bending pneumatic artificial muscles. This type of soft actuator is derived from extending McKibben artificial muscles by reinforcing one side to prevent extension. This research has experimentally assessed the performance of this new actuator and an output force mathematical model for it has been developed. This new mathematical model based on the geometrical parameters of the extensor bending pneumatic artificial muscle determines the output force as a function of the input pressure. This model is examined experimentally for different actuator sizes. After promising initial experimental results, further model enhancements were made to improve the model of the proposed actuator. To demonstrate the new bending actuators a power augmentation and rehabilitation soft glove has been developed. This soft hand exoskeleton is able to fit any adult hand size without the need for any mechanical system changes or calibration. EMG signals from the human hand have been monitored to prove the performance of this new design of soft exoskeleton. This power augmentation and rehabilitation wearable robot has been shown to reduce the amount of muscles effort needed to perform a number of simple grasps

    Usability Assessment of a Cable-Driven Exoskeletal Robot for Hand Rehabilitation

    Get PDF
    Study design: Case series.Background: Robot-assisted rehabilitation mediated by exoskeletal devices is a popular topic of research. The biggest difficulty in the development of rehabilitation robots is the consideration of the clinical needs. This study investigated the usability of a novel cable-driven exoskeletal robot specifically designed for hand rehabilitation.Methods: The study consists of three steps, including prototype development, spasticity observation, and usability evaluation. First, we developed the prototype robot DexoHand to manipulate the patient's fingers based on the clinical needs and the cable-driven concept established in our previous work. Second, we applied DexoHand to patients with different levels of spasticity. Finally, we obtained the system usability scale (SUS) and assessed its usability.Results: Two healthy subjects were recruited in the pre-test, and 18 patients with stroke and four healthy subjects were recruited in the formal test for usability. The total SUS score obtained from the patients and healthy subjects was 94.77 ± 2.98 (n = 22), indicating an excellent level of usability. The satisfaction score was 4.74 ± 0.29 (n = 22), revealing high satisfaction with DexoHand. The tension profile measured by the cables showed the instantaneous force used to manipulate fingers among different muscle tone groups.Conclusions:DexoHand meets the clinical needs with excellent usability, satisfaction, and reliable tension force monitoring, yielding a feasible platform for robot-assisted hand rehabilitation

    텐던 드리븐 메커니즘을 이용한 유연한 입는형 손가락 로봇의 모델링

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2013. 2. 조규진.본 논문은 텐던 드리븐 메커니즘을 이용한 유연한 입는형 손가락 로봇의 제어능력을 향상시키기 위해 두 가지 방법을 제안한다. 텐던 엥커링 서포트는 모터의 힘을 와이어를 통해 원하는 구동 지점까지 전달하기 위한 파트로서 손에 고정이 잘 되어야 하는 특성을 가지도록 개발되었다. 텐던 엥커링 서포트는 손에 고정이 잘 되기 위하여 환자마다 손의 모양이 다른 것을 감안해 맞춤형으로 제작이 되었다. 이 파트를 간편하게 맞춤형으로 제작하기 위하여 공정과정이 개발이 되었다. 또한 본 논문에서 손가락의 각도를 추정하기 위한 장갑 변형 모델과 힘 추정 모델을 소개한다. 유연한 입는형 손가락 로봇의 손가락 끝 단의 힘을 제어하기 위한 모델을 만드는 첫 번째 과정으로 중수지절관절 장갑 변형 모델이 만들어졌다. 이 모델은 실험을 통하여 완성이 되었고, 이 모델을 바탕으로 중수지절관절 힘 추정 모델을 만들었다. 이 두 모델의 정당성은 실험을 통해 입증되었다. 텐던 드리븐 메커니즘을 이용한 유연한 입는형 로봇을 만드는 공학자라면 누구나 로봇의 제어에 관한 문제에 당면하게 된다. 이 논문에서 소개한 모델들은 이러한 문제를 해결하는데 좋은 방향성을 제시할 것이다.This paper presents two ways to increase controllability of tendon driven soft wearable robot for the finger. Tendon Anchoring Support (TA Support) was developed to be fixed to the hand to transmit force from motor to the target actuation point of the robot. TA Support was developed with several design considerations, especially customization to maximize fixation to individual patients hand. For that, fabrication process for customization to patients hand has been established and introduced in this paper. This paper introduces deformation model for posture estimation and force estimation model. After development of TA Support, to increase the controllability of the robot, deformation model for the MCP joint flexion has been built to consider deformation of glove and wire elongation. Experiments have been conducted to complete deformation model. Based on MCP joint flexion deformation model, force estimation for MCP joint flexion has been built. To verify these two models, MCP joint posture estimation experiment and force estimation experiment have been conducted. Engineers developing the soft wearable robot with tendon driven mechanism will always encounter problems to control the robot, and as stated in this paper, this paper will show prospective view to model and control soft exoskeletonAbstract i Chapter 1 Introduction 1 Chapter 2 Force Transmission Analysis 4 2.1 Comparison of Conventional Mechanisms 4 2.2 Development of Tendon Anchoring Support 7 Chapter 3 Tendon Anchoring Support 13 3.1 Design Considerations 13 3.1.1 Small and Compact 13 3.1.2 Position of TA Support 13 3.1.3 Fixation 14 3.1.4 Customization 14 3.2 Manufacturing Process 15 Chapter 4 Deformation of the Glove 20 4.1 Direct Attachment to Link Case 20 4.1.1 TA Support Movement 20 4.1.2 Palm Velcro Strap Movement 21 4.1.3 Finger Attachment Point Movement 21 4.1.4 Wire Elongation 22 4.2 Wire Passing Velcro Strap Case 22 Chapter 5 Modeling 29 5.1 Model for Wire Attachment at MCP Joint 29 5.2 Model for Force Estimation of MCP Joint 31 Chapter 6 Experiment 35 6.1 Experimental Setup 35 6.2 Spring Constant Estimation 35 Chapter 7 Posture and Force Estimation 47 7.1 Posture Estimation 47 7.1.1 Constant Force Applied 47 7.1.2 Random Force Applied 48 7.2 Force Estimation 49 Chapter 8 Conclusion 54 Bibliography 56 국문초록 60Maste

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications

    Diseño de un guante con movimiento independiente por cada dedo basado en tecnología de soft robotics para el apoyo en el proceso de rehabilitación de manos

    Get PDF
    El presente documento presenta el diseño del prototipo de un dispositivo de rehabilitación para manos a través de movimientos independientes de cada dedo, el objetivo principal de este dispositivo es la realización de ejercicios que propicien la recuperación de los músculos de la mano luego de sufrir una lesión. Para conseguir esto, primero, se definió el problema y se propusieron objetivos específicos que servirían para verificar el avance, así como se limitó el alcance del proyecto. A continuación, se realizó una búsqueda de datos que servirán como base al momento de diseñar el producto, así como buscar productos ya existentes que puedan servir como base o comparación con el planteado en el presente. Luego de ello, se estableció una lista de requerimientos del proyecto, en base a esta se tiene que realizar el concepto de diseño del proyecto. Posteriormente, se realiza la descomposición de funciones a través del árbol de funciones y medios que facilita la elección de estos últimos para cada función mencionada. En las últimas etapas de la metodología a seguir, se realizan diversas arquitecturas y diagramas, esto con la finalidad de mostrar cómo interactúan los diversos medios elegidos, tanto como sistema mecánico como el flujo de la información. Una vez obtenido el diseño conceptual, se procede a la implementación: primero, se realiza el diseño de los subsistemas (electrónico, control, mecánico y neumático); segundo, se procede a la selección de elementos y cálculo del costo del proyecto; finalmente, se realizan las pruebas para verificar el funcionamiento del prototipo. En conclusión, se obtuvo el diseño conceptual, luego se implementó el prototipo, se empleó también un controlador PI para llevar los dedos a las posiciones deseadas, obteniendo así un prototipo que cumple con el movimiento independiente de cada dedo como es requerido

    Design and Evaluation of Grasp Assistive Devices in an Industrial Environment

    Get PDF
    Carpal tunnel syndrome and tendonitis are two common upper extremity cumulative trauma disorders related to repetitive and forceful activities in the workplace. The objective of this research was to reduce the hand force during an activity, as reducing task repetition would negatively affect productivity. Two devices were developed to achieve this objective: a soft pneumatic grasp assist device to augment grasp strength, and a novel grip training device to visually alert the user when more force than necessary is used. Device effectiveness was quantified by measuring muscle activity and grip force during an in vivo study of a common industrial activity. Nine associates experienced with power tools employed by an automobile manufacturer installed 18 fasteners using a pistol grip DC tool under three conditions: a typical manner (no device or prompting), with the grasp assist, and with the grip training device. Surface electromyography (sEMG) was used to measure the activity of four muscles commonly associated with grasping – flexor digitorum superficialis (FDS), flexor carpi ulnaris (FCU), extensor digitorum communis (EDC), and flexor carpi radialis (FCR). Results showed that both the grasp assist and grip trainer significantly reduced the mean, combined, normalized muscle activity compared to the typical condition by 18% and 23% respectively (p<0.05). Muscle activation results were contextualized using the revised strain index (RSI), a clinical tool to evaluate the safety of an activity by considering activity specific ergonomic factors. The grasp assist and grip trainer both yielded a significantly lower mean RSI value than the typical condition by 13% and 17% respectively (p<0.05). Grip force was measured using a flexible pressure transducer affixed to the pistol-grip handle of the DC tool. Again, the grasp assist and grip trainer yielded significantly lower values than the typical trial by 47% and 36% respectively (p<0.001). Between devices, the grasp assist yielded a significantly lower grip force the grip trainer (p<0.001); however, the mean muscle activation was not significantly different, which suggests that the four muscles measured in this study do not completely capture grip force. A large variation in grip force was measured for all three conditions with a weak, positive correlation between power tool experience and force applied. Knowledge of the voluntary variation in grip force can be used to educate workers on minimizing the force exerted during an activity

    Development of Soft Power-Assist Glove and Control Based on Human Intent

    No full text

    El kaslarının rehabilitasyonu için aktif dinamik el - el bileği ortezi tasarımı

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Anahtar kelimeler: El rehabilitasyonu, ev ortamında rehabilitasyon, rehabilitasyon mühendisliği, mühendislik tasarımı, hemiplejik el, biyomekanik model Robotik sistemlerin rehabilitasyon mühendisliği alanında kullanılması sayesinde rehabilitasyon süreçlerinde ilerlemeler kaydedilmektedir. Güncel araştırma alanlarından biri ev ortamında rehabilitasyona olanak sağlayan taşınabilir sistemlerin geliştirilmesidir. Bu sayede hem rehabilitasyon maliyetleri azalmakta hem de rehabilitasyon süreci kısalmaktadır. Tez çalışması kapsamında ev ortamında kullanıma uygun, giyilebilir, aktif eyleyicileri olan ve düşük maliyetli el ve el bileği egzersiz cihazları geliştirilmiştir. Elin dorsal ve palmar yüzüne giyilebilen, benzer prensiplerle çalışan iki farklı tasarım çözümünün prototipleri üretilmiştir. Palmar yüze giyilen tasarım, faydalı model tescili ile Türk Patent ve Marka Kurumu tarafından koruma altına alınmıştır. Geliştirilen cihazların, özellikle inme sonrası el rehabilitasyonunda kullanılması planlanmaktadır. Bunun yanı sıra cihazlar sinir felci, sinir sıkışması, tendon yaralanması ve spor yaralanmaları gibi durumlarda elde meydana gelen hareket kayıplarının giderilmesinde kullanılabilir. Çalışma kapsamında, cihazlarda kullanılan eyleyicilerin çalışma şartlarının ve kuvvet aktarım sisteminin belirlenebilmesi amacıyla elin biyomekanik modeli oluşturulmuştur. Modelin benzetimi sonucunda parmaklar ve el bileğinin hareketleri sırasında meydana gelen eklem momentleri hesaplanmıştır. Dorsal yüze giyilen cihazın etkinliğinin belirlenebilmesi için sağlıklı ve hasta kişiler üzerinde etik onay alınarak klinik denemeler yapılmıştır. Sağlıklı bireylerde kas aktivasyonunun değerlendirilmesine dayalı yapılan ölçümler sonucunda fleksiyon/ekstansiyon eldiveninin kas aktivasyonunu artırdığı görülmüştür. Hastalar üzerinde yapılan denemeler cihazın hemiplejik el rehabilitasyonu için uygun olduğunu göstermiştir. Üretilen prototiplerin ticarileştirilmesi durumunda tıbbi cihazlar sektöründe dış pazarlara bağımlı ülkemizin rekabet gücüne katkı yapacak bir cihaz pazardaki yerini almış olacaktır. İleriki çalışmalarından biri, cihazın kontrol birimi üzerinde geliştirmeler yapmaktır. Bu doğrultuda cihazın kontrolü EMG sinyalleri üzerinden gerçekleştirilebilir.Keywords: Hand rehabilitation, rehabilitation at home, rehabilitation engineering, engineering design, hemiplegic hand, biomechanical model Rehabilitation process has some progress thanks to using robotic devices in rehabilitation engineering. One of the recent research area is to develop portable devices which are allow rehabilitation at home. In this way, rehabilitation costs and rehabilitation period are reduced. In this study, hand and wrist exercise devices are developed for suitable at home use, wearable, with active actuators and low cost. Two prototypes has been manufactured suitable for dorsal side and palmar side of the hand. They are different, but they are based on same principles. Design for palmar side of the hand is protected by Turkish Patent and Trademark Office with utility model registered. It is expected that these devices can be used for hemiplegic hand rehabilitation first. Beside, devices can be used for treatment of loss of the movements on the hand such as nerve paralysis, nerve compression, tendon injury and sports injuries. The biomechanical model of the human hand has been composed in this study in order to determine operating conditions of the actuators and force transmission system. After the simulation of the movement, joint torques of the fingers and the wrist movement has been calculated. Clinical trials has been conducted in healthy and patient subjects with ethical approval in order to determine the effects of the device worn on the dorsal side of the hand. After the muscle measurement in healthy subjects, it is understood that the muscle activation has been increased thanks to flexion/extension glove. In the patient studies, it is understood that the device is suitable for rehabilitation of the hemiplegic hand. If the prototypes are commercialized, a device contributing the competitive power of our country dependent on foreign markets will be in the medical device market. One of the future study is to make improvements on the control unit of the device. In this way, the control algorithm of the device can be performed using EMG signals
    corecore