2,075 research outputs found

    The Design of Electro Cardiograph Signal Generator Using IC 14521 and IC 14017

    Get PDF
    ECG or Electrocardiograph is a tool to find out the electrical activity of the heart in patients. Electrocardiogram (ECG) is a graphic result records electrical potential resulting from by heartbeat, (Mervin J. Goldman, 1990). ECG recording very useful to know present certain hypertrophy, arrhythmia, pericarditis, for example potassium electrolyte disturbances. Tool this be named generator signal ECG. Tool the generator signal ECG functioning for produce the signal Electric heart in adult patient sand to check ECG error or no. So that it can ease technical electro medic in maintenance medical equipment periodically. The tool utilizes IC 14521 as oscillator or signal generator and using IC 14 017 as a shift register who has responsibility to remove from pin 1 to pin the other. The benefits of the ECG signal generating device so that technical electro medic easy and not difficult in check ECG without must using patients. So this tool as a form clone of the human heart. The tool such as a patient simulator. Based on the results of laboratory tests that have been done with the author concluded that, ECG signal generating device to function properly so that produce form of mock patient's heart signal that shown monitored oscilloscope in the waveform display P, Q, R, S, T

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    A Wireless Power Transfer Based Implantable ECG Monitoring Device

    Get PDF
    Implantable medical devices (IMDs) enable patients to monitor their health anytime and receive treatment anywhere. However, due to the limited capacity of a battery, their functionalities are restricted, and the devices may not achieve their intended potential fully. The most promising way to solve this limited capacity problem is wireless power transfer (WPT) technology. In this study, a WPT based implantable electrocardiogram (ECG) monitoring device that continuously records ECG data has been proposed, and its effectiveness is verified through an animal experiment using a rat model. Our proposed device is designed to be of size 24 x 27 x 8 mm, and it is small enough to be implanted in the rat. The device transmits data continuously using a low power Bluetooth Low Energy (BLE) communication technology. To charge the battery wirelessly, transmitting (Tx) and receiving (Rx) antennas were designed and fabricated. The animal experiment results clearly showed that our WPT system enables the device to monitor the ECG of a heart in various conditions continuously, while transmitting all ECG data in real-time.11Ysciescopu

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 171

    Get PDF
    This bibliography lists 186 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1977

    The role of electrocardiography in occupational medicine, from einthoven’s invention to the digital era of wearable devices

    Get PDF
    Clinical-instrumental investigations, such as electrocardiography (ECG), represent a corollary of a procedures that, nowadays, is called upon as part of the principles of precision medicine. However when carrying out the professional routine examinations, most tend to ignore how a “simple” instrument can offer indispensable support in clinical practice, even in occupational medicine. The advent of the digital age, made of silicon and printed circuit boards, has allowed the miniaturization of the electronic components of these electro-medical devices. Finally, the adoption of patient wearables in medicine has been rapidly expanding worldwide for a number of years. This has been driven mainly by consumers’ demand to monitor their own health. With the ongoing research and development of new features capable of assessing and transmitting real-time biometric data, the impact of wearables on cardiovascular management has become inevitable. Despite the potential offered by this technology, as evident from the scientific literature, the application of these devices in the field of health and safety in the workplace is still limited. This may also be due to the lack of targeted scientific research. While offering great potential, it is very important to consider and evaluate ethical aspects related to the use of these smart devices, such as the management of the collected data relating to the physiological parameters and the location of the worker. This technology is to be considered as being aimed at monitoring the subject’s physiological parameters, and not at the diagnosis of any pathological condition, which should always be on charge of the medical specialist We conducted a review of the evolution of the role that electrophysiology plays as part of occupational health and safety management and on its possible future use, thanks to ongoing technological innovation

    An Authentic Ecg Simulator

    Get PDF
    An ECG (electrocardiogram) simulator is an electronic tool that plays an essential role in the testing, design, and development of ECG monitors and other ECG equipment. Principally an ECG simulator provides ECG monitors with an electrical signal that emulates the human heart\u27s electrical signal so that the monitor can be tested for reliability and important diagnostic capabilities. However, the current portable commercially available ECG simulators are lacking in their ability to fully test ECG monitors. Specifically, the portable simulators presently on the market do not produce authentic ECG signals but rather they endeavor to create the ECG signals mathematically. They even attempt to mathematically create arrhythmias (irregular heartbeats of which there are many different types). Arrhythmia detection is an important capability for any modern ECG monitor because arrhythmias are often the critical link to the diagnosis of heart conditions or cardiovascular disease. The focus of this thesis is the design and implementation of a portable ECG simulator. The important innovation of this prototype simulator is that it will not create its ECG signals mathematically, but rather it will store ECG data files on a memory module and use this data to produce an authentic ECG signal. The data files will consist of different types of ECG signals including different types of arrhythmias. The data files are obtained via the internet and require formatting and storing onto a memory chip. These files are then processed by a digital to analog converter and output on a four lead network to produce an authentic ECG signal. The system is built around the ultra-low power Texas Instruments MSP430 microcontroller

    Cardio-respiratory monitor with synchronization capabilities

    Get PDF
    Cardiopathies are some of the most common causes of death worldwide and therefore cardiac imaging is one of the most important studies that can be performed in the diagnostic process. However, not only does cardiac imaging have special requirements when it comes to the equipment used such as spatial and temporal resolution, but final image quality and therefore diagnosis may be greatly hindered by the movement of the thoracic cavity and of the heart itself. The problem of motion artifacts caused by breathing motion together with heart movement during the cardiac cycle is solved by image gating, by synchronising vital signs to an image acquisition system, and obtaining images according to the generated signal, and therefore reducing movement artifacts. To address this issue, the objective of this bachelor thesis is to propose a prototype for the implementation of a cardio-respiratory monitor designed, developed and programmed for image gating in a preclinical setting. This device was built with an Arduino microcontroller, an ECG-FE, a pressure sensor connected to a pressure transducer to sense the respiratory signal, a touchscreen and a rectal temperature sensing module. All signals are sampled and processed by the Arduino MEGA 2560 microcontroller. The testing of the prototype was performed with simulated patients in UC3M laboratories, and with small animals at Hospital General Universitario Gregorio Marañón’s Laboratorio de Imagen Médica y Cirugía Experimental. Overall, results were very satisfactory despite an issue with missed TTL beats that will be resolved in future work by redesigning the algorithm for touchscreen visualisation of the different signals, and gating conditions. The reduced costs of this device with respect to other such devices on the market, along with the intuitive interface and its portability could ease implementation of image gating, enabling key preclinical research for heart disease.Ingeniería Biomédica (Plan 2010

    Signal processing techniques for analysis of heart sounds and electrocardiograms

    Get PDF
    Audible heart sounds represent less than 5% of the vibrational energy associated with the cardiac cycle. In this study, experiments have been conducted to explore the feasibility of examining cardiac vibration by means of a single display encompassing the entire bandwidth of the oscillations and relating components at different frequencies. Zero-phase-shift digital filtering is shown to be required in producing such displays, which extend from a recognizable phonocardiogram at one frequency extreme to a recognizable apexcardiogram at the other. Certain features in mid-systole and early diastole, observed by means of this technique, appear not to have been previously described. Frequency modulation of an audio-frequency sinusoid by a complex signal is shown to be effective in generating sounds analogous to that signal and containing the same information, but occupying a bandwidth suitable to optimum human auditory perception. The generation of such sounds using an exponential-response voltage- controlled oscillator is found to be most appropriate for converting amplitude as well as frequency changes in the original signal into pitch changes in the new sounds, utilizing the human auditory system\u27s more acute discrimination of pitch changes than amplitude changes. Pseudologarithmic compression of the input signal is shown to facilitate emphasis in the converted sounds upon changes at high or low amplitudes in the original signal. A noise-control circuit has been implemented for amplitude modulation of the converted signal to de- emphasize sounds arising from portions of the input signal below a chosen amplitude threshold. This method is shown to facilitate the transmission of analogs of audible and normally inaudible sounds over standard telephone channels, and to permit the slowing down of the converted sounds with no loss of information due to decreased frequencies. The approximation of an arbitrary waveform by a piecewise-linear (PL) function is shown to permit economical digital storage in parametric form. Fourier series and Fourier transforms may be readily calculated directly from the PL breakpoint parameters without further approximation, and the number of breakpoints needed to define the PL approximation is significantly lower than the number of uniformly-spaced samples required to satisfy the Nyquist sampling criterion; aliasing problems are shown not to arise. Thus data compression is feasible by this means without recourse to a parametric model defined for the signal (e.g., speech) being processed. Methods of automatic adaptive PL sampling and waveform reconstruction are discussed, and microcomputer algorithms implemented for this purpose are described in detail. Examples are given of the application of PL techniques to electrocardiography, phonocardiography, and the digitization of speech
    corecore